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Abstract

The current debate over resistance management plans mandated by the Environmental

Protection Agency for transgenic crops ignores management practices that are

complementary to refuge schemes.  A dynamic production model is developed that

measures the costs and benefits of crop rotation and shredding in terms of delaying

resistance to Bt corn.
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Introduction

The use of agricultural biotechnologies is increasing dramatically in the United

States.  Among the most successful crops are Bt plant-pesticides, engineered to express

the Bacillus Thuringiensis (Bt) δ-endotoxins.  Because of high levels of concern on the

possible development of resistance to Bt by the targeted pests, the Environmental

Protection Agency (EPA) requires farmers who want to grow Bt cotton to plant refuges.

Refuges are portions of the field in which non-Bt seed is sown, and Bt insecticides are not

sprayed, so as to allow the interbreeding of pests susceptible to Bt with resistant pests.

This causes resistance development to slow down.  Refuges are encouraged for potatoes,

while in the case of corn, the EPA registration is conditional. And by 2001, EPA-

approved refuge plans will have to be implemented.  In practice, the industry is already

requiring that farmers plant refuge acres through producer-grower contracts (EPA, 1998).

The current refuge recommendations are based on certain fundamental assumptions.  At

the farmer’s level, the premise is that the grower will plant continuous corn or cotton,

without using cultural practices which could impact resistance, and that high compliance

will be achieved.  At the market level, the conjecture is that market penetration will be

complete, or alternatively, that no externalities deriving from pest mobility will occur.

These assumptions are quite restrictive, and may not fully reflect the reality within which

the policy operates.  For instance, the use of refuges poses serious compliance problems,

since the farmers may not perceive the intertemporal relation between planting refuge and

controlling resistance development.  Farmers will tend to behave myopically in relation

to resistance especially if the pest in question is relatively mobile, as the pest population
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then becomes a common property resource among farmers (Miranowski and Carlson,

1986).  Moreover, refuge sizes and locations may be hard to monitor, and the costs of

planting refuge may be substantial for the farmer1.  He or she has to follow proximity

rules which can be quite complicated in irregular fields, and the Bt seed must be put in

clean planters.

This paper is part of a wider research project aimed at analyzing the effects of

altering some of the assumptions the current policy is based upon, and at examining the

economic trade-offs involved in using resistance management instruments other than

refuge so as to facilitate compliance.  The paper uses a dynamic economic model that

includes population genetics to analyze the costs and benefits of using two mechanisms

complementary to refuges in resistance management plans:  crop rotations and shredding

after harvest in the Bt fields. Rotation with a crop that is not a host to the target pests

helps break down the pest population reproductive cycle. Shredding crop residue in the Bt

fields also breaks the reproductive cycle because up to 90% of overwintering larvae are

killed, thereby reducing the absolute pest population level.  The model is used to compare

three scenarios appropriate to corn grown in Midwestern states: continuous corn, corn-

soybean rotations, and continuous corn with shredding on the Bt fields.  The use of crop

rotations to slow down the exhaustion of a natural resource has been illustrated in the

case of soil erosion (Miranowski, 1984). An application of crop rotation to pest

management issues is given by Lazarus and Dixon (1986), who use a nonlinear

                                                       
1 Some evidence of the existence of compliance problems is already available.  See Hurley et al. (1999).
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programming model with corn–soybean rotations to manage resistance development for

the corn rootworm.

The model

The model is based on pest population dynamics that allow the direct

measurement of resistance development following the Hardy-Weinberg principle, and it

builds on Hurley et al. (1997). The pest population is composed of homozygote

susceptible (SS), heterozygote (RS) and homozygote resistant (RR) individuals. The

major differences with the Hurley et al. (1997) model are that a random element is

introduced to mimic weather conditions, and that the possibility of pest mobility is

introduced.  The stochastic shocks do not represent pest mobility, since they are assumed

to impact the pest population within the field and do not alter the field’s genetic make-up.

As in Hurley et al. (1997), the pest population’s reproductive cycle consists of two

generations a year (bivoltine), but the model is easily generalizable to uni-or multi-

voltine populations. More generally, this framework is easily applicable to all diploid

pests which exhibit some degree of mobility, from insects to weeds and fungi. It can also

be readily extended to other cropping systems typical of the production pattern in other

U.S. regions, such as corn and cotton in the South, which are both ECB hosts.  The model

is based on two fields, one of which - always the same one2 - is planted with non-Bt corn.

