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Abstract 
 

This paper quantitatively analyzes the cost-effectiveness of alternative green payment policies designed to 
achieve a targeted level of pollution control by heterogeneous microunits. These green payment policies 
include cost-share subsidies and input-reduction subsidies. The paper shows that unlike a pollution tax, a 
cost-share subsidy and an input-reduction subsidy are much more restricted in the types of incentives they 
provide for conservation of polluting inputs and adoption of a conservation technology to control 
pollution. Costs of abatement with alternative policies and implications for production and government 
payments are compared using a simulation model for controlling drainage from irrigated cotton 
production in California.  
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Agricultural runoff of nutrients and sediment is a primary cause of water quality 

degradation and this has drawn attention towards encouraging the adoption of conservation or 

efficiency-enhancing technologies. By increasing the effectiveness with which inputs are used, 

technologies such as drip irrigation, integrated pest management and site-specific farming have 

the potential to not only increase input productivity but, according to the law of material 

balances1, also reduce the portion of input wasted and converted into pollution. Private 

incentives to adopt such technologies may lead to suboptimal adoption rates because of the 

external nature of the costs of pollution, necessitating government intervention.  

When farmers are heterogeneous, a pollution tax or firm-specific input taxes are the least 

cost approach to internalizing external costs (Griffin and Bromley). These policies are difficult to 

implement because of political difficulties of imposing the “polluter pays principle” on farmers 

and the high costs of identifying and monitoring the heterogeneous sources generating the non-

point pollution. Instead there has been a multitude of “green payment” programs, such as the 

Agriculture Conservation Program and the Environmental Quality Incentives Program that 

provide subsidies for taking actions to reduce pollution.  

The first objective of this paper is to develop a generic microeconomic framework to 

quantitatively analyze and compare the cost-effectiveness of alternative green payment policies 

designed to achieve a targeted level of pollution control by inducing the adoption of a 

conservation technology. The second objective is to explore the impact of the technical attributes 

of the conservation technology for the design and cost-effectiveness of alternative policies. The 

green payment policies considered here are cost-share subsidies to share the fixed costs of 

adoption of a conservation technology and input-reduction subsidies to reduce the use of a 

polluting input. We examine two versions of each policy, one where entitlement is restricted to 

currently operating units and the other that allows unrestricted entry.  
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The framework developed here consists of a micro-level model of a discrete choice 

between technologies and selection of input-use levels by units that are heterogeneous in land 

quality. It incorporates an explicit linkage between input-use and pollution and integrates it with 

the threshold model of adoption (David) to examine incentives to adopt a conservation 

technology. This framework is used to compare the differential impact of alternative policies on 

entry-exit decisions, on input-use and production levels and the extent to which they provide 

incentives for technology adoption. The relative costs of abatement with alternative policies is an 

empirical question and we examine that by developing a simulation model for control of 

drainage from cotton production in Western San Joaquin Valley, California.  

The paper builds on and expands the framework developed by Caswell et al. that 

distinguishes between applied input and effectively used input (input consumed by crops). They 

assume that the conservation technology increases the productivity of the applied input and can 

therefore be considered to be input-augmenting or land-quality-augmenting. Agronomic 

research2 suggests that conservation technologies may also have productivity-enhancing 

attributes that apply to all inputs including land (survey in Khanna and Zilberman). We refer to 

this as the neutral productivity-augmenting attribute of the conservation technology. Neutral 

technical change may raise yield per acre over and above that due to input-augmenting technical 

change alone. This paper analyzes the implications of a combination of land-quality and neutral 

productivity-augmenting characteristics of a conservation technology. Unlike Caswell et al. that 

analyze the impact of pollution taxes and input prices on adoption of a land-quality-augmenting 

technology by a single microunit this paper compares the cost-effectiveness of alternative green 

payment policies relative to a pollution tax. Additionally, it develops a method to aggregate 

profit-maximizing responses across heterogeneous microunits to examine the effect of alternative 

policies and technical attributes of conservation technologies for market surplus, aggregate 
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production and government payments.  

Other studies analyzing the implications of second-best policies aimed at controlling 

nonpoint pollution include Abler, Wu et al, Helfand and House, and Huang and Uri. These 

studies focus on input taxes and input-use restrictions to reduce pollution while assuming that 

technology is constant3. Wu and Babcock analyze the cost-effectiveness of promoting greater 

conservation effort by a given number of producing units through cost-share subsidies relative to 

mandatory programs while Segerson and Micelli examine conditions under which cost-share 

subsidies are required and successful in inducing socially optimal levels of abatement by a firm 

relative to mandatory approaches. These studies do not consider the impact of subsidies on entry 

decisions and its impact on the cost-effectiveness of the policy. 

