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Abstract

Recent research has determined that commodity prices often exhibit distributional characteristics

inconsistent with normality or log-normality. We utilize discrete mixtures of log-normals in a GARCH

framework to model corn, wheat, and soybean prices. Options premiums are simulated and compared

to actual premiums and premiums generated under standard Black-Scholes assumptions.

1 Introduction

Modeling the price behavior of �nancial instruments has been the impetus for much of the development of

modern time-series econometrics. Early on, these endeavours were viewed by many as alchemy: a quest

to �nd some lucrative, hidden structure buried deep beneath the erratic movements of prices. As the

E�cient Markets and Rational Expectations paradigms overtook economics, the study of price processes

became less concerned with price changes themselves, and more concerned with the stochastic processes

that govern them.(Fama (1965) and Mandelbrot (1963))

Though options contracts had existed as far back as the 18th century, no rational pricing mechanism

for them existed until Black and Scholes' (1973) pricing model was developed. This advancement greatly

expanded the variety of derivatives available and the number of underlying assets upon which options

were available grew as well.

A sizable literature exists, however, on the shortcomings of the B-S model. The model is primarily

criticized for the restrictive assumptions about the price process of the underlying assets. These critcisms

focus on two themes: that price realizations are iid and log-normally distributed. Mandelbrot(1963) was

the �rst to observe that \random variables with an in�nite population variance are are indispensible for a
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workable description of of price changes." He further observed the thick tails of asset price distributions,

as well as second moment serial correlation. Numerous authors (add cites here) have studied these

phenomena in the intervening years, and have found these characteristics to be present in nearly every

speculative price series studied. Later econometric advances, especially ARCH and GARCH models of

Engle (1982) and Bollerslev's (1986) GARCH model provided a parsimonious yet 
exible technique for

modelling processes with time-varying variances. This variation in the conditional distribution of returns

did much to explain the kurtosis observed in unconditional distributions. (Millh�j (1985) and Bollerslev

(1986)) However, excess kurtosis as well as skewness have also been found in the conditional distributions.

(Cornew, Town and Crowsen (1984) Hudson, Leuthold and Sarassoro (1987) and Hsieh (1989)) These

�ndings have prompted, among other approaches, the use of conditionally t-distributed errors, as in

Bollerslev (1987) and Myers and Hanson (1993), and mixtures of discrete distributions. (Hsieh (1989))

The TGARCH speci�cation incorporates the additional kurtosis, whereas the mixture distributions allow

both excess kurtosis and skewness. This study will incorporate a mixture of discrete normal distributions

into a GARCH framework, and assess the performance of the model by its ability to forecast observed

options prices on futures contracts.

This paper has seven sections. The second section will the use of mixture distributions and GARCH

models with emphasis added to the issues relevant here. The third section will discuss the estimation of

the futures price model. The fourth section reviews the theory of options pricing, while the �fth section

details the procedures used to estimate the options prices. The sixth section reports the results of the

study and the seventh concludes.

2 Mixture Distributions and GARCH

In addressing the issues of leptokurtosis and skewness, discrete mixtures of normal distributions are

simultaneously very 
exible and tractable. With arbitrarily many distributions, a mixture distribution can

replicate nearly any other distribution of similar support. Further, when using mixtures of normals, the

moments of the mixture distribution are easily obtained and have relatively simple closed-form solutions.
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The density function of a mixture of k discrete distributions is

f�k (x; �) =

JX
j=1

�jfj(x; �j) 0 � �j � 18j
X
j

�j = 1 (1)

where �j is the weight of the the jth distribution, fj(x). This p.d.f. implies that the variance for the

distribution has the form The log-likelihood function associated with a mixture distribution is then

LLF (x; �) =

NX
i=1

ln

JX
j=1

�jfj(xi; �j) (2)

The use of Auto-Regressive Conditional Heteroskedasticity (ARCH) and Generalized ARCH (GARCH)

models was introduced by Engel(1982) and Bollerslev(1986), respectively, to re
ect the common obser-

vation that volatility tends to be highly correlated. The GARCH(p,q) process is directly analogous to

specifying the variance of a process using an ARMA(p,q) model.

