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Abstract
In a large number of practical environmental regulation
problems, the damage done by pollutants depends on stocks
and/or flows of pollutants exceeding certain thresholds. A
typical example is eutrophication which occur when stocks of
nutrients in a lake exceeds a certain threshold. The present
paper presents a model of eutrophication that accounts for such
thresholds. The paper does so by applying a novel technique in
optimal control theory that allows for the analysis of systems
where state-variables bounce back and forth over thresholds
that take the form of functions of time and state-variables.
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Introduction
Cultural eutrophication is a process where the ecosystem in a lake, fjord or
river (hereafter referred to as a lake) changes due to increased reception of
nutrients such as nitrogen or phosphate from man made sources1.  High levels
of nutrients leads to excess growth of certain algae such as phyto-plankton,
while larger plants (macrophytes) diminish in numbers or may even become
extinct. The eutrophication process also has consequences for the fauna. For
instance oligothropic lakes in North-America and northern Europe are
usually dominated by salmonids while eutrophic lakes in the same area will
often be dominated by other species such as roach. An eutrophication process
will often involve that some species replace others as dominating. At high
levels of euthropication, lakes will tend to evolve into marshlands.2

The degree of euthropy in a lake which is not influenced by human activity
will usually be characterised by some kind of steady state3. The natural level
of nutrient deposition corresponds to a certain type of ecosystem. A particular
lake may tolerate increased loading of nutrients without impact on the
ecosystem. It is only when loading increase above a certain threshold that
euthropication starts. The process is usually reversible in the sense that if the
loading of nutrients decrease below the threshold, the process is reversed and
the dynamics of the ecosystem reverts to the state before the euthropication
process begins. The threshold depends on natural characteristics to the lake
such as flushing rate and mean depth. These thresholds have been mapped by
Vollenveider (1975).

The traditional approach to modelling thresholds in resource economics is to
model thresholds as constraints. The modeller defines a function of time S (t)
and a function of time and/or state-variables S t x t u t( , ( ), )a f , and require that
any optimal path obeys the constraint S (t) £ S t x t u t( , ( ), )a f  " t. For a good
treatment of optimal control theory with pure state constraints and mixed
constraints see Seierstad and Sydsæter (1987), chapters 5 and 6. For a lucid
exposition of this approach in a resource economic context see Perrings and
Pearce (1994).4 This approach is unsatisfactory for two reasons. First, in many
applications a dynamic system may start from an initial state where the
threshold is already violated. Eutrophication is often an example of this.
Usually policy measures to deal with an eutrophication process will not even
be discussed for a particular lake until the process is well on its way and

                                                
1Se Mason (1996) for an very readable account of the biology of freshwater pollution that is
simple enough to be understandable to economists while advanced enough to be useful for
model-building purposes.
2A lake may be naturally eutrophic when there is a biological equilibrium with high levels of
nutrients deposited in the lake. The eutrophication process here modelled is one where a
naturally oligothropic lake is subjected to increased depositions of nutrients due to activities
of man.
3This process may also occur naturally.
4Perrings and Pearce also discuss introducing penalty functions that apply when thresholds
are broken, but stops short of developing such penalty functions explicitely. As will be clear
from the treatment below, explicit development of penalty functions is uneccessary.

2



significant damage has been done. It is usual for articles on policy in
environmental and resource economics to assume that nature starts out
undamaged and the question is how to exploit the resource optimally5. When
the natural resource is already damaged at the time of the implementation of
policy, one may need to consider problems where there are thresholds and
the system starts from the “wrong” side. Prominent examples of this include
Lake Washington in north-western USA and Lough Neagh in Northern
Ireland. In both cases eutrophication had reached serious levels before
purification measures were implemented, or indeed even considered. Second,
even if a system initially is on the right side of the threshold, it may be
optimal to break such a threshold, maybe just for a time. As is shown below, it
may well be the case that although one breaks through a threshold, it may
take time for significant damages to occur and that remedial policies may be
implemented after the threshold has been broken. It may also be the case that
it is optimal that the threshold at some point in time is violated perpetually. If
this is the case, then one needs to consider optimal policies before and after
the time such an violation occurs.