The framework developed here is more general in that it allows for pollution generated by 

heterogeneous microunits to be reduced in three ways - switching towards a conservation technology, 

reducing the intensity of input-use and exiting from the industry. It shows that differences in the cost-

effectiveness of alternative polices arise because of differences in the extent to which they rely on these 

three mechanisms to reduce pollution. Moreover, unlike a pollution tax, green payment policies that 

promote land-quality-augmenting and neutral technical change can induce idle land into production. The 

magnitude of these differences across policies varies with the relative strengths of the land-quality-

augmenting and neutral productivity-enhancing characteristics of the technology. Simulations show that 

the cost of abatement with an input-reduction subsidy is not significantly higher than that under a 

pollution tax. This cost is substantially lower than with an unrestricted cost-share subsidy. Input-reduction 

subsidy policies impose much smaller costs on the government and have negligible impacts on marginal 

land induced into production and on aggregate production as compared to an unrestricted cost-share 

policy. However, the inefficiency of a cost-share subsidy relative to an input-reduction subsidy and a 

pollution tax is considerably reduced if it is restricted to units currently operating or if the conservation 
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technology embodies both land-quality-augmenting and neutral productivity-enhancing characteristics 

and there is a constraint on the availability of idle land.  

Theoretical Model 

We now develop a micro-economic model to analyze the impact of a pollution tax policy, 

a cost-share subsidy and an input-reduction subsidy on input-use and technology choice by 

heterogeneous microunits in a region. Each microunit produces a single crop with a constant 

returns to scale technology using a single variable input and land. Microunits make a discrete 

choice between two technologies, a traditional (i=1) and a conservation technology (i=2). The 

production function under technology i is: yi=βifi(hixi) where yi is output per acre, xi is applied 

input per acre,  hi is the input-use efficiency or fraction of the applied input that is actually 

utilized by a crop and βi is a neutral productivity-enhancing factor. The function f(.) has the 

regular properties of a neo-classical production function with f(0)=0,  f′>0, f′′<0.   

Typically only a fraction of the applied variable input is utilized by a crop. The efficiency 

of input use with technology i is hi and is defined as the ratio of applied input xi to effective input 

use ei; thus ei=hixi.  We assume that the efficiency of input-use is a function of technology choice 

and land quality represented by an index α. The index α is scaled to correspond to input-use 

efficiency with the traditional technology [i.e. h1(α)≡α] and can assume values from 0 to 1. 

Efficiency of input-use with the conservation technology is h2=h2(α) with h2’>0 and h2’’<0. 

The conservation technology increases the efficiency of input-use with a given land 

quality such that h2(α)>h1(α)≡α for 0<α<1, while h2(0)=0 and h2(1)=1.This is the land-quality-

augmenting-effect. The assumptions about h2 imply that the gap between h2 and h1 decreases as 

α increases. The neutral productivity-enhancing characteristic of the conservation technology is 

represented by β2>β1 =1. It implies that the technology raises yield per acre associated with a 
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given level of effective input-use independently of the land-quality-augmenting-effect.  

The variable input, not utilized by the crop may be a source of environmental 

contamination. Pollution per acre with technology i is represented as: zi=γi(α)xi, where γi is the 

pollution  coefficient per unit of applied input with technology i. We assume that γi′(α)≤0, which 

implies that as land quality increases, the pollution per unit applied input decreases. In some 

cases, all of the input wasted becomes a polluting residual and γi=[1-hi]. Since a conservation 

technology augments input-use efficiency or land quality, it is reasonable to assume that it 

lowers the pollution coefficient; thus γ2(α)<γ1(α). We refer to this as the pollution-intensity-

effect of adoption and its magnitude is expected to decline as α increases. 

The adoption of a conservation technology requires fixed expenditures per acre on human 

or physical capital because this technical change is embodied either in management and time 

intensive skills or new equipment. The annualized fixed costs of adoption per acre k2 are 

assumed to be larger than those required with the traditional technology; thus k2>k1 and the same 

for all α. While the choice of technology to be adopted on a particular acre by a microunit with 

efficiency α is a discrete decision, the share of its land acres on which it adopts technology i is a 

continuous variable δi(α). Thus, δi(α)=1 if technology i is adopted on all acres with efficiency α, 

δi(α)=0 if technology i is not adopted on any land acres of efficiency α. Some microunits may be 

indifferent between using technology 1 or 2 and for them 0≤δi(α)≤1 with 0≤ 1
2

1

≤∑
=

)(
i

i αδ . 

We define the elasticity of marginal productivity (EMP) with technology i with respect to 

ei by εi= -f′′(ei)ei/f′(ei). EMP approaches infinity when f′ is zero and EMP approaches 0 when ei 

approaches zero and the marginal productivity of ei approaches its maximum. Thus, 0<εi<∞ in 

the economic region of production (where f′>0 and f′′<0). Elasticity of efficiency, h2, with 
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respect to α is defined by η2=h2′α /h2 and 0<η2≤1=η1. Elasticity of output with respect to ei is 

φi=f′ei/f. In the economic region of production, φi decreases from 1 to 0 as ei increases4.  

