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INTRODUCTION

Germplasm is a term used to describe seeds, plants, or plant parts useful in crop breeding, research, and
conservation efforts. The terms “germplasm” and “genetic resources’ are used interchangeably throughout the paper.
Accessionsare uniquely identified samples of seeds, plant or plant parts maintained as part of agermplasm collection. Apart
from finished varieties, genetic resources are generally not exchanged in the marketplace, so there is no price assigned to
them through traditional market processes. The fundamental reason for the absence of regular markets for germplasm is
that it has non-rivalry characteristic similar to invention: using germplasm to create a new crop variety does not alter its
performanceintheoriginal plant. The continuousextinction of plant species, advancement of biotechnology, and expansion
of intellectual property rights over plant materials change the supply and demand for germplasm, as well as the ability to
capture returns from using germplasm. These factors may contribute to the development of markets for germplasm.

Ex situ collections (preservation of genetic materials away from the environment of origin) exist for all important
crops. There are hundreds of such collections with roughly 6 million accessions for all crops. The largest germplasm
holdingsareinthe USA, China, and Russia. The question addressed hereiswhether it is economically justified to intensify
the use and to expand the existing US collections. Simpson and Sedjo (1996, 1998) suggest that genetic resources may
simply not be scarce, and for that reason not of much economic value, while Evenson and Lemarie (1998), and Gollin et
al (1998) find large net returns from an additional search opportunity (searching germplasm collection for desired trait).

Also the latest GAO study (1997) shows that US crop germplasm scientists rank germplasm acquisition, anong 14
activities that gene banks undertake, as the number one priority in the event of additional funding.

Exploration of a germplasm collection for a particular trait is viewed as a search within a given distribution. An
optimal strategy would be to search and collect additional accessions for traits as long as expected benefit is greater than
the cost of collecting, conserving and testing it. The probability of finding a desirable trait depends on the number of
accessions that are screened for the trait, and the distribution of that trait in the collection or in certain subcollections. This
study will estimate the expected net return from an additional search opportunity (in regard to several pest resistance traits
for soybeans) both when the additional accession isfrom the existing collection, and when it isnewly acquired. Wewill use

evaluation data from the USDA soybean collection, and benefit/cost data from published literature and from germplasm



experts. The estimates from this study will provide gene bank managers with better information about the marginal return
from a variety of research options and will provide insights into problems of allocating public funds for maintenance and

further development of public gene-banks, and for setting priorities among various types of plant pre-breeding activities.

BACKGROUND

The US National Plant Germplasm System (NPGYS) is primarily a federal and state-supported effort aimed at
maintaining supplies of germplasm with diverse genetic traits for use in breeding and scientific research. This is a
geographically dispersed network of germplasm collectionsadministered primarily by USDA’ sAgricultural Research Service

(ARS). Mgjor NPGS activities are:

1 Acquisition--collecting plant germplasm from natural habitats and through exchange with other scientists or
collections.
2. Preservation--storing and maintaining germplasm to ensure its diverse supply. In addition, NPGS distributes

germplasm to breeders and other researchers;

3. Development and documentation of genetic information.

4. Some germplasm enhancement (the same as pre-breeding) is also undertaken by gene banks. Germplasm
enhancement includes two stages. screening accessions fordesirable traits (the same as a search for traits), and
incorporation of desirable traits into breeding material.

Breeding for resistance to some pestsis an objective of amost all breeding programs. Despite considerabl e success
over the years in managing them, plant diseases still cause more than nine billion dollarsin annual losses in the U.S. alone.
Thisislargely because: 1) current control strategies are not 100% effective, 2) pathogens evolve and overcome once-effective
management tactics, and 3) exotic pathogens are introduced. Because only the fittest survive in nature, wild species and
landraces (varieties that have resulted from farmers' selections) contain genes with resistance to survive diseases, drought,
flood, and hot or cold conditions. Thus these wild species and landraces are used by plant breeders to enhance genetic
resistance to pests and stress in modern cultivars. The genetically enhanced host plant resistance is sometimes the only
disease management option and is often the most cost effective, environmentaly benign alternative (USDA National

Programs: Program Statement 1998).