In a model of climatic change Farzin (1996) analyse thresholds in a way that to
some extent incorporates these features. However, Farzin fail to recognise
that breaching of thresholds logically implies that there must be discrete
jumps in the adjoint variables6 at the time the threshold is violated. Thus
Farzin's analysis, though providing good intuition and definitely a step in the
right direction, must be considered flawed. The present article applies a novel
modification to standard optimal control theory that allows the explicit
analysis of violations of thresholds in a stringent manner.

Eutrophication is the common term for a large class of physical and biological
processes, caused by a variety of reasons. Therefore, a general model of
eutrophication that  incorporates all types of processes and causes is not
practical. Models of eutrophication must be developed almost on a case by
case basis. The present paper presents a model of eutrophication that
concentrates on a basic feature of eutrophication processes: The existence of
threshold effects where the dynamics of the system is fundamentally altered
when the level of nutrients exceed certain thresholds. Extensions of the
method here developed may be applied to more case specific models of
eutrophication.
A particular aspect of the regulation of eutrophying lakes is that nutrients are
often deposited from diffuse or nonpoint sources. This is suppressed here,
since it is well covered in the literature. Several implications for optimal
regulation of nonpoint-source pollutants are discussed in Russell & Shogren
(1993) and Romstad, Simonsen and Vatn (1996).
                                                
5It is strange that it should be so, since it flies in the face of the observed facts. Environmental
problems have historically seldom been responded to ex ante. One speculation is that the
rationality assumptions inherent in economics makes it psychologically hard for a trained
economist to create a model where the possibility of environmental damages has not even
been considered prior to their occurence.
6In the literature also referred to as co-state variables.
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1. A Model of Eutrophication caused by Fertilising in
Agriculture.

Let y be the loading of nutrients in a particular lake and let x be a suitable
index of the degree of euthropy. One way of defining such an index is
visibility as defined by the use of a Secchi-disk7.  Low values of x corresponds
to high levels of eutrophication while high values of x corresponds to low
levels of euthrophication. There are several advantages to working with such
an indicator function rather than an explicit model of the biology involved.
One advantage is that biologists seem perfectly happy to use such indicator
functions, in particular measured visibility, when evaluating the degree of
eutrophication in an ecosystem. Another reason is that visibility is a variable
which is straight forward to translate into economic valuation of the disutility
derived from eutrophication.8

Consider a lake where the euthropication process is described by the
following differential equation when y < y :

&x x= − +γ α (1)

The steady state degree of eutrophication is given by xss = α/γ. If the level of
nutrients is above y , the dynamics of euthropication is assumed to be given
by:

&x x= -g (2)

The lake will then approach the level of eutrophication associated with the
value x = 0. A variable z is defined to indicate whether the lake is subject to an
euthropication process or not and this variable can only take two values, 0
and α. Thus &x x z= − +γ . The interpretation of (1) and (2) is that for sufficiently
low nutrient levels the ecosystem is able to clean itself through biological
processes. Excess biomass is consumed and micro organisms, plants and
animals found in eutrophic waterways are replaced by species more suited for
an oligothropic environment. However if the nutrient level is too high, the
biomass in the lake accumulates and visibility decrease. Thus x is to be
interpreted as an indicator where a simple proxy variable describes a much
more complicated underlying process. Note that the interpretation of x as
visibility, as measured e.g. with a Secchi-disk, implies an extreme
eutrophication process when z = 0. In many cases it would be reasonable to let
the variable z take on some value between 0 and α when y > y , implying that

                                                
7See Mason (1996), for the details on how visibility measurements is translated into
measurements of the degree of eutrophication.
8See Sandstrøm (1996) for an application of using visibility measured with a Secchi-disk in a
contingent valuation study.
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the eutrophying lake will approach a new steady state with murkier water,
but not completely transformed into a marsh. The change in loading of
nutrients originating from human activity into the lake is assumed to be
governed by the following differential equation:

&y u y= −δ β (3)

Here u is the amount of nutrients from which deposition into the lake is
derived and δ ∈ (0,1) is the fraction of nutrients that is deposited into the lake. 
β ∈ (0,1) is the proportion of nutrients that is washed out of the lake. Note
that the lake is assumed to have two different ways, with quite different
physical interpretations, of reversing eutrophication. First, a fraction of the
nutrients is continuously washed out of the lake. Second, the if nutrient levels
are sufficiently low, the ecosystem increase visibility via a mechanism where
stocks of nutrient intensive species decrease or even disappear and are
replaced by less demanding species.