Micro-Level Decision Making with a Pollution Tax Policy 

We first consider the implications of imposing a pollution tax θ designed to achieve a 

predetermined level of total pollution. Each microunit takes its land quality, prices and the tax 

rate as given and chooses the quantity of variable input and the share of its land acres on which 

to adopt each technology to maximize its quasi-rents, subject to the constraint that the sum of the 

technology shares is less than or equal to one. Quasi-rents are defined in (1) as revenue minus 

variable costs, annualized fixed costs and tax payments and ρ is a Lagrange multiplier: 
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Condition (2) implies that the optimal level of input-use x i* is chosen such that the value 

of its marginal product (P f hi iβ ' ) is equated to its per unit post-tax price, v i =w+θγi  where θγi is 

the tax burden per unit of applied input. The pollution tax is equivalent to a firm-specific input 

tax, θγi(α) (as shown by Griffin and Bromley). As the pollution tax θ increases, the post-tax price 

of the applied input increases and this tends to reduce input-use with a given technology5. Since 

γ2<γ1, the increase in post-tax input price and the negative effect on input-use is smaller for 

microunits using the conservation technology. The framework developed here can be used to 

further characterize the mechanisms by which the pollution tax controls pollution. Total 

differentiation of (2) can be used to obtain the elasticity of input-use with respect to the tax:  
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This suggests that the pollution tax has a negative intensive margin effect on input use. If the 

share of tax payments in total revenue is small and if βi and elasticities εi and φi are large then the 

intensive margin effect of the tax is small and input-use with a given technology will not change 

significantly relative to its unregulated level unless a very high tax rate is imposed.   

Condition (3) implies that technologies with negative post-tax quasi-rent will not be 

adopted, that is, δi*(α)=0, if Πi*(α) =Pyi*-v ix i*-k i < 0. The marginal land quality with each 

technology, αi
m*, is defined as the land quality at which quasi-rents per acre are zero:     

 Πi*(αi
m*(θ))=0.                                                           (5) 

Since Πi*(α) is a monotonically increasing concave function of α, there exists a unique value of 

αi
m* for each technology6. Total differentiation of (5) leads to the elasticity of marginal land 

quality with respect to θ: 0
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. This implies that an increase in the tax rate 

raises the marginal land quality by inducing microunits with low α to exit the industry. 

Condition (3) also shows that adoption of the conservation technology occurs when its quasi-rent 

is positive and larger than that of the traditional technology, that is:  

Π1*(α) =Py1*-v1*x1*-k1  <  Py2*-v2* x2*-k2=Π2*(α) >0                    (6) 
This also implies that ρ can be interpreted as the per acre rent for land with quality α7. 

The difference in quasi-rent per acre with the two technologies for a given land quality 

can be represented by:        Π2*-Π1*= ∆Π*=P∆y* -w∆x* -∆k -θ∆z*                                (7)  

where ∆ represents the difference in the level of a variable (y, x, k and z) with the two 

technologies. Factors that affect this quasi-rent differential include the impact of adoption on 

input-use, ∆x*, on output level, ∆y*, and on the pollution generated, ∆z*, as well as the levels of 
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input price, output price, pollution tax rate and fixed costs of adoption. Condition (7) shows that 

the larger the output-increasing (∆y*>0), input-saving (∆x*<0) and pollution-reducing (∆z*<0) 

effects of the conservation technology, the more likely is the differential to be positive.  

 Caswell et al. showed that adoption of a land-quality-augmenting conservation 

technology by itself (in the absence of a pollution tax) increases yield per acre but reduces input-

use per acre and pollution per acre only when the elasticity of marginal productivity, ε1>1. When 

the conservation technology has both land-quality-augmenting and neutral productivity-

enhancing attributes, these attributes operate in opposite directions in their effect on input-use 

and pollution per acre (as shown in the Appendix, equation A.1). Now adoption is input-saving 

only if ε1>1 and the neutral productivity-enhancing effect is small. A pollution tax supplements 

this input-saving effect of adoption through its intensive margin effect as in (4). 

The effect of adoption on pollution per acre depends on its effect on input-use and on the 

magnitude of the pollution-intensity effect. If the conservation technology is input-saving, its 

pollution-reducing-effect will be larger than its input-saving effect because γ1>γ2 and adoption 

reduces the pollution. Even if the conservation technology is not input-saving it may still be 

pollution-reducing if the pollution-intensity effect is large (as seen in A.3). The larger the neutral 

productivity-enhancing effect of adoption the smaller is its pollution-reducing-effect. 

Both the land-quality-augmenting and neutral productivity-enhancing attributes have a 

positive effect on output per acre (as shown in A.4). When output per acre under the traditional 

technology approaches its maximum (that is φ1 approaches zero) the output-increasing effect of 

adoption declines. When adoption is induced by a pollution tax, this positive effect could be 

offset by the negative intensive margin effect of the tax which lowers applied input-use per acre.  

Caswell et al. also showed that the profit differential (Π2*-Π1*) for a land-quality 
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augmenting technology is expected to decline as α increases. This can also be seen by analyzing 

the sign of 
∂α

ΠΠ∂ *)*(
Ù 12 −

=  as in A.5 in the Appendix. The larger the input-saving effect of 

adoption, the more negative is the sign of Ω and the larger the decline in the profit differential as 

α increases. Since ∆k is the same for all land qualities it implies that the profit differential is 

likely to be at its largest when α is low and that the conservation technology is more likely to be 

adopted on low quality land. This pattern of adoption could however be diluted or reversed if the 

technology has a neutral productivity-enhancing effect, since that reduces the input-saving effect 

of adoption. This would reduce the rapidity with which Ω declines or even make Ω positive. One 

could then expect to see relatively greater adoption by microunits with higher land quality than 

in the case of a conservation technology that is land-quality-augmenting only.  

The analysis above implies that when the conservation technology is adopted by the 

lower land qualities and α2
m*<α1

m*, the adoption of the conservation technology leads to 

expansion of land under production. As β2 increases, it will further reduce α2
m* as shown above. 