yt = XtB + �t (3)

�t =
p
ht�t (4)

ht = �+

PX
p=1

�jht�j

QX
q=1

�i�
2
t�i

where �t is an iid distribution of unit variance. In this framework, Et�1(�
2
t ) = ht. Bollerslev showed that

the unconditional variance of the GARCH process is �=(1 �
P
� �

P
�). In the analysis of time-series

models, the use of GARCH(1,1) models has dominated other CH speci�cations, having proved itself to

be a remarkably 
exible and robust technique.(Myers, Hanson (1993), [insert others])

3 Estimation of Futures Prices

In order to explore the e�ects of di�ering parameterizations of the underlying price process on options

pricing, estimations of the hypothesized model must �rst be obtained. The synthesis of the mixture

distribution and the GARCH(1,1) speci�cation proceeds quite naturally from the underlying components.

In this paper, futures prices are assumed to follow the process Et�1(Pt) = Pt�1, i.e. that they are
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martingales.1 Note, however, that due to the very nature of the mixtures of normals distribution, this

assumption is made only for the construction and estimation of the model, it is not possible to allow an

intercept in the model and identify it and the means of the distributions simultaneously,2 and therefore,

this model may in actual practice produce non-martingale behavior.

The role of seasonality in commodity markets is well-known (Fackler (1986), [cite others] ) , and their

use in modeling second-moment behavior, especially for option pricing is likewise well-known. [cites] As

in Fackler(1986), among others, a Fourier expansion is used to estimate the seasonal e�ects of variance.

The form is

st =

MX
m=1

�msin(2m�t) +  mcos(2m�t) 0 � t � 1 (5)

where t denotes the time of year of the observation and M denotes the `order of seasonality'. The use of

the Fourier form produces a simple and smooth approximation of the seasonal variance e�ects.

In order to estimate the parameters of the futures price process, a rolling sequence of July soybean

futures prices was employed. A parameter was added to the model to account for the changes in variance

when the underlying contract switches expiration dates.3

Again, as per common practice, the model is estimated in the log of the futures prices.4 The model

to be estimated has become

�ln Pt = �t (6)

�t =
p
ht�t (7)

ht = �+

pX
j=1

�jht�j

qX
i=1

�i�
2
t�i + 
Zt (8)

1See Campbell, Lo and MacKinlay (1997), Ch. 2 for a fuller explanation of martingales and their relation to E�cient

Markets.

2The speci�cation of a drift term also has no baring on the pricing of options, see Campbell, Lo, MacKinlay, (1997).

3Only one additional parameter was added to capture these e�ects. This implicitly assumes that the e�ect of the change

in expiration is constant across years. Some have suggested that a better parameterization might be to have an individual

dummy for each change of expiration, however, for this model, repeated attempts to incorporate this method failed to

converge.

4Note that this implies that the model here is conditionally distributed as a log mixture of normals, as opposed to a

mixture of lognormals.
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Where now � is a unit-variance mixture of normals distribution, and 
Zt incorporates the seasonality

and switching parameters.

As an explicit distribution of the errors is asserted, maximum likelihood estimation is the natural

choice for obtaining parameters for the model. MLE estimation of both GARCH and mixture distributions

is well-documented. One di�culty encountered in combining the processes is that in order for ht to be

the expectation of the variance on date t, the mixture density must be constrained to be of unit variance.

1 = V ar(x) =

JX
j=1

�j(�
2
j + �2j )�

"
KX
k=1

�k�k

#2
(9)

The unconditional variances of the discrete densities comprising the mixture cannot be simply scaled

by ht, instead, the price changes must be scaled by ht before the log-likelihood function of the mixture

distribution is calculated. The unconditional log-likelihood function is

LLF (x; �) =

NX
i=1

1

hi
ln

0
@ mX
j=1

�jfj

�
xi

hi
;�j ; �j

�1A (10)

where f(x; �) is the normal density and h1, the expected variance in the �rst period, was estimated as a

parameter, as the conditioning information, �20 and h0 doesn't exist.