It is assumed that there exists a regulator that is concerned about the state of
the lake and that the regulator's preferences are Aristotelian in the sense that
any deviance from the lakes “natural state” a g/  is considered bad. A
parameterisation of the disutility from the degree of euthropication is:

u x
A

xb g = −
F
HG

I
KJ2

2
α
γ

(4)

Here, only values of x in the range 0 to α/γ is considered9. Thus more of x
implies higher visibility and is ceteris paribus desirable except if x =  α γ .
Deposition of nutrients often cause disutility for other reasons than the
euthrophication of lakes, as can be testified by anyone located too close to a
farm that use a mix of chicken- and pig manure for fertiliser or by unlucky
enough to live close to facilities releasing untreated sewage. The disutility
from u caused by other effects than euthropication is assumed to be given by 
ϕu, ϕ > 0. Note that this disutility depends u and not on &y , reflecting a
possible interpretation of the disutility being derived from odorous fertilising.
Reduction in the depositions of nutrients is costly and the cost is assumed to

be given by c u u2
0 2

-c h . u0 is the amount of nutrients that would be used in the
absence of regulation and c > 0 is a parameter. The description above leads
naturally to  the following model:

min
u

A c rtx u u u e dt2

2

2
0 2

0

α
γ ϕ− + − + −∞z d i c he j (5)

subject to:

                                                
9Values of x larger than α/γ in a sense implies that there is too little life in the lake.
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Here τ is defined by any value of t that solves the equation y(τ) - y  = 0. Note
that the formulation of the shock is such that whenever y increase to levels
above y , z = 0 and whenever y decrease to levels below y , z = α. Thus z(0) = 0
implies that the system is starting from a point where a euthrophication
process has already started. The Hamiltonian corresponding to (5) is given by:

H x u u u e p x z p u yA c rt
x y= − − + − + + − + + −−

2

2

2
0 2α

γ ϕ γ δ βd i c he j a f b g (7)

pi is the adjoin variable to the state variable i. pz does not enter the
Hamiltonian since &z  = 0. The standard sufficient conditions for optimality
applies and are given by the equations of motion in (5) and the following
equations:

u H u
c c

p ey
rt= = − +arg max 0 ϕ δ

(8)

&

&

&
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y p
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x A x e p

p H
z p

y y

x
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z x

= − =

= − = − − +

= − = −

−

∂
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∂

α
γb g

lim

lim
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t
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t
x

t
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p t

p t

p t

→∞

→∞

→∞

=

=

=

a f

a f

a f

0

0

0

(9)

These conditions are the necessary conditions for the present type infinite
horizon optimal control theory. (9) gives the differential equations
determining the adjoint variables and the tranversality conditions10. When
graphical analysis is presented it is convenient to work with the current value
formulation of (9). In particular note that if λy = pyert, then:

&λ λ βλy r= + (10)

An additional condition is required, since the jumps in z whenever y = y
implies that the adjoint functions will also jump whenever y = y . The
equation determining the size of the jump is discussed in the appendix where
it is shown that the jumps in the adjoint function are governed by:

                                                
10The terminal conditions are applicable since the objective function obviously converge as
time goes to infinity. In section 1.3 a different transversality condition is used.
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From &p py y= β  we find that py must be on the form:

p t C ey n
ta f = β (12)

Cn is a sequence of constants, related by the jump in py whenever y = y . Thus
prior to the event y = y  occurring the first time p t C ey

ta f = 0
β . After the first

time y = y , p t C ey
ta f = 1

β  and so on. Thus the control where the threshold is
broken n times must be on the following form:

u t t u
c c

C e

u t t u
c c

C e

u t t u
c c

C e

r t

r t

n n n
r t

|
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0

1 2
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b g

b gc h

b gc h

a f

a f

a f

M

(13)

2. Control Scenarios

In this section the model described above is used to characterise three
different control scenarios for a lake.