Following Onstad and Guse (1999) and Mason et al. (1996), the damage function of the

ECB is linear, but differentiated across generations. The farmer planting the non-Bt corn

has the choice of applying a (non-Bt based) pesticide.  The cost of applying the chemical

                                                       
2 This appears to be a non trivial question when analyzing resistance development.  See Peck et al. (1999).
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input is fixed, and the pesticide has a maximum efficacy bound (Mason et al., 1996).  For

simplicity, the non-Bt farmer can apply the pesticide only once, in order to control the

first generation of ECB. Since the pest population modeled is in the high range, the

farmer will always use the option of spraying. The Bt corn farmer, on the other hand, will

plant Bt on a given percentage of refuge which is left unsprayed.  The percentage of

refuge is given by 20% of the field.  This is consistent with current EPA regulation, and

with a recent statement endorsed by the National Corn Growers Association and the

industry.  Following Hurley et al. (1997), this proportion of the field is constant

throughout the time horizon.

The profit per acre from planting Bt corn is given by:

pyY[1-(EG1N G1-EG2N G2)]- C- P – T (1)

while the non-Bt farmer maximizes:

pyY[1-EG1N G1(α(1-S))-EG2N G2]- C- psS (2)

s.t. S ∈  {0,1}

where3:

py =$ 2.35, real corn price per bushel at 1992 prices

Y = pest free average yield, 130 bushels per acre

NG1 and NG2 = number of pests per plant, first and second generation

EG1 and EG2 = damage per pest per plant, EG1 =  0.05 and EG2= 0.024

C = costs of production net of the spraying price, $185 per acre

P = Bt premium (technology fee), $20 per acre
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T = cost of shredding, $7.00 per acre

S = non-Bt spray application

ps = cost of the spray application, $14 per acre

α = maximum efficacy of the non-Bt spray, fixed at 65% of the population

The effects of the pest population dynamics and the changes in its genetic make-

up are embodied in equation (1).  Increases in the pest population’s size directly increase

NG1 and NG2, thereby reducing yield.  The effects of increases in the genetic frequency of

resistant pests are also reflected in equation (1).  As resistance increases, there is a

decrease in the effectiveness of the Bt toxins, so that a higher number of pests survives

and are able to damage the crop.  The model is based on the assumption that the resistant

and susceptible pests cause the same damage to the crop, and are more in general

identical in their behavior.

The rate of interest utilized to calculate the net present value of production is 3%.

The returns from soybeans (excluding returns to management) are calculated from 1990

ERS soybeans budgets deflated to 1992 dollars with NASS price indexes.  They are an

average of the returns for ECBs bivoltine states (Illinois, Indiana, Iowa, Kansas,

Minnesota, Missouri, Nebraska, Ohio, South Dakota), and they amount to $92.52 per

acre.  Since evidence exists that soybeans are a secondary host of ECBs (Mason et al.,

1996), one in ten million corn borers are assumed to survive in the soybean-planted field.

It is also assumed, conservatively, that shredding kills 80% of the 5th instar larvae. (See

Mason et al., 1996.) The model is programmed in MATLAB.

                                                                                                                                                                    
3 For the specific values see Mason et al. (1996), Onstad and Guse (1999), Hurley et al. (1997) and Jose
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Results and discussion

The baseline scenario analyzed assumes there is zero inter-field mobility.  As

Table 1 shows, without either shredding or rotation, the final frequency of susceptible

pests is substantially lower than at the start of the production period (the starting

frequencies are the same as the final ones in the non-Bt field, since no Bt is used there

and there is no pest migration from field to field).  However, the population levels in the

Bt field are still very low, and the new technology remains valuable, as the difference

between the net present values of production in the Bt and non-Bt field clearly illustrates.

Table 1 – Simulation results with zero mobility, 20% refuge4

Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.038900 0.316800 0.6443 882.97
Non-Bt field 0.000001 0.001998 0.9980 792.99

The introduction of shredding after harvest substantially reduces the incidence of

resistance (Table 2).  This comes at the cost of $60/acre of net present value.  Note

however that, even with these added costs, the Bt technology is still profitable for the

farmer as compared to the use of traditional hybrids.

Table 2 – Simulation results with zero mobility and shredding, 20% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.018420 0.234600 0.7470 821.47
Non-Bt field 0.000001 0.001998 0.9980 792.99

                                                                                                                                                                    
and Brown, 1996.
4 Frequencies may not sum up to one exactly because of rounding.
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Crop rotation appears to be extremely effective in slowing down resistance build-

up, as Table 3 shows.  The net present values of production is around $35/acre lower than

in the baseline case of Table 1, but the frequency of homozygote resistant pests is over

ten times lower, and heterozygotes are over thirty times less numerous.  Once again, the

use of the new technology is worthwhile for the farmer, even with this added cost, giving

him over $55/acre of increased returns.