Mundlak shows conditions under which land-augmenting technical change is land expanding. 

The analysis here shows that with land-quality-augmenting and neutral technical change also 

there can be expansion of land under production if adoption occurs on low quality land. 

We can define a switching land quality, αs*, as the level at which both technologies yield 

the same profits per acre:     Π1*(αs*(θ))= Π2*(αs*(θ)).             (8) 

If Ω<0 for all α, it implies that the conservation technology is likely to be adopted by 

α2
m*<α<αs* whereas if Ω>0 it implies that the conservation technology is likely to be adopted 

by αs*<α<1 while other land qualities will use the traditional technology. Total differentiation of 

this condition shows that the elasticity of the switching land quality with respect to θ is:     
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This shows that irrespective of the pattern of adoption, an increase in the pollution tax, will 

induce some microunits to switch from the traditional technology to the conservation technology 

if the latter is pollution-reducing. If the pollution-reducing effect of adoption is small, or the tax 

rate is low, the switching effect will be small and the adoption rate in the unregulated case could 

be close to that under a pollution tax policy.  

 Micro-Level Decision-Making with a Conservation Technology Cost-Share Policy 

Suppose a cost-share subsidy c is provided to lower the proportion of the fixed cost of 

adoption. The microunit’s objective function can be written as follows:   
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Input-use, marginal and switching land quality are now determined such that: 

0=− w)(h'Pf ii αβ                                                          (11) 
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A microunit chooses its quasi-rent maximizing levels of input-use, x2

c, by equating the 

value of marginal product to the input price. Unlike a pollution tax, a cost-share policy does not 

have any intensive-margin-effect. If the pattern of adoption is such that the conservation 

technology is adopted by the microunits with a high α, the cost-share subsidy will not affect the 

marginal land quality level. Otherwise, the cost-share subsidy will lower the marginal land 

quality level by lowering the fixed costs. Total differentiation of (11) shows that the elasticity of 

marginal land quality (with i=2) α2
mc with respect to c is: 0
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policy will then have a positive extensive-margin effect and be land expanding. The larger the 
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share of the subsidy payments in the total revenue and the smaller are β2, φ2 and η2 the larger is 

the extensive-margin effect. 

The effect of a cost-share subsidy policy on the switching land quality level, αsc can be 

analyzed by deriving the elasticity of switching land quality level with respect to c as follows:   

0 0
0  0    2
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The elasticity is positive if the denominator is negative which is the case when the low land 

quality microunits are adopting the conservation technology and negative otherwise. Either way 

the cost-share policy induces microunits previously using the traditional technology to switch to 

the conservation technology.  

A technology cost-share policy achieves pollution control through a technology switching 

effect only. Since pollution reduction through this effect could be partly offset by a positive 

extensive-margin effect, a cost-share is an effective policy tool for reducing pollution only if the 

technology switching effect is large and if the conservation technology has a large pollution-

reducing effect. To achieve the same level of pollution control as a pollution tax, the cost-share 

policy must induce higher rates of adoption than the tax policy. A restricted cost-share policy 

that restricts the subsidy to microunits that are already operating does not have an extensive 

margin effect. It therefore requires a smaller technology switching effect and a smaller subsidy 

rate to achieve a given level of pollution reduction. 

Micro-Level Decision-Making with an Input-Reduction Subsidy policy 

Instead of a subsidy based on technology choice, microunits could be given a subsidy for 

reducing the use of a polluting input below the privately optimal level. Suppose a uniform 

subsidy rate of r per unit of input reduction below the privately optimal level xo is provided. The 

microunit’s objective function can then be written as follows:  
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Input-use, switching land quality and marginal land quality are now determined such that:   
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Condition (16) shows that the subsidy raises the costs of input-use and creates incentives 

to reduce input-use with both technologies, like a pollution tax. Total differentiation of (16) 

shows that the elasticity of input-use with respect to r is: 
ii
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<0. However, 

since the subsidy rate, r, does not vary with technology choice or with land quality, unlike a 

firm-specific input tax, θγi(α), the negative-intensive margin effect of the two policies differs. 

Since θγi(α) is relatively smaller for microunits with high α, the intensive-margin effect of an 

input-reduction subsidy will be larger than that of the pollution tax for microunits with high α 

and those using the conservation technology. It will be relatively lower for microunits having a 

low α and those using the traditional technology. The intensive-margin effect of the input-

reduction subsidy is therefore not as well targeted towards the polluters as a pollution tax. 

The impact of the input-reduction subsidy on the marginal land quality combines 

elements of the pollution tax and the cost-share subsidy. Like the cost-share subsidy, the 

payment of rxo lowers the fixed costs of adoption and creates incentives for farmers that did not 

otherwise find it profitable to operate to start operating. However, these incentives for entry are 

partially offset since the subsidy also induces a reduction in input-use. The net extensive-margin 

effect of the input-reduction subsidy is non-negative unlike a pollution tax but is likely to be 

smaller than that of the cost-share subsidy. The elasticity of marginal land quality with respect to 
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smaller is βi and the other elasticities, the larger is the extensive-margin effect. The elasticity of 

the switching land quality with respect to r can be obtained as follows: 
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This indicates that an increase in the input-reduction subsidy would induce some 

microunits to switch towards an input-saving technology. Comparing the switching effect of the 

pollution tax and an input-reduction subsidy, we see that while the former depends on the 

magnitude of the pollution-reducing effect, the latter depends on the input-saving effect. Instead 

of providing the input reduction subsidy to all farmers, the subsidy could be restricted to those 

farmers that had been operating previously. The extensive margin effect would then be zero and 

a lower subsidy rate would be required to achieve a given level of abatement. 