STATEMENT OF PROBLEM

Two main guestions are addressed in this paper are: 1) What are the expected net benefits of screening the (n+1)*
vsn accession for pest resistance? | will consider two separate cases: first, the search for desirabletrait isintensified through
screening additional accessionsfrom the existing collection, and, second, anew accession is added to the collection. 2) What
isthe optimal size of the U.S. National soybean collection in an economic model where the returns from discovering several
desirabletraits are maximized jointly? Dueto collection and conservation cost complementarities, the optimal collection size
in the search for multiple traits is greater when profits are jointly maximized than is implied by the sum of independent
maximization problems for single traits (Evenson and Lemarie 1998)

Researchers simultaneously test a sample of accessionsto find adesirable level of resistance. Subsequent groups
may be chosen for further screening if the previous tests were not satisfactory. The screening will stop when the marginal
benefits from finding and utilizing the desirabletrait are equal to the marginal costs of screening. Every resistancetrait has
a unique distribution across accessions. The probability that a plant with a given level of resistance will be found during a
screening experiment depends on the underlying distribution of the trait and the number of accessionstested. Suppose the
collection has N accessions. When a new plant is added to the collection, or the number of accessions under the test is
increased, the expected value of resistance changes, thus changing the expected benefits from the search. The value of
testing (n +1)st accession is equal to the expectation of the improvement over the best level of resistance identified among
the first n accessions tested, conditioned on the value of the resistance in the existing cultivar at the time of testing, less the
cost of testing. Knowing the expected net benefits from an additional test, researchers can decide how large to make the
sample of accessionsfor screening. The expected net benefits from testing an additional accession can be used in estimating
the optimal size of the collection.

The derivation of actual probability distribution functions for several pest resistance traits will be an important
contribution to the knowledge of germplasm diversity. All of the previous studiesrelated to economic eval uation of marginal
germplasm have made assumptions about the underlying distribution of thetraits. | will look for the best method of deriving

empirical probability distribution functions for several soybean pest resistance traits.



LITERATURE REVIEW

From November 1996 through March 1997 GA O conducted asurvey of 680 crop germplasm expertsfromforty Crop
Germplasm Committees (CGC) which provide technical advice and guidance to NPGS on germplasm activites for all 85
crops nationwide. The CGCs include NPGS curators who are responsible for maintaining and preserving the collections,
aswell as scientistsin the area of basic research (such as biochemistry and genetics), plant pathol ogists, breeders, research
management, etc. Response rates were above 70 percent for all but four CGCs. The acquisition of additional germplasm
was atop gene bank priority for respondents. The GAO Report has summarized the rankings of the priorities to be given
to 14 germplasm-related activities in the event of additional funding. The six top- priority activities are (in a decreasing
level of priority): 1) acquisition, 2) evaluation, 3) characterization, 4) enhancement/pre-breeding, 5) passport, and 6) active
preservation. The concerns that may contribute to the importance of increased acquisition are: the inadequate diversity of
germplasm making up the existing collections, and the potential loss of germplasm that isnow at risk in nature. Thus, the
experts believe that there is considerable scarcity of genetic resources in certain collections.

In contrast to crop germplasm experts' belief that acquiring more germplasm must be a gene bank’ s top priority,
Simpson and Sedjo’ s studies (1996, 1998) suggest that genetic resources, both for use in pharmaceutical research and in
agriculture, may not be scarce, and for that reason not of much economic value. In their earlier analysis of biodiversity
prospecting in pharmaceutical research (1996) they treat the testing process as a binomia outcome. The majority of natural
material stested for pharmaceutical applicationssimply “don’t work”, as opposed to working at higher or lower levels. Thus,
a perfect substitutability exists among the resources that possess the trait, and a zero substitutability with the material s that
do not possessit. In this setting, Simpson and Sedjo (1996) conclude that “regardless of the probability of the discovery of
acommercialy useful compound, if the set of organismsthat may be sampled isvery large, the value of the marginal species
must be very small”. The assumption of substitutability among genetic materials has a key implication in the assessment
of their value (Gollin and Smale 1998). In agricultural research, on the other hand, the search isfor a genotype that “works
best” in the circumstances under which it isto be cultivated. In fact, genetic principles might lead one to suppose that many
attributes of interest would be (approximately) continuously distributed (Gollinand Smale 1998). In thissetting, an additional
search isalways expected to offer some marginal benefit unless some extreme val ue has already been achieved (Evenson and
Kislev 1975, Evenson 1996).