1) Eutrophication in a initially eutrophying lake is reversed once and for all.
Section 1.1.

2) A initially non-eutrophying lake is allowed to eutrophy completely.
Section 1.2.

3) Policy drives nutrient levels to oscillate around the threshold so that the
lake will approach a new steady state with “some” eutrophication. Section
1.3.

2.1. Climbing over the Edge
The first control scenario to be considered is the case where the threshold is
breached at most once and that the breach is such that nutrient levels are
initially too high. It is thus assumed that y(0) > y  and that z(0) = 0. This
implies that the eutrophication process has already begun and that the
regulator considers policies for reversing the process. (11) reduces into:
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p p e py
c

y
r

y x yτ τ µ τ αµτ
− −

−
+= − −b g b g b g2

2
(14)

The equations in (8), (9), (14),  and the equations of motion in (6) define the
solution to the problem. If the threshold is breached once, then by hypothesis
there exists a τ such that y(t) > y  ∀ t ∈ [0 , τ) and y(t) < y  ∀ t ∈ (τ , ∞).
Intuition tells us that if y(t) < y  and will remain so until the end of the
planning period, then Ct>τ  = 0, since there is no disutility from y per se . If an
optimal path leads us to some value y(t) = y  from a starting point y0 > y , Ct<τ

must be a negative constant, since y is bad. This reasoning combined with (8)
yields some intuition to the qualitative character of an optimal path.  We must
have that:

u t t u
c c

C e

u t t u
c

t
r t* |

* |

< = − +

> = −

<
+τ ϕ δ

τ ϕ

τ
βb g

b g

b g0

0

(15)

Interpreting (15) is straightforward. Until the lake is clean enough to reverse
the eutrophication process, u must be reduced from it's initial level u0. As time
goes u will be continuously reduced, thereby making &y  more and more
negative. This continuos reduction in u* is reversed at the time τ when the
stock of y is reduced enough so that the lake is able to cleanse it self.   Then u
is allowed to jump up to the level u0 - ϕ/c. In short, at time τ, deposition of
nutrients cease to be a stock/flow problem, and reverts to being just a flow
problem where only the direct disutility from u matters. The condition of the
lake will deteriorate for a while even if policies for continuos reduction of u
are in place. It is only when y has been reduced to below y  that starts to
improve.  For such an optimal path, the closed form integral solution to x(t)
will take the following form:

x t t x e

x t t x e

t

t

|

|

≤ =

≥ = −
F
HG

I
KJ +

−

−

τ

τ α
γ

α
γ

γ

γ τ

a f

a f a f

0

0
(16)

Note that x(t) is continuos, but not differentiable at t = τ.  Optimal paths of x
and u are illustrated in figure 1.
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Figure 1.

Note from Figure 1 that u becomes smaller and smaller as t → τ. This is
caused by two effects. One partial effect is discounting, which implies that
when a threshold is to be breached at a given time, it makes economic sense to
postpone costs until a later date. The second effect, compounded by the
discounting, is that when y is high, large amounts of nutrients are washed out
of the ecosystem through natural processes, and it makes little economic sense
to assume costs for large reductions in u when the ecosystem is rapidly
cleaning itself anyway. Although the intuition the policy is clear, intuition
does not suffice for the implementation of practical policy. For this we need to
know px(t+), py(t-) and τ. In particular, it must be proven that a negative py(τ-)
may be found for the solution to make economic sense. Using the
transversality condition lim

t→∞
px(t) = 0, and noting that px does not jump since x

neither jumps nor enters the equation determining t, it is straightforward to
calculate that:

p t t
x

r
e xx

t rt| > =
−
+

> ∀ <− − −τ
τ
γ

τ α
γ

α
γ γ τa f a fc h a fa f

2
0 (17)

Note that the assumption that y = y  only once implies that &y τ+b g < 0 since
otherwise y would immediately cross the threshold again. Then we have that
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&y τ+b g < 0 ⇒ &y τ−b g < 0 ⇒ µy > 0. From (14) it is then straight forward to see that
if there exists a value of py(τ-) that solves (14) it must be negative.
An explicit solution may be found, but it is algebraically cumbersome11. In
stead a phase diagram of λ and y  is examined. The threshold is illustrated by
the line marked y . Obviously λ λ≤ ⇒ ≤0 0& , so no arrows indicating the
movement in λ points upwards. We have to draw two lines for &y ≤  0. One for
& |y t t > τa f=0 and one for & |y t t < =τa f 0.

