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I. Introduction 

Allocating water resources among competing uses presents a host of practical problems and 
myriad opportunities for research by economists and other analysts of public policy.  Integral to 
societal activities from food production to recreation, water is distinctive among natural 
resources due to the tangled web of legal and institutional systems at the local, state, national, 
and international levels that governs its use.  With quality and quantity of water supply emerging 
as pressing concerns in many areas of the U.S. and the world, efficient allocation mechanisms 
are becoming more crucial. 

The need for improved means of allocating water has caused gradual revision of laws and 
policies governing transfer of water and water rights.  For example, the state legislature in Texas 
has allowed the State Water Development Board to form water banks, in an effort to encourage 
water transfers (Thompson, 1995).  Similarly, California has sought to clarify water property 
rights to facilitate short and long-term transfers (Archibald and Renwick, 1998).  Still, permanent 
transfers of water rights face numerous obstacles: establishing/adjudicating property rights, 
assessing and mitigating the effects of the transfer on downstream or third-party users, and 
evaluating the current value of the future stream of water.  Most of these factors increase the 
transaction costs of permanent rights sales, suggesting that such transfers are not an effective 
means for addressing short or medium-term water shortages. 

Changes in laws and institutions combined with the high transaction costs associated with 
permanent transfers of water rights have provided the opportunity and incentive to utilize market 
principles to allocate water among its users.  Proponents of spot markets for water argue that 
market mechanisms can be used if water property rights are not adequately defined, and are 
especially attractive if the transaction costs of trading permanent water rights are prohibitive.  
(See, for example, Howitt, 1998.)  Frederick (1998) argues that markets in many cases increase 
the value of water by shifting it from low-value agricultural uses to hydropower or urban 
consumption.  For economists, markets for water hold natural appeal: ideally, as supply and 
demand fluctuate relative to each other, prices will provide signals to market participants and 
ensure efficient water allocation. 

While development of spot markets and facilitation of permanent transfers of water rights have 
eased barriers to efficient water allocation, these two mechanisms do not adequately 
accommodate medium-term planning needs of many water users.  For example, neither spot 
markets nor permanent transfers provide assistance to an urban water planner faced with a two-
year horizon.  Further, as Howitt (1998) notes, spot markets appear to disproportionately burden 
buyers with risk while permanent transfers are riskiest for sellers.  Other market arrangements 
could spread risk  more equally between the two parties.  Uncertainty about future water supplies 
and prices, the need to time water availability to meet demand or production constraints, and the 
irreversibility of investments in water imply that a third market construct may be appropriate: 
option contracts for water. 
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II. Option Contracts for Stocks and Water 

Options are a type of derivative, a financial instrument whose value is based on another 
underlying asset.  A stock option, for instance, derives its value from the price of a specific 
stock.  The two basic kinds of options are calls and puts.  A call option gives the holder the right 
but not the obligation to purchase the underlying asset by a certain date for a specific price.  
Similarly, a put option gives the holder the right but not the obligation to sell the underlying asset 
by a certain date for a specific price.  The date specified in the option contract is called the 
expiration date or exercise date.  The specified price is known as the strike price or exercise 
price.  A European style option can be exercised only on its expiration date; an American option 
can be exercised any time on or before its expiration. 

Standard Options 

Perhaps the most basic option contract is the European call.  On the option’s expiration date its 
holder must decide whether to exercise her right to purchase the underlying asset.  If she 
exercises, she receives a payoff equal to the difference between the current price of the asset and 
the price specified in the option contract.  If she does not exercise her option her payoff is zero.  
More formally, I represent the payoff from the option as 

( )0,max KST − ,        [1] 

where ST is the price of the underlying asset at the expiration date (T), and K is the strike price.  
Then the option’s holder exercises when ST ≥ K. 