Regional Implications of Alternative Policies  

To examine the effect of alternative policies on aggregate input-use, output, pollution and 

quasi-rents in a region we define a continuous density function g(α) that represents the frequency 

density of acres of land that have land quality α. Representing the lowest land quality level that 

characterizes land in the region by αL and the highest by 1, we can sum up the number of acres 

with each land quality level αL≤α≤1 to obtain the total acreage M in the region, such that total 

acreage is g M

L

( )α
α

=∫
1

. Aggregate output supply, Y, aggregate input use, X, and aggregate 

pollution, Z, are determined by aggregating the micro-level profit maximizing choices using the 

density function of land quality g(α), the adoption pattern as determined above, and the marginal 

and switching land quality levels (αi
m and αs). Assuming that adoption occurs on low α (that is 
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Ω<0) aggregate output, input-use, pollution and quasi-rents are: 
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We define market surplus as the sum of consumer surplus, quasi-rents of producing units 

and government surplus. It excludes the monetized environmental damages due to pollution. 

Because we are focusing on a small region we assume that commodity prices and thus consumer 

surplus are not affected significantly by the changes in output. Government surplus is positive 

and equal to the tax revenues in the case of a pollution tax policy and is negative and equal to 

subsidy payments with the green payment policies. Costs of abatement are defined as the 

difference between market surplus in the unregulated situation and the surplus with the policy. 

The magnitude of the difference in costs of abatement among alternative polices is an empirical 

issue and we examine it in the next section by developing a numerical programming model. 

Numerical Simulation 

 This simulation analyzes the implications of alternative policies for reducing drainage 

from cotton production in California’s San Joaquin Valley where cotton is grown on about 

400,000 irrigated acres in the western portion. To keep the analysis simple we assume there are 

two irrigation technologies. Furrow is the traditional irrigation technology while drip is the 

conservation technology. We specify a quadratic production function as in Caswell et al and 

Hanemann et al., yi= f(ei) = -1589+2311ei – 462ei
2, and assume βi=1 We compare the impact of 

two alternative values of β2, 1 and 1.005, while assuming β1=1.  

 We use efficiency with furrow technology as a measure of land quality (h1(α)=α) as in 

Caswell et al. Land quality ranges from 0.2 (steep sandy soils) to 0.8 (level fields with heavy 



 15

soils) (State Water Control Board Report) and the data are distributed in a unimodal pattern. For 

this simulation we use these parameters to construct a symmetric Beta distribution of land quality 

with a mean efficiency of 0.5 and variance 0.013. Hanemann et al find that when the efficiency 

of water use with furrow is 0.6 the adoption of drip irrigation increases efficiency of water use to 

0.95. We use this information together with the assumption that h1=α=1 implies h2=1, to 

calibrate a constant elasticity function to relate the efficiency with drip to that with furrow 

irrigation for each land quality. The function obtained is h2(α)=α 0.1. We specify the pollution 

generation function as γi=(1-hi)κi. As water-use efficiency increases, the pollution coefficient 

decreases. We calibrate this function using the information that with h1=α=0.6, γ1 drainage 

coefficient with furrow, is 0.175, and that with h2=0.95, the drainage coefficient with drip is 0.04 

(Hanemann et al.). We obtain κ1=1.902 and κ2=1.074.  The fixed cost of adoption of furrow 

irrigation and drip irrigation is $500 per acre and $633 per acre, respectively. Water price is 

assumed to be $55 per acre-foot while price of cotton is assumed to be $0.6 per pound. 

Implications of Alternative Policies with Land-Quality Augmenting Change 

 With these prices, in the absence of any regulation and with β2=1, we find that land with 

quality less than 0.41, which is 24% of the land area will be idle. Adoption of drip occurs on land 

with low quality, 0.41≤α≤0.47, while land with high quality continues to use furrow irrigation. 

Total quasi-rents in the region are $11.2 million, total water use is 1.13 million acre-feet, cotton 

production is 390 million pounds and drainage generated is 204.76 thousand acre-feet. 

Table 1 shows the implications of alternative policies designed to achieve a 40% 

reduction in drainage relative to the unregulated level. The restricted cost-share policy and both 

forms of the input-reduction subsidy lead to market surplus levels that are very close to each 

other and not substantially lower than that under a least cost pollution tax. The restricted cost-
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share policy is the most cost-effective among these green payment policies and with a 40% 

abatement target it lowers market surplus by 3% while the restricted input-reduction subsidy 

lowers it by 4% relative to the pollution tax. The unrestricted input-reduction subsidy policy 

imposes costs of abatement that are very similar to those with the restricted input-reduction 

subsidy because it does not induce a large extensive margin effect. The costs of abatement of a 

restricted cost-share policy and a restricted input-reduction subsidy are similar because the 

intensive-margin effect of the latter is small. The input-reduction subsidy achieves abatement 

primarily through the technology-switching effect, like the cost-share subsidy. Both forms of the 

input-reduction subsidy and the restricted cost-share subsidy therefore have very similar effects 

on water-use, switching land quality levels and output. 