a b

c

u
c−δ

β

ϕ0b g

λ

y

y
& |y t t < =τa f 0

& |y t t > =τa f 0

Figure 2

Here a, b and c are initial states of the system with y exceeding y . The line
connecting these points show the relationship between different values of y(0)
and λy(0). Starting from any of these point it can be seen that y is continuously
reduced, while λy jumps when y = y . Note that the size of the jump depends
on the initial value of y(0). The larger y(0), the more negative is λy and
therefore also Ct<τ. After the jump, y approaches a steady state yss=
1 0
β

ϕδ u c−c hd i.  Implicit in the assumption that the threshold is crossed only

once is that &y τ+b g< 0.  is that the policy u(t|t < τ)=u(t|t > τ) = u0 - ϕ/c will
eventually reduce the nutrient level to a steady state below y . Thus the

                                                
11In a real world application, numerical methods for solving xx are however easy to apply.
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control scenario here described is only applies only to lakes that would have
been cleaned up anyway by only taking the disutility from ϕu into account.

2.2. Going over the Edge
If initial levels of nutrient depositions are below y , it may be thought that
under certain conditions it is optimal to let the lake eutrophy completely even
if nutrient depositions are initially lower than y , but that one postpones the
eutrophication process by delaying the time when the threshold is breached.
Thus one enjoys the benefits of a pristine lake until y reaches y  a little longer,
and then let the lake eutrophy forever. The necessary conditions in equations
(8), (9) and the equations of motion in (6) still hold. px(t) is also different since
in the present scenario the (undiscounted) disutility from eutrophication
increase continuously after the time the threshold is violated. px(t) will in this
still be non-negative for all t > τ. Assuming that x(0) = α/γ simplifies the
exposition somewhat since this implies that x(τ) = α/γ and then px(τ+) = 0.
The jump equation in (14) reduces to:

p p ey
c

y
r

yτ τ µτ
− −

−= −b g b g2
2 (18)

Since &y τ− >b g 0, µy < 0. From (18) one can then see py τ−b g  must be non-negative
in order to solve (18), and this does not make economic sense. Thus the
scenario sketched here will never be optimal if one starts out with a initially
pristine lake.

2.3. Living on the Edge
The previous sections have analysed two possible paths, both such that the
threshold was breached but once. The case where the threshold is breached
more than once still needs to be considered. Consider in particular the case
where y(0) > y  and δ ϕ βu c y0 − −c h  > 0. The solution described in section 1.2.
will not work since y after being reduced to a level below y , will bounce right
back again. It may still be optimal to steer y towards y . After reaching y , the
optimal path of y will oscillate around the threshold. In the case where y(0) >
y  such oscillation will occur if c is sufficiently low relative to δ and δ(u0 - ϕ/c)
-βy  >0, This oscillation is caused by jumps in the adjoint variable py(t) that
occur when the threshold is broken. In principle such a model may be solved.
We need to define two functions C s y s y; a fb g<  and C s y s y; a fb g> . The domain
of these functions is the points in time where the inequalities in the definition
of the function holds. The adjoint function then becomes C s y s y; a fb g< e-bs

andC s y s y; a fb g< e-bs. These functions need to obey the equation (A.8) in the
appendix that the function defining the jumps in the py and in addition they
must have the following properties:
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lim inf ; lim inf ;
t

t

t

tC t y y e C t y y e
→∞ →∞

< = > =b g b gβ β 0 (19)

The good news is that this leads to an optimal control u. The bad news is that
such a control is discontinuous at every point in time. As soon as the
threshold is broken and y is e.g. reduced infinitesimally below y , u is
increased so that &y  changes sign and y is increased to a level  infinitesimally
above y  and so on. An illustration is given if Figure 3 below. As in Figure 2
there are two lines that illustrate &y  = 0. One for t < τ and one for t > τ. Note
that the arrows indicating movement in variables indicates movement in
variables after the threshold has been violated. y moves along its path until it
reaches y . Then switching starts to occur. y will (for all practical purposes)
remain at y , but λy behaves oddly. The movement in λy has two components.
One continuos movement that is negative. This movement is illustrated by the
white arrows. There is also the jump movements in positive direction.

a
b

c

u c
−δ

β

ϕ0b g

λ

y

y
& |y t t < =τa f 0

& |y t t > =τa f 0

Q

Figure 3.