An option contract must have both a buyer and a seller.  The buyer of a call obtains the right to 
purchase the underlying asset but the seller of the call is obligated to provide the asset if the call 
is exercised.  Thus, while the holder of the call retains flexibility, the seller has none.  In order to 
obtain the option then, the buyer must incur an up-front cost, the option price.  Determining this 
value of the option, how much it is worth to the buyer, is straightforward for a European call.  
The Black-Scholes approach yields a tidy analytical solution for simple options like the 
European call and put. 

Exotic Options 

Many options have payoff structures that are more complicated than standard calls or puts; these 
are called exotic options.  The payoff from a lookback option, for example, depends on the 
maximum (or minimum) price achieved by the underlying asset during the lifetime of the option. 
A few types of exotic options such as European style compound options can be price analytically 
using extensions or the Black-Scholes pricing formulas.  Most, however, require numerical 
methods such as binomial trees and numerical quadrature.  
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Option Contracts for Water 

Evidence from the western United States shows that option contracts for water can be even more 
exotic than many exotic options considered in finance.  For example, one water district 
negotiated a contract with an agricultural operation allowing the district to exercise a call option 
up to eight times in a fifteen-year period.  This is a highly non-standard option; there is no simple 
pricing formula to calculate its value.  Standard European call options involve a simple decision 
whether or not to exercise on the expiration date.  In contrast, there are more than 65,000 ways to 
exercise the water district’s call option eight or fewer times in fifteen years.  Clearly this 
complicated payoff structure increases the difficulty of putting a value on the option contract. 

As a starting point for my research I have generalized the “eight times in a fifteen year period” 
option contract to a stylized “m out of n years” option.  As its name implies this option can be 
exercised no more than m times out of n periods, with n > m > 0.  For convenience I denote this 
as an m/n option.  The m/n option contract must specify in advance the strike price and exercise 
date for each period. 

My preliminary efforts focus on computing the value of a European-style 2/3 call option with 
constant strike price.  I describe the option explicitly in Section V.  The problem is complicated 
because the decision whether to exercise the option in period 1 depends on the expected value of 
the option in periods 2 and 3.  Similarly, the value of the option in period 2 depends on its value 
in period 3, which depends on how many times the call has already been exercised.  The problem 
is interesting because most option valuation methods used in finance are ill-equipped to account 
for these intertemporal links. 

 
 
III. The Black-Scholes Option Valuation Framework 

On December 9, 1997, Robert C. Merton and Myron S. Scholes received the Alfred Nobel 
Memorial Prize in Economic Sciences for their roles in developing the conceptual and 
mathematical frameworks of option pricing theory.  The seminal articles by Black and Scholes 
(1973) and Merton (1973) sparked a torrent of academic and applied research on financial 
derivatives, which in turn generated modifications, extensions, and innovative applications of the 
original Black-Scholes model.  (See Merton (1998) for a brief review of the evolution of option-
pricing theory since 1973.)  In the context of financial derivatives that are traded on organized 
exchanges, the Black-Scholes formula provides the value of an option as a function of several 
variables: strike price of the option, time until the option expires, price of the stock, the risk-free 
interest rate, and the volatility of the stock.  

To derive their option-pricing formula, Black and Scholes posited several assumptions.  Phrased 
in the context of water markets, these are (see Hull, 1997, p. 236): 

A1. Price of water follows a geometric Brownian motion process. 

A2. Market participants are permitted to short-sell water, with full use of proceeds. 

A3. No transactions costs or taxes exist. 
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A4. Underlying assets, including water, are perfectly divisible. 

A5. No dividends accrue during the life of the option. 

A6. Riskless arbitrage opportunities are not available. 

A7. Water trading is continuous. 

A8. The risk-free interest rate is constant, strictly positive, and compounded 
continuously. 