Intheir recent work Simpson and Sedjo (1998) focuson the social, rather than the private, value of genetic diversity.
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They link the value of genetic improvement to the increase in social welfare. Researchers seek to improve crop yields by
finding a genotype with the highest value of some parameter 0. This random variable could represent yield per hectare,
resistanceto drought, pests, and/or any of anumber of other attributes. Social welfareisrepresented asthe difference between
consumer surplus from the consumption of the crop and the costs of growing the crop:
W(6)=,[ *Pp(x)dx— C[6, q(6)].

Welfare isincreasing in 0 if an increase in 0 induces a reduction in total cost. Under the assumption that demand for
agricultural productionisrelatively inelastic (n<1), Simpson and Sedjo observe that the value of the marginal genotypewill
be smaller to the extent that relatively large realizations of 0 have relatively low value to society. (Unitary elasticity will
imply infinite welfare, and an elasticity greater than one will imply negative utility).

Several authors (Evenson, Lemarie, and Xiao 1997, Gollin, and Smale1998, etc) base their economic model of pre-
breeding on search theory. Applied research is viewed as a search in a given distribution. Much of research work is
experimentation, and often atechnological development project consists of the testing of a collection of technologies (in this
case, varieties of crops) to find the best one (Evenson and Kislev 1976). While Evenson, Lemarie, and Xiao (1997) develop
a theoretical model which derives equations for the optimal size of search for agiven trait, aswell asfor the marginal value
of genetic material, Gollin, Smale, and Skovmand (1998) conduct an empirical study of the CIMMY T wheat collection.
Using actual evaluation datafrom USDA GRIN database, they estimate the number of accessions for optimal search and the
net benefits that result from that search. Three conclusions are made: 1) the optimal scale of a search for desirable traitsis
very sensitiveto the size of the economic problem, aswell asto the probability distribution for thetrait. 2) Differencesacross
types of genetic materialsin the cost of search and in the associated time lags can lead to optimal search strategiesin which
some materials are systematically ignored. Until new wide-cross and molecular techniques can substantially reduce the cost
and time constraints on evaluation and pre-breeding, collections of landraces and wild relatives are expected to be used
seldom. 3) The results are suggestive that even in large collections, there are non-trivial benefits associated with marginal
accessions.

The recent crop breeding model by Evenson and Lemarie (1998) is different from previous studies in three ways.
First, plant breeding is designed to consist of two stages: a collection activity in the first stage and a selection of the best
accessions within this collection in the second stage. In addition to looking for the optimal search strategy, they look for the

optimal collection strategy as well. Second, the authors introduce a geographic dimension into the distribution of source
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materials. Assuming that the information about the geographic source region is available for each accession, the total
collection can be represented as a series of subcollections. Evenson and Lemarie (1998) show that for any given trait, there
iS no reason to exploit more than one subcollection. Based on prior information about the distribution of atrait of interest
within given subpopulation, researchers conduct independent and random draws to evaluate each accession for the level of
performance in respect to that trait, and to choose the best plant for breeding. Third, the search is explicitly modeled for
multiple rather than singletraits. A model representing ajoint search for multipletraitsfits morerealistically to the general
case of crop improvement in a breeding program than a model of search for asingle trait.