Having examined the development of y(t), it is possible to approximate the
path of x(t) from the time y(t) is first reduced to a level below y . A good
approximation is the following differential equation:

& , ,x x x x x kk≈ − + = ∈γ τα
1 0 0 1b g b g b g (20)
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t1 indicates time y(t) is first reduced to a level below y , and the notation x(x0)
indicates that the level of eutrophication at the time t1 is a function of how far
the eutrophication process had progressed at t = 0. k is a constant that
depends on the parameters in the model. If c is high then k is low and if A is
high, then k is high and so on. The solution to (20) is given by:

x t
k k

x x e ta f b g a f= − −
F
HG

I
KJ

− −α
γ

α
γ

γ τ
0 (21)

Comparing (21) with (16) we see that x(t) in this case approach a steady state
with a higher level of eutrophication and that the rate that x(t) approach this
steady state is slower. The intuition about this result makes economic sense to
a certain extent. The regulator does not like neither eutrophication nor the
costs of reducing u. By switching back and forth between a state of increased
eutrophication and a state where the degree of eutrophication is reduced, the
regulator strikes a balance between the joys of nature and the cost of reducing
deposition of nutrients. It should be noted that k is a function that depends on
optimal values of u(t|y > y ) and u(t|y < y ).

A problem with the result briefly sketched above is that it is hard to imagine a
control that discontinuously jumps at every point in time. Indeed, it is not
mathematically well defined. In order to resolve this problem one must add
more structure to the model. At least two possible extensions are possible.

• Switching costs. It may be argued that discrete jumps in control variables
imply costs, and that these costs should be incorporated into the model.

• Periodicity in the dynamics. In many cases there are intrinsic fluctuations in
the unregulated nutrient depositions, u0. In agriculture fertilising is
concentrated to particular seasons. In sewage treatment, the released
amount of sewage has a twenty-four hour cyclical component. In both
cases the natural cycles in nutrient depositions could be utilised to
optimise switching policies.

Unfortunately both these approaches are analytically untractable. Further
exploration must await development of numerical methods able to handle
mixed boundary differential equation problems with discontinuities.12

2.4. Choosing control scenario
Three control scenarios have been sketched. One additional control scenario
may also be taken into consideration. When x(0) < α/γ, one must also evaluate
controls that ignore eutrophication altogether in the sense that py(t) = 0 for all
t. Alas the necessary conditions stipulated by the maximum principle and the
jump conditions will rarely single out a single control scenario as the optimal
one. Sufficiency theorems for the kind of problems discussed here are

                                                
12Such methods are currently under development by the authour.
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extremely complicated, but the following procedure will work with most
problems found in resource economics. 1) Use the necessary conditions to
identify candidates for optimal control scenarios. 2) Evaluate the objective
function for all scenarios found in 1). Choose the control scenario with the
highest corresponding value to the objective function.

Summary and Conclusions
The present article has analysed the optimal regulation of eutrophying lakes,
rivers and fjords in the presence of threshold effects. It has been shown that
threshold effects implies discontinuities in the control variable. Conditions for
when eutrophication  is a problem solved once and for all are presented. It
has been argued that under certain condition threshold effects imply that
optimal policy is everywhere discontinuous, and that this leads to some
particular difficulties in determining optimal policies.

Appendix - Derivation and use of the jump equation
There is a small, but distinguished literature on discontinuities in optimal
control theory. Early economic applications include Arrow and Kurz (1970)
and Vind (1967). A introduction to the topic is given in Seierstad and
Sydsæter (1987), pages 194-209. This appendix develops a equation that
determines the jump in the adjoint function when the state-variables jump,
and then derives the specific jumps for the model presented in this article. The
approach used here is more general than other approaches found in the
literature. The formulation is due to Professor Atle Seierstad at the Dept. of
Economics, University of Oslo.