While these assumptions may be justifiable in the presence of well-established, active markets, 
their validity in nascent or thinly-traded water markets is doubtful.  For instance,  the Black-
Scholes assumption that the price of water follows an Ito process contains a series of additional, 
implicit assumptions: changes in the price of water follow a continuous-time non-stationary 
Markov process, and are normally distributed.  Non-stationarity requires the possibility of the 
expected value of price growing without bound and the variance of price to increase over time.  
To satisfy the conditions of a Markov property, only the current price of water can be relevant to 
predicting tomorrow’s price.  Given the seasonality of water use and supply, use of the Markov 
assumption in this scenario is questionable. Thus, the Black-Scholes method may not be suitable 
for wholesale adoption in this sphere of resource economics.  This suggests an opportunity for 
research: easing the Ito process assumption by exploring different types of stochastic forces 
driving water price.  A mean-reverting process, for example, may bear further investigation. 

Aside from the question of whether the Black-Scholes assumptions hold up in water markets, 
their approach of deriving and solving partial differential equations may simply be inefficient for 
valuing option contracts for water.  For even a moderately complex option, writing down a 
mathematical expression for the payoff can be challenge enough.  Deriving and solving the 
associated differential equation may well prove impossible.  Valuation techniques that do not 
rely on partial differential equations warrant investigation and may prove to be appropriate for 
the complicated options that arise in water markets. 

 
IV. Numerical Quadrature 

Initial formulations of option valuation in water markets naturally mimic the conceptual and 
mathematical framework developed by Black, Scholes, and Merton (see Howitt, 1998 and 
Watters, 1995).  As I argue above, while the assumptions of Black-Scholes option pricing 
formulas may be justifiable in the presence of well-established, active markets, their validity in 
nascent or thinly-traded water markets is doubtful.  Furthermore, the Black-Scholes approach 
loses elegance and usefulness when applied to non-standard options.   In this section I explain an 
alternative method for valuing options: numerical quadrature.  Numerical quadrature uses 
computational methods based more directly on the option’s payoff structure and the stochastic 
process of the underlying asset’s price. 
 
Numerical quadrature removes differential equations from the process of valuing an option.  
Furthermore, this method enables me to account for exotic option structures more easily than the 
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Black-Scholes model and is a quicker, more robust algorithm than iterative methods for solving 
nonlinear equations.  If I can write down the mathematical expression for the option’s payoff, 
numerical quadrature can value it.1  Discerning an option’s payoff can be decidedly simpler than 
deriving the differential equation that determines its value. 

The procedure begins with articulating the option’s payoff structure and specifying a stochastic 
process for the price of the underlying asset.  Then I re-cast the problem as an integral.  The 
quadrature technique values the option by estimating the solution to the integral.  Nelken (1996) 
supplies a concise explanation of numerical quadrature and applies the method to complex 
chooser and compound options.  To demonstrate how numerical quadrature can be used to value 
options I once again turn to the standard European call of Section II.2 

Recall the payoff structure of the call option, represented by equation [1].  This suggests the 
following formula for the value of the call: 

( )[ ]0,max KT
rT SEef −

−= ,       [2] 

where E denotes the expectation operator and T is the time until the option expires.  Assuming a 
lognormal random walk for the price of the underlying, I can rewrite the spot price at time T as 

TzT
T eSS σµ += 0 ,        [3] 

where 2/2σµ = . 

In general I can use integral notation to express the expected value of a function A as the integral 
of the product of each value of A times the probability of achieving that value of A: 

dAAApAE ∫= )(][ .        [4] 

Since the probability distribution, p(A), assigns a likelihood to every possible value of A, the 
integral is computed over all values of A.  In practice I choose a large but finite range of 
integration. 

Combining equations [2], [3], and [4], I re-write the option valuation problem as an integral: 

( )[ ] dzznKeSef TzTrT ∫
∞

∞−

+− −= )(0,max 0
σµ ,    [5] 

and n(z) is the standard normal distribution function.  To simplify equation [5] set the two 
elements within the max operator equal to each other; solve for z.  This shows that the option’s 
payoff, and therefore the value of the integrand, is 0 for some values of z.  Specifically, the value 
of the option is 0 for z that are less than 

                                                        
1  This claim is subject, of course, to the constraints of computer resources but is true in principle. 
2  In this example I draw from Nelken (1996), page 131. 
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.        [6] 