Evenson and Lemarie (1998)observe that the optimal size of collection is sensitive to the number of traitsfor which
the collection is made, aswell asto the diversity of the distribution functions among the different regions providing source
materials. Theoptimal collection will be larger than implied by the single trait model, because conservation costs are shared
among the different traits. Thus, the marginal value of accessions will most likely be higher when multiple traits are
considered than in the case of simple trait model. It will also be larger if traits are clustered in “niches’ rather than

distributed randomly across the population.

DATA

Agronomists use scales of a discrete nature to describe resistance traits. In soybeans they generally use the scale
“Resistant”, “Moderately Resistant”, “Moderately Susceptible”’, and “Susceptible”, based on the extent of damage caused
by the pest during agronomic tests. Based on raw datafrom agronomists on the performance of individual accessionsduring
screening, | will construct a continuous scale for resistance levels, assigning 0 to the least resistant accession, and 1-- to the
most resistant. It is also possible to obtain estimates of yield |osses associated with different levels of resistance. Having the
resistance scale and yield losses for each resistance level, | will derive several plausible “damage” functions between the
fraction of losses and the resistance. | will consider cases when that function islinear, concave, or convex. Thisway | can
generate information on the percent of crop losses corresponding to the incremental change in resistance resulting from
testing an additional accession.

The expected change in the resistance level isafunction of the trait distribution across accessions and the number

of accessionsthat are tested. It is possible to obtain data on the distribution of resistance across large samples of accessions



for certain pests. Thiswill alow probability distribution functions be estimated for that trait, which will later be useful in
optimizing the size of the search and the size of the collection. It isreasonable to assume that this distribution can be viewed
as independent and identical when looking at groups of accessions of the same type (e.g. landraces or wild species) and of
the same geographic origin. The estimates of crop losses averted as aresult of reducing or eliminating a disease will be used
as aproxy for economic value of crop germplasm. Estimates of areas affected by diseases, average annual yield losses, and
expected lifetime of resistance will be obtained from published literature and USDA soybean pathologists. | will consult with
plant breedersabout the period over which the benefitsare cal culated which will be determined by the resistance depreciation
path and the research lag. Monte Carlo simulationswill give values for net benefits when different time lags, depreciation

paths, and discount rates are considered.

MODELING APPROACH

I will consider two cases with regard to the distribution function of the trait: 1) researchers screen accessions for
adesirable trait without prior information about its distribution, 2) prior information is available about the distribution of
trait. When a new pest is identified and an experiment is designed to screen accessions for useful sources of resistance,
researchers have no information about the distribution of that trait. For this case, treating the distribution of resistance as
acontinuous uniform distribution seems areasonabl e assumption. However, for some pests, such as Soybean Cyst Nematode,
throughout years sequential tests have been conducted due to the widespread character of that pest. In the subsequent
experiments (subsequent groups of additional accessions to be tested) researchers can design their experiment based on the
information obtained from previous search.
Problem 1. The Marginal Vaue of Accession.

Suppose the number of accessions tested simultaneously (as one group) isn. Theresistance level of thei'" accession
isr,. F(r) isthe distribution function and f(r) is the probability density function for the resistance level variable. Denote z

as the maximum level of resistance among n accessions. The probability that z is the highest level of resistance when n

accessions are tested is: P(r(n) £ Z) = P(rl Ezr,£z..r, £ z) = F(n)(z) @)



Since each test can be considered as an independent event, and P(ri £ Z) = F ( Z) , then

Fo(2 = P(r £ 2)P(r, £ 2)...P(r, £ 2) = [F(2)]" @

Since the current cultivar has some level of resistance, say, z,, the expected maximum increment resistance from searching

n accessions will be:

E(Dz,) = OMdF(21™  (2dz- 7, @

Given the probahility distribution function for a trait (using uniform continuous, or a function derived from prior tests),
through (5) we can find the expected maximum level of resistance as afunction of n. Using this approach, we can illustrate
how the expected value of the resistance level changes in increments when testing (n+1) vs n accessions. Having afunction
that relates the number of tested accessions to the expected maximum resistance level, and a function that relates levels of
resistanceto crop losses, | can derive the economic value of an additional accession. Thetotal benefit stream from searching
an additional accession isthe sum of discounted annual savings (considering the time lags of research and the depreciation
path of the resistance trait) over the average value of production.