Consider standard optimal control problem with a present value formulation.
Let f0(t, u, x) be the instantaneous utility function and let f(t, u, x) be the
equation of motion depending on time, t, the controls, u ∈ Un , and the state-
variables x ∈ Um . It is well known that the differential equation determining
the adjoint variables, p, is given by:

&p
H
x

= − ∂
∂

(A.1)

Here H is the present value Hamiltonian defined by H = f0(t, u, x) - pf(t, u, x).
Assume that at some point(s) in time t, there is a shock so that the state
variables jump. This shock occurs at the time defined by the following
equation φ(x(τ)) = 0. Let the jump be given by x(t+) - x(t-) = K. Here K is
constant. Then a modification of (A.1) is to let the adjoint function jump
according to the following formula.

p p H x K u p H x u p

H H

τ τ τ τ τ τ τ τ τ τ µ

τ τ µ

+ − − + + − − −

+ −

− = − + − −

= − − −

b g b g b g b g b gc h b g b g b gc hd ib g
b g b gc hb g

, , , , , ,
(A.2)
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µ is a m × 1 vector where the elements capture the marginal effect of the
control, u, via x(t) on τ. This effect is defined by the following equation:

′ + ′ =− − − − −φ τ τ τ τ µ φ τx j x jx f x u x eb gc h b g b gc h b gc h, , 0 (A.3)

Here ej is the j-th unit vector. If x(t+) - x(t-) = g(τ , x(τ-)) with g differentiable
with respect to x, then (A.2) must be extended to take into account marginal
effects of x on p(τ+) that is due to the size of the shock. (A.2) may then be
written:

p p H H p g xxτ τ τ τ µ τ τ τ+ − + − + −− = − − − − ′b g b g b g b gc ha f b g b gc h, (A.4)

Writing out (A.4) completely and multiplying on both sides with -1 yields the
general formula.

p p f x u f x u p g x

p f x u p f x u

xτ τ τ τ τ τ τ τ µ τ τ τ

τ τ τ τ τ τ τ τ µ

− + − − + + + −

+ − − + + +

− = − + ′

+ −

b g b g b g b gc h b g b gc hd i b g b gc h
b g b g b gc h b g b g b gc hd i

, , , , ,

, , , ,
(A.5)

Applying formula (A.3) to the model in the main text, it is easily seen that:

µ
δ τ β
γ τ τ

δ τ βy

T
u y

x z
u y

= −
L

N
M
M
M

O

Q
P
P
P

−
− +
L

N

M
M
M

O

Q

P
P
P

F

H

G
GG

I

K

J
JJ

= −
−

−

− −

−

−

1
0
0 0

1

1

b g
b g b g b g (A.6)

From (A.5) one may then verify that:

µ τ τ τ τ ϕ τ

τ τ ϕ τ

τ γ τ τ γ τ τ

α
γ

τ

α
γ

τ

y y
A c r

A c r

x

p p x u u u e

x u u u e

p x z x z

−
− + − − −

−

+ + +
−

+ − − + +

− = − − − − −FH IK
− − − − − −FH IK

+ − + − − +

1
2

2

2
0 2

2

2

2
0 2

b g b gd i b gd i b gc h b ge j

b gd i b gc h b ge j
b g b g b gc h b g b gc hd i

(A.7)

Inserting from equation (8) determining the optimal u and noting that x(t) is
continuos at τ:
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µ τ τ ϕ δ ϕ δ

ϕ δ τ τ τ

τ
τ

β τ
τ

β τ

τ
β τ

τ
β τ τ

y y
r

t
r

t
r

t
r

t
r

x
r

p p e
c

c c
C e

c
c c

C e

c
C e C e p z z e

−
− + <

+
>

+

<
+

>
+

+ − +

− = − −F
HG

I
KJ + −F

HG
I
KJ

F
HG

I
KJ

− −F
HG

I
KJ + −

1
2 2

2 2
b g b gd i

d i b g b g b gc h

a f a f

a f a f
(A.8)

(A.8) is the jump condition used in (11).
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