Thus the integral that will be subjected to the numerical quadrature procedure is: 

( ) dzznKeSef
L

TzTrT )(0∫
∞ +− −= σµ .     [7] 

Although there are several quadrature approaches, each involves choosing a finite range of 
integration and then evaluating the integrand at specific values within the integration range.  Of 
the available techniques, I have chosen to use left end-point quadrature (see Nelken, 1996).  This 
method first breaks the integration region into a pre-specified number of slices, then evaluates 
the integrand at the left border of each slice to determine the slice’s height.  The sum of the 
slices’ areas approximates the area beneath the curve.  To evaluate the area under a function g(x) 
between a and b, 

∫=
b

a
dxxgI )( , 

I first divide the range of integration into slices.  For n evaluations of the function the step size is 
h = (b - a)/n. Then the following expression approximates I: 

∑ −

=
+≈ 1

0
)(

n

i
ihaghI  . 

 

 

 

 

 

 

 

 

 

Figure 3: Illustration of Quadrature Technique 

 

The rectangles only approximate the area under the curve: the error is evident in the space 
between the top of the rectangles and the function itself.  I can reduce this error by increasing n, 

x 

g(x) 

a b 

n = 11 
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the number of slices.  Notice also that the distance between the top of the rectangles and the 
function being evaluated may vary as x changes.  Thus the graph above alludes to a primary 
weakness of the left end-point quadrature method: I must specify the constant step size h ahead 
of time.  If the method allowed, I could improve accuracy by decreasing the step size where the 
function is changing rapidly.  In this instance I would decrease step size as x gets larger.  Some 
of the other quadrature techniques incorporate an adaptive control component that ensures the 
step size will be reduced in the regions where the integrand changes quickly (Nelken, 1996). 

 
V. Numerical Quadrature Applied to Water Options 

Although the results below are for a 1 /2 call option, my next step is to value a simplified version 
of the m-out-of-n years call option I introduced in Section II.  This call can be exercised in any 
two out of three years and gives the holder the right to purchase one acre foot of water at a 
specified price.  The call can be exercised only on a certain date each year, making it a 
European-style contract.  The diagram below depicts the structure of this 2/3 call option. 

 

 

 

 

 

 

 

 

Figure 4: Exercise Paths for a 2/3 Option 

 

The contract is signed at T0, represented by node A in the diagram.  One year later, at T1, the call 
may be exercised for the first time.  Node C is the case where the option is exercised in T1; at 
node B the option is not exercised this period.  Again the following year, T2, the option holder 
must decide to exercise or keep the option.  By the time T3 arrives the option may already have 
been exercised twice, precluding a third use of the option.  This scenario is node I in the diagram.  
In all, this option allows seven possible exercise paths over the three years, each with a distinct 
payoff.  Clearly each decision point depends on both the current price of water and the expected 
path of water price during subsequent years in the life of the option. 

Assumptions and Data 

Any model of a complex problem utilizes simplifying assumptions.  My water option valuation 
program is no exception to the rule, and I attempt to be explicit about my assumptions from the 
outset.  They are: 

♦ Strike price is constant. 

♦ No dividend is issued. 

T0                T1                 T2                T3 

Exercised 
1 time 

Exercised 
2 times 
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♦ The stochastic process of water price is a lognormal random walk. 

♦ Risk-neutral probabilities are appropriate. 

♦ Risk-free discount rate is appropriate and constant. 

The first two assumptions are easily overcome, my program allows flexibility for a positive 
dividend rate and a different strike price for each period.  The last three assumptions, however, 
are more substantive and I plan to relax each of them.  

As initial inputs for this option valuation problem my Gauss program uses data from Watters 
(1995).  Specifically: 

Spot price of water: $122 
Strike price: $172 
Expiration date(s): 1 year, 2 years 
Volatility: 0.11 
Discount rate: 0.0588 

 
Clearly these assumptions and data leave room for improvement.  The assumption of lognormal 
random walk for the stochastic process of water price is a strong one I plan to relax in the near 
future.  Using the interest rate supplied by Watters is also problematic since it likely does not 
reflect the project-specific risk inherent in the option contract.   