When no prior information is available about the distribution of resistance, the distribution function is assumed to

be continuous uniform in [0, 1] interval.

E(Dz(n)) = n(l‘)z”dz- z, (6)
0
E(0z,) = n%l Z ©



Problem 2. The Optimal Size of Collection.
Let the marginal value of z be v, and the cost of agronomic screening be C° . Then the expected profit from

searching n accessionsiis:

Ep = n xE(Dz) - nxC® 8)

The first order condition for the optimal level of searchiis:

TEp _ TEz(n)v(n)
in in

-C®=0 (9)

The optimal size of search can be found by solving (9) when the distribution function and the marginal value of the trait are
known. | will use computational techniques to solve this problem.

The collection (acquisition) costs should be considered while determining the optimal size of collection. In stage
1, acollection of N, accessions is made. Denote C° as the cost of collection and conservation. The distribution of trait is
unknown at this stage. In stage 2, the collection is screened for a desirable trait. N, accessions are drawn randomly from the
collection without replacement and evaluated ( N,<N, ). The expected profit from collecting, conserving and searching the

accessions for asingle trait is:

Ep ° =nE(Dz) - N,C°- N,C°® (10)

and profit is maximized using backward induction. The optimal collection sizeis determined based on the knowledge of the

size of the existing collection, and the optimal search size when collection and conservation costs are not regarded ( N g ),

the latter can be found through equation (9). Imposing the constraint that N2 £ Nl,theoptimal search sizein the 2-
stage model is N, = min(Nl, N,f) (12)
it N, £ NJthen N, = N, , and

Ep =nE(D2)- N,(ce+cC®) 12)



NI can be found by maximizing (12).

it N, > N2 then N, = N, and Ep = nE(Dz) - N,C°® - NJC®. Thisfunctionislinear and
strictly decreasing in N;. Consequently, the profit when N1 > Ng is always less than the maximal profit when
N, £ N2.

Finally, the unique optimal solution when maximizing on two periodsis NI = N; , which can be determined

optimizing equation (12).

Figure 1 in the appendix (Evenson and Lemarie 1998) provides an illustration for this optimization model. The
optimal collection size when maximizing for one trait is the optimal search strategy minus * something” which will be more
important if collection and conservation costs are high. Above this optimal level, the value of marginal accession is low
(Evenson and Lemarie 1998).

Note that each accession is in the form of an actual plant, which contains numerous genes that may determine
several useful traits. Each useful trait isindexed by j. Using the above described methods, one can determine, independently
from one another, the optimal collection and selection sizes for each trait. The sign ~ is used to distinguish variables of the
profits of theindependent problems from the variables of joint profit maximization. Definetwo types of traits. A major trait

is the trait for which the optima number of accessions to collect is the largest among all the other traits, or j such that

~

NI j = NI , i.e. the optimal collection size when considering the traits independently is equal to the optimal collection

size estimated for the major trait. Suppose the major trait isa. Therest of the traits are considered minor traits, which are

ranked in order of decreasing valuesin regard to their optimal search size: Ngb > Ngc >.... Theprofit can then be

written asthe sum of profitsfor each trait. Noticethat the profitsfor minor traits (traits other than a) do not include collection

costs.
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L Ep, =n,E(Dz,)- N,C°- N,,C¢
i (13
iEp, =n E(dz)- N,,C;

J

Figure 2 (Evenson and Lemarie 1998) illustrates the profit function at the trait level when N is chosen optimally. For the

~

major trait, TEP , /N, = O because NI = NI

o - For the minor traits, we need to consider the optimal level of

exploitation without collection and conservation costs, Ng - Two cases have to be distinguished: (1) if NI > Ng P
(eg.trait binfigure 2), then the exploitationis N;j = Ngj whatever NI , and consequently, ﬂEpj/ﬂN1 =0;
(2) if (e.g. trait c in figure 2), then the optimal exploitation is N;j = N, ,and TEp /ﬂN1 > 0.