On the other hand, the unrestricted cost-share subsidy leads to a large reduction (14%) in 

market surplus relative to a pollution tax. The inefficiency of green payment policies increases 

considerably as the abatement target increases, particularly for the unrestricted cost-share policy 

(Figure 1). As expected, the two restricted subsidy policies are always more cost-effective than 

the unrestricted subsidy policies. At the 60% abatement level, market surplus is lower relative to 

a pollution tax policy by 13% under a restricted cost-share subsidy, by 15% under a restricted 

input-reduction subsidy, by 22% under an unrestricted input-reduction subsidy and by 38% 

under an unrestricted cost-share subsidy. 

As suggested by the theoretical analysis, these differences in cost-effectiveness among 

policies arise because they differ in the ways that they provide incentives for abatement. A 

pollution tax causes 30% of the land operating in the base case to exit the industry. Marginal land 

quality level increases from 0.41 to 0.51. A pollution tax also creates incentives for 15% of land 

previously under furrow to switch to drip irrigation and raises the switching land quality level. 

Total water use declines by 38% relative to the unregulated level. In contrast, an unrestricted 
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cost-share increases water use by 5%. It also has a large entry effect and induces all idle marginal 

land (24% of land in the region) into production. It controls pollution by inducing 27% of the 

land to switch from furrow to drip while the other green payment policies induce 19-20% of the 

land to switch (Figure 2). Hence, while creating incentives to adopt a conservation technology 

and reduce pollution, an unrestricted cost-share subsidy increases water use and land use.  

While the unrestricted cost-share policy leads to the lowest level of market surplus it 

leads to the highest level of farm income and aggregate production indicating a conflict among 

the objectives of social efficiency, supporting farm income and increasing cotton production at 

existing prices. It leads to 72% higher level of farm income as compared to the base case, 34% 

more as compared to the restricted cost-share policy and 52% more than with the input-reduction 

subsidy policies. A pollution tax would have reduced farm income by 33% relative to the base 

case. However, the unrestricted cost-share subsidy also imposes costs on the government that are 

almost five times higher than those under the input-reduction subsidies at the 40% abatement 

level. This cost differential increases as the abatement target increases as shown in Figure 3. 

These policies also differ considerably in their impact on aggregate output. While a pollution tax 

reduces aggregate output by 39% relative to the base case, the restricted cost-share and the 

restricted input-reduction subsidy policies have a very marginal impact on total production. The 

unrestricted cost-share policy increases aggregate output by 32%.  

Policy Implications of Combination of Land-Quality-Augmenting and Neutral Technical Change 

The specification of the technology affects the land qualities that find it profitable to 

operate and the private incentives to adopt the technology. Even with a small increase in β2 by 

0.5% to β2=1.005 there is a significant increase in the range of land qualities over which it is 

privately profitable to operate. Ninety-five percent of the total land area in the region, having a 

land quality greater than 0.32 would now be under production, showing that neutral technical 
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change is land expanding. There is also an increase in the incentives for voluntary adoption of 

drip irrigation among higher land qualities and the switching land quality level increases by 12% 

to 0.46. As expected from the analysis in the Appendix, there is an increase in total water use by 

16%, an increase in total output produced by 25% and in total drainage by 3% as compared to 

the case with β2=1. The increased rate of adoption, however, results in a reduction in the 

pollution-output ratio from 0.52 to 0.42 acre-feet of drainage per thousand pounds of output.  

The specification of the technology also has several implications for policy. With the 

higher β2 of 1.005, a higher tax rate/subsidy rate is required to achieve targeted levels of 

abatement under all policies, with the exception of the unrestricted cost-share subsidy. The 

higher tax/subsidy rate is required to control the additional pollution generated by the large 

influx of marginal land into production (relative to the case with β2=1) whose contribution to 

pollution is not completely offset by stronger voluntary incentives among existing units to adopt 

drip irrigation. Additionally, in the case of the pollution tax and input-reduction subsidy this 

occurs because an increase in β2 reduces the intensive-margin effect of the tax/subsidy as 

suggested by the theoretical analysis.  

In the case of the unrestricted cost-share subsidy, however, a lower subsidy rate is 

required, because the increase in β2 to 1.005 does not induce any additional land into production 

relative to the case with β2=1 which had already brought all idle land into production while 

achieving the 40% abatement target. Instead the increased voluntary incentives for adoption with 

the higher β2 lead to a reduction in the cost-share rate required to achieve the targeted abatement. 

This result is conditional on the assumption of a fixed amount of land on which cotton 

production can be expanded in the short or medium term. 

The higher pollution tax rate required with the higher β2 to achieve the targeted 
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abatement raises the costs of abatement relative to the case with β2=1. The pollution tax now 

lowers market surplus by 13% instead of by 7% relative to the base case while achieving 40% 

abatement (Table 2). The higher subsidy rates required with the higher β2 also increase the 

relative inefficiency of the restricted cost-share and both input-reduction subsidy policies. 