Table one displays the results of the futures price estimation across a variety of parameterizations. By

comparing the �rst and second columns, we can see the e�ects of adding seasonality to a model utilizing

two normal densities. A likelihood ratio test of signi�cance of the four additional parameters yields a

p-value of .073. The second and third columns compare the results of incorporating a third distribution in

the mixture density. However, due to the lack of identi�cation of the mean and variance of the distribution

under the null hypothesis of �3 = 0, standard asymptotic results don't apply to hypothesis tests regarding

the appropriate number of distributions in a mixture. (see Feng and McCulloch (1994) and (1996), and

McLachlan (1987))

4 Pricing Options

The problem of pricing European-style options owes its �rst solution to Fisher Black and Myron Scholes

(1973). A complete explanation is beyond the scope of this article, an interested reader should see
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MLE s:e: MLE s:e: MLE s:e: MLE s:e:

� 0:0168 0:2021 0:0143 0:1728 0:0143 0:0185 0:0129 0:0201
� 0:8976 0:0509 0:9239 0:0159 0:9238 0:0023 0:9267 0:0005
� 0:0905 0:0681 0:0623 0:0230 0:0624 0:0007 0:0598 0:0000

�1 0:0290 0:0228 0:0302 0:0097 0:0321 0:0005 0:0321 0:0016
�1 �0:8627 0:0172 �0:8904 0:0090 �0:8907 0:0019 �0:8957 0:0000

�2 0:1127 0:0086 0:0807 0:0016 0:0787 0:0015 0:0809 0:0000
�2 �0:1070 0:1140 �0:2434 0:0009 �0:2428 0:0502 �0:2668 0:0478
�2 �1:7311 0:0739 �1:8146 0:0434 �1:8258 0:0069 �1:7786 0:0000

�3 0:0118 0:0000
�3 �0:1582 0:0955
�3 �0:9415 0:1276

switch 2:1938 0:2061 2:1946 0:0297 2:2007 0:1719 2:4153 0:0817

ĥ1 2:1940 0:0574 1:9059 0:0304 1:9128 0:0799 1:8609 0:0870
�1 0:0182 0:0021 0:0183 0:0006 0:0210 0:0001
 1 0:0000 0:0004 0:0001 0:0005 0:0013 0:0001
�2 �0:0160 0:0013 �0:0160 0:0009 �0:0198 0:0012
 2 �0:0114 0:0025 �0:0114 0:0007 �0:0149 0:0001
�3 0:0051 0:0001
 3 0:0056 0:0013

ll �1968:38 �1959:728 �1959:72 �1959:10

Merton (1990), Ch. 8 for a fuller explanation. The modal method for options-pricing, the Black-Scholes

model, obtains from primitive assumptions of the iid normality of log returns and frictionless trading.

It is especially the former that is investigated here, though violations of the latter may also in
uence

estimation of the conditional distributions of returns, as well. The Black-Scholes model obtains regardless

of the risk preferences of the investor, as it is based upon the premise that the sources of risk in
uencing

the option price may all be hedged.5

The market price of a European-style call option should be the discounted value of the right conferred

by the contract:

Gt = e�r(T�t)Et(max[Pt �K; 0]) (11)

where K is the strike price of the option, T is the date of maturity and r is the risk-free rate of interest.

From this simple concept, the pricing formula for European options can be derived to be (Campbell, Lo,

5Check this, I think that there is something subtly incorrect here
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MacKinlay (1997)).

Gt = PtF

�
log(Pt=K) + (r + 1

2
�2)(T � t)

�
p
T � t

�
�Ke�r(T�t)F

�
log(Pt=K) + (r � 1

2
�2)(T � t)

�
p
T � t

�
(12)

where F (_) is the normal culmulative distribution function. The adaptation of the options-pricing formula

to the mixture of normals distribution is not unique. Ritchey (1990) showed that under risk-neutrality

options prices derived from a linear combination of normal distributions are equivalent to the linear

combinations of options prices derived from the Black-Scholes model.

5 Estimation of Options Prices

6 Results

Conclusion
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