If we can find at least one minor trait such that Ngj 3 NIk,thentheoptimaI collection size will be larger than

the optimal collection size when maximizing profitsindependently for each trait. Startingfrom NI andincreasing N,, two

changes occur. For the major trait the marginal profit becomes negative. For the minor traitswhich satisty N g j 3 NI ,

the marginal profit decreases until the level NI = Ng i and thereafter the marginal profitisnil (Figure 2). Because of

thesetwo changes, themarginal profit from collection decreases and becomes negative at some point, so an optimal collection

size can be determined.
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CONCLUDING REMARKS

The overal focus of this project is to estimate the expected net gain from an additional search opportunity for the
USDA soybean germplasm collection while considering several economically important traits. 1t isboth possible and logical
to conduct simulationsusing datafrom crop breeding programs, agricultural output, probability distributionsof valuabletraits
in the collection, and the costs of crop improvement research to derive reasonable estimates of the value of marginal
accessions.

The findings of this research will provide economic justification for decisions of how much to invest in collecting
landraces and wild and weedy species that are currently not in ex situ collections (many of which are presumably subject to
danger of extinction). They will also contribute useful information to current debates on germplasm exchange and

intellectual property rights.

LITERATURE

Evenson R. 1996. “Valuing Genetic Resources for Plant Breeding: Hedonic Trait Value and Breeding Function Methods”.
Manuscript prepared for the CEIS-Tor Vergata University Symposium on the Economics of Vauation and
Conservation of Genetic Resources for Agriculture, 13-15 May. Rome.

Evenson R., D. Gollin, and V. Santaniello. 1998. The Agricultural Value of Plant Genetic Resources: Introduction and
Overview. In R. E. Evenson, D. Gallin, and V. Santaniello (eds.), Agricultural Values of Plant Genetic Resources.
Wallingford, UK: CAB International.

EvensonR..and Y. Kidev. 1976. A Stochastic Model of Applied Research. Journal of Political Economy 84 (2): 265-281.

Evenson R. and S. Lemarie. 1998. Optimal Collection and Search for Crop Genetic Resources. In R.E. Evenson, D. Gallin,
and V. Santaniello (eds.), Agricultural Values of Plant Genetic Resources. Wallingford, UK: CAB International .

EvensonR., S. Lemarieand Xiao. 1997." Plant Breeding Models and Implicationsfor Genetic Resources Conservation and
Evaluation”. Paper presented at the international conference on Building the Basis for Economic Analysis of

Genetic Resources in Crop Plants. Palo Alto, August 17-19, 1997.

12



Gollin D., M. Smale, and B. Skovmand. 1998. The Empirical Economics of Ex Situ Conservation: A Search Theoretic
Approach for the Case of Wheat. In R. E. Evenson, D. Gollin, and V. Santaniello (eds.), Agricultural Values of
Plant Genetic Resources. Wallingford, UK: CAB International.

SimpsonR., R. Sedjoand J. W. Reid. 1996. Valuing Biodiversity for Usein Pharmaceutical Research. Journal of Political
Economy 104:1 February, 163-85.

Simpson R. and R. Sedjo. 1998. The Vaue of Genetic Resource for Use in Agricultural Improvement. In R. E. Evenson,
D. Gollin, and V. Santaniello (eds.), Agricultural Values of Plant Genetic Resources. Wallingford, UK: CAB
International.

United States General Accounting Office. 1997. “Information on the Condition of the National Plant Germplasm System”.

U.S. Department of Agriculture. Report to Congressional Committees. October 1997.

13



A EZ(N,,N; )~ N;C*

*

N,

Ep = E{N,,N;)»- N,C°- N;C°

- > N
N, Ng '

Figure 1. Stage 2 and Two-Stage Profit when N, is Chosen Optimally (Evenson and Lemarie, 1998)
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