However, the ranking of the policies remains unchanged. The major impact of a higher β2 is that 

it significantly lowers the costs of abatement under an unrestricted cost-share and brings it closer 

to those with the other three green payment policies and the pollution tax policy. This occurs 

because the higher β2 raises the pollution tax rate while lowering the unrestricted cost-share 

subsidy rate. It also reduces the negative intensive-margin and the negative extensive-margin 

effects of the tax while reducing the positive extensive-margin effect of the unrestricted cost 

share subsidy. The four green payment policies now have very similar market surplus (Fig. 4). 

The larger land area that finds it profitable to operate with β2=1.005 results in a 

considerably expanded tax base under the pollution tax and a larger subsidy base under the 

restricted cost-share subsidy and both types of input-reduction subsidies relative to the case 

where β2=1. This together with the higher tax/subsidy rate required to achieve the targeted 

abatement raises the pollution tax revenue by 14% as well as the subsidy payments required by 

69% under a restricted cost-share subsidy policy and by 14% to 16% under the input reduction 

subsidies (Table 2). However, it lowers the payments required under an unrestricted cost-share 

subsidy by 15% relative to the case with β2=1 since the subsidy base is unchanged and the 

required subsidy rate is lower. The specification of the technology also impacts the relationship 

between pollution control and production under the alternative policies, with the most significant 

differences occurring with a pollution tax and an unrestricted cost-share subsidy policy. On the 

one hand, an increase in β2 decreases the negative impact of the pollution tax on output (from 
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39% to 24% at the 40% abatement level). On the other hand, it decreases the positive impact of 

the unrestricted cost share subsidy on aggregate output from 32% (with β2=1) to 5% (β2 =1.005).  

Conclusions 

This paper develops a microeconomic framework to quantitatively analyze the cost-

effectiveness of alternative policies that seek to reduce non-point pollution by influencing the 

observable decision variables of heterogeneous microunits, namely technology choice and input-

use. It examines the implications of the specification of the technical attributes of the 

conservation technology for cost-effectiveness, for the fiscal impact of policies and for the 

relationship between pollution reduction and output at the regional level.  

Our theoretical analysis shows that unlike a pollution tax that achieves abatement through 

three mechanisms – a negative extensive margin effect, a negative intensive margin effect and a 

technology switching effect, a cost-share subsidy and an input-reduction subsidy are much more 

restricted in the incentives they provide. Additionally, these subsidy policies differ from a tax in 

that they have positive extensive-margin effects unless specifically restricted to prevent entry of 

marginal land. The magnitude of these three effects decreases while the tax/subsidy base 

increases as the neutral productivity-enhancing effect of the technology becomes stronger which 

raises the costs of abatement to achieve a given percentage reduction in pollution. The neutral 

productivity enhancing effect of a conservation technology also reduces the input-saving and 

pollution-reducing effect of adoption while increasing its output-increasing effect. 

 The analysis shows that a restricted cost-share and input-reduction subsidy policy have 

similar costs of abatement and these costs are close to those with a pollution tax even at fairly 

high levels of abatement. The budgetary cost of a restricted cost-share policy is however twice as 

large as that of an input-reduction subsidy. In the event that a restricted green payment policy is 

politically difficult to implement and an unrestricted policy needs to be implemented, an input-
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reduction subsidy is preferable to a cost-share subsidy. It has relatively low costs of abatement 

and government costs. It also leads to conservation of water-use and is not as land-expanding. 

However, if the conservation technology has both land-quality-augmenting and neutral 

productivity-enhancing attributes, the inefficiency of an unrestricted cost-share subsidy relative 

to other policies is considerably reduced, if the availability of idle land is constrained.  

 The analysis in this paper is based on the assumption of a perfectly elastic demand but 

could be easily extended to include the effects of alternative policies on output price. If demand 

is relatively inelastic, then a pollution tax can be expected to increase output price, while green 

payment policies will reduce output price. This output price change will create secondary 

influences on the intensive-margin, extensive-margin and technology-switching effects of an 

environmental policy. The analysis also shows the value of having data from a geographic 

information system on the distribution of land quality that can influence the performance of 

conservation technologies. This data could be used to expand upon the simulation done here to 

empirically analyze the regional implications of alternative policies. 

                                                 
1 This law states that the mass of inputs applied must equal the mass of final products plus the mass of residuals 
discharged to the environment minus the mass of materials recycled. 
2 Conservation technologies, such as drip irrigation and site-specific farming, reduce biological stress on plants by 
targeting inputs precisely to appropriate areas in the field and avoiding deficiencies and excesses in input-use 
(Wallace and Wallace). Insufficient water during critical plant growth periods can lead to plant stress that can reduce 
the yield of grain sorghum by 10 to 30% (Council for Agricultural Science and Technology). Studies show that a 
switch to modern irrigation systems for cotton not only leads to water savings of 25% but also to yield increases of 
17- 40% as compared to furrow (Fangmeier).  
3 The analysis by Wu et al. focuses on nitrate pollution control and while it allows for technology choice for 
irrigation it assumes that the nitrogen application technology is fixed. Huang and Uri consider alternative crop 
rotation patterns but assume the input application technology is fixed. 
4 ∂φi/∂ei = φi [1-εi -φ(ei)] /ei . As ei increases φi decreases, and φi has a value of 1 when ei  is zero and εi=0. It has a 
value of 0 when ei increases to the point that f’(ei)=0. This implies that ∂φi/∂ei ≤0 and therefore that    [1-εi -φ(ei)]≤0 
and  that φi has a maximum value of 1 when 1-εi=φi,  
5 The second order condition for maximization of quasi-rents per acre with each technology is P f hi iβ2 2 0'' < . 
Concavity of the production function ensures that this condition is met.  
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7 Condition (3) implies that ρ*(α)= max[Π1*(α), Π2*(α), 0]  and can be interpreted as the per unit rental rate of land 
with quality α. 
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Table 1:  Implications of Alternative Policies with Land-Quality Augmenting Technical 
Change and a 40% Abatement Target 