Computational Methodology 

As usual the value of the call is a function of the spot price of water (wt) in each of the three 
periods, the interest rate (r), the strike price in each period (kt), and the exercise deadlines.  Let E 
again denote the expectation operator.  Then the value of the call (C) is: 

C = e-r E [ max {(w1-k1), e
-r(w2-k2), e

-2r(w3-k3), 

((w1-k1) + e-r(w2-k2)), ((w1-k1) + e-2r(w3-k3) ), 

(e-r(w2-k2) +e-2r(w3-k3) ), 0}].  [8] 

Since the discount rate and strike prices are pre-determined, the random elements of equation [8] 
are simply the prices of water: w1, w2, and w3.  I have assumed a lognormal random walk for the 
price of water in accordance with standard option pricing theory.  The stochastic process for 
water price follows: 

tztr
t eww σσ +−= )2/(

0

2

.      [9] 

Here, w0 is the spot price of water when the contract is signed, σ measures the volatility of water 
prices, and z is a normally distributed random variable with mean 0 and standard deviation 1.  
Substituting from [9] for each occurrence of wt in [8] leads me to the expression that re-casts the 
problem as an integral, the value of the 2/3 call option. 

Numerical quadrature and dynamic programming are the two primary techniques I use to value 
this 2/3 call option.  The quadrature component calculates the probability distribution of water 
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prices for each time period while the dynamic programming code determines the optimal 
decision path.  The probability distributions for water price in T2 and T3 are conditional on the 
price realized in the previous period. 

 
 
VI. Preliminary Program Results: A 1 / 2 Option 

Although valuing a 2/3 option is my current goal, I began by writing a Gauss program to value a 
1 / 2 European style call.  Using the numbers suggested by Watters (1995) and listed above, the 
call’s value is $1.45.  I am not surprised that this number is low.  Because the strike price is 
much higher than the initial price of water it is unlikely that the option holder will exercise the 
option during its three-year lifespan.  Thus, the option buyer will insist upon a low price for the 
contract. 
 
The graphs on the two following pages summarize the comparative statics of the 1 / 2 option 
price.  Figure 5 shows that, holding all else constant, increasing the strike price decreases the 
value of the option.  Increasing the initial price of water has an equal and opposite effect.  This 
reflects the basic relationship between spot price, strike price, and option payoff.  Figure 6 
reveals that raising the volatility or discount rate while leaving all other parameters unchanged 
causes option price to rise.  
 
 
VII. Policy Relevance 
 
Efficient water allocation mechanisms are becoming increasingly important as population 
dynamics and pollution problems put pressure on quality and quantity of water supply in the U.S. 
and around the globe. This research explores option contracts as a means of improving water 
allocation, using both theory and empirical analysis.  Proof that my results will have direct policy 
implications is given by the fact that at least two states, Arizona and Nevada, are currently 
considering adopting a program of options in water markets.  Further, contingent contracts for 
water are become more common in California.  Since established methods for valuing financial 
options are poorly equipped to assign a price to option contracts for water, the numerical 
quadrature components of my research may serve as a tool for water authorities, utilities, or 
agricultural concerns who buy or sell water options.  Regardless of whether I conclude that 
options can play a substantial role in improving water allocation or not, my research will have 
direct implications for the direction of local and state efforts to solve water allocation problems.  
If options hold promise, decision-makers should make necessary changes in institutions and 
laws, then implement an options program.  If options result in little benefit, the public interest 
may be better served by devoting time and energy to other mechanisms for increasing efficiency 
in water allocation, such as reducing transaction costs of water transfers.
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Figure 5: Sensitivity of Call Value to Changes in 
Strike Price and Initial Spot Price
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Figure 6: Sensitivity of Call Value to Changes in 
Volatility and Discount Rate
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