 

Base case
 
 
 
 

Pollution 
tax 
 
 
 

Restricted 
Cost-
share  
Policy 
 

Unrestricted 
Cost-Share 
 Policy 
 
 

Unrestricted  
Input-
Reduction 
Subsidy 
 

Restricted 
Input-
Reduction 
Subsidy 

Idle Land Area (%) 24 54 24 0 22 25 
Switch in land area 
away from furrow  (%) 

- 
 

15 
 

20 
 

27 
 

19 
 

19 

Marginal Land Quality 
 

0.412 
 

0.513 
 

0.412 
 

0.20 
 

0.405 
 

0.412 

Switching Land Quality 0.475 0.52 0.537 0.56 0.540 0.536 
Water Use  
(M Acre-feet) 1.13 0.70 0.98 1.19 0.98 

 
0.96 

Output 
(M lbs.) 390.80 237.88 391.78 517.04 401.02 

 
389.90 

Drainage  
(‘000 acre-feet) 204.76 122.86 

 
122.86 

 
122.86 

 
122.86 

 
122.86 

Tax Revenue/Subsidy 
Payments ($ M) 0 2.78 4.40 10.43 2.83 

 
2.72 

Farm Income ($ M) 
(inclusive of subsidy/net 
of tax) 11.19 7.55 14.4 19.27 12.72 

 
 

12.66 
Market Surplus  
($ M) 11.19 10.33 9.99 8.84 9.89 

 
9.94 

Cost of Abatement 
($M)  0.86 1.2 2.35 1.3 1.25 

 

Table 2: Implications of Alternative Policies with Land-Quality Augmenting 
                          and Neutral Technical Change and a 40% Abatement Target 

 

Base case
 
 
 
 

Pollution 
tax 
 
 
 

Restricted 
Cost-
share  
Policy 
 

Unrestricted 
Cost-Share 
 Policy 
 

Unrestricted  
Input-
Reduction 
Subsidy 
 

Restricted 
Input-
Reduction 
Subsidy 

Market Surplusa 

($M) 
12.39 

 
10.66 

 
10.29 

 
10.03 

 
10.18 

 

 
10.23 

 
Cost of Abatement (M) - 1.73 2.10 2.36 2.21 2.16 
Tax Revenues/Subsidy 
($ M)  

- 
 
 

3.16 
 
 

7.41 
 
 

8.85 
 
 

3.22 
 

 

3.15 

Farm Income 
($ M) 

12.39 
 

7.49 
 

17.71 
 

18.89 
 

13.41 
 

13.39 
 

Output 
(M lbs.) 

490.51 
 

368.604 
 

490.84 
 

518.75 
 

495.48 
 

488.52 
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Fig. 1: Market Surplus with Alternative Policies
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Fig. 2:  Impact of Alternative Policies on Switching Land Quality
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Fig. 3:  Impact of Green Payment Policies on Government Costs
ββ2=1
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Fig. 4: Market Surplus with Alternative Policies
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Appendix 
 
Impact of Technology Adoption on Input-Use, Output and Pollution  
 

The adoption of a conservation technology could impact variable input-use for two 
reasons: (a) it augments the efficiency of the variable input from h1(α) to h2(α) and (b) it 
augments the productivity of effective input-use from β1 to β2 which also indirectly raises the 
productivity of applied input-use. 

The difference in a microunit’s input-use and pollution per acre due to adoption itself (in 
the absence of any environmental policy) can be approximated by:   
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The first term on the right is the effect of the land-quality-augmenting attribute of the 
conservation technology on input-use and the second term is the effect of neutral productivity- 
enhancing effect. In the presence of a pollution tax, impact of adoption on input-use can be 
approximated by:  
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The effect of adoption on pollution per acre is:   ∆z=γ2∆x -x1(γ1-γ2)                   (A.3)     

If ∆x<0 in A.1 then the pollution-reducing effect of adoption is larger than its input-saving effect 
since γ1>γ2. While the land-quality-augmenting effect and the neutral productivity-enhancing 
attributes affect pollution generated indirectly by influencing input-use, the pollution intensity 
effect influences it directly.   

The impact of adoption on output per acre in the absence of any environmental regulation 
can be approximated by:     
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The land-quality-augmenting-effect and neutral productivity-enhancing effect work in the same 
direction to increase output per acre with adoption.  
 
 
The Pattern of Adoption 
 

In order to examine the pattern of adoption across heterogeneous land qualities, we 
differentiate the change in the profit differential (Π2*-Π1*) with respect to α, and evaluate it at 
θ=0, to obtain: 

  *]wx)(*)x*x(w[
*)*(

12122
12 1

1 −+−=
−

= ηη
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ΠΠ∂
Ω                             (A.5) 

The first term on the right hand side is negative if the technology is input-saving. The second 
term is always negative since η2≤1. 
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