Table 3 – Simulation results with zero mobility and crop rotation, 20% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.002730 0.099050 0.8982 848.45
Non-Bt field 0.000001 0.001998 0.9980 792.99

The zero mobility scenario analyzed above is indicative of what would happen in

case of a 100% market penetration in a region concentrating on corn production.  In such

a case, there would be no secondary hosts for the ECBs, and the issue of mobility would

become irrelevant, since all farmers would be growing the same crop, thereby offsetting

each other’s externalities.  More spatially explicit modeling is needed to analyze the

effects of rotation, but, in policy terms, these results suggest that crop rotation may be a

valuable instrument for slowing down the buildup of resistance.  However, a scenario

more representative of the actual situation in the Midwest, which is likely to be prevalent

for some time, should include market penetration at less than 100%, and some level of

pest mobility across fields.  In the next case analyzed, the levels of inter-field mobility

are assumed to be very low, at one in a thousand. And, in line with entomological

evidence, it is assumed that only the first generation moths fly across fields (Dr. David
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Andow, personal communication). This form of effective pest mobility is essentially a

reduced form that subsumes two types of variables.  Firstly, it represents purely

biological factors such as the insects’ capacity to fly.  The more mobile the pest, the more

it will migrate across fields.  Secondly, the variable incorporates farm size and

arrangement effects.  The bigger the average farm size in the area considered, the less

likely pests are to create an externality by migrating from one farm to the next.  The

insects will tend to fly within the perimeter of the farm and the fields that it consists of,

so that the externalities created will be low.  Similarly, if a farm is made up of scattered

fields, it is more likely that pests will fly from one farm to the next, thereby creating an

externality. Since this is a first attempt at quantifying the effects of mobility, and there

has been little entomological fieldwork on its magnitude, simulations have been

conducted assuming very low levels of mobility.

Table 4 – Simulation results with 0.1% mobility, 20% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.0000020 0.0027900 0.9972 882.93
Non-Bt field 0.0000009 0.0018950 0.9981 793.04

Table 4 shows that 0.1% mobility is enough to dramatically decrease the final frequency

of resistance in the Bt field without substantially diminishing profits.  The rationale for

this result is that the Bt technology is extremely effective, so that the pest pressure in the

Bt field is very low compared to that in the non-Bt field.  Very low levels of mobility are

enough to allow the migration of an comparatively high absolute number of susceptible

pests to the Bt field to substantially alter its genetic composition.  The reverse flow, on
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the other hand, is too small in absolute terms to produce a significant increase in the

number of homozygote resistant pests, even though it increases the frequency of

heterozygotes.

Tables 5 and 6 show how both shredding and crop rotation become relatively

redundant tools in this scenario.  It is worth noting that the externality appears to be

significant in only one direction, since the non-Bt field is not affected regardless of the

technology used in the Bt field.

Table 5 – Simulation results with 0.1% mobility and shredding, 20% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.0000019 0.0027210 0.9973 821.44
Non-Bt field 0.0000009 0.0019080 0.9981 793.04

Table 6 – Simulation results with 0.1% mobility and crop rotation, 20% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Bt field 0.000002 0.003138 0.9969 848.43
Non-Bt field 0.000001 0.001998 0.9980 793.02

Increasing the level of mobility tenfold to 1% simply reinforces the results.  The

mobility effects dominate the local population dynamics in the Bt field, so that resistance

does not develop, while the non-Bt field is only very marginally affected, because the

pests migrating from the Bt field are still very few.  These results underscore the

importance of further field-level entomological studies on pest mobility, since very low

levels are enough to make the use of instruments complementary to refuge unnecessary.
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The efficacy of crop rotation and shredding is hard to analyze with low refuge

sizes in the absence of mobility, because the consequence of all these strategies is to

sharply decrease the absolute numbers of the pest population.  Their combined effect

tends to make the pest population collapse.  Population models better able to describe the

capacity of pest populations to recover are needed to assess the impact of low refuges5.

Table 7 shows the effects of the various strategies for a 30% refuge.  As in the 20% case

discussed before, crop rotation is less costly to the farmer than shredding, and it yields

better results in terms of resistance.  However, the table also shows that the marginal

benefits of these techniques are low at this refuge size, because the refuge by itself is very

effective at delaying resistance.

Table 7 – Simulation results with zero mobility, at 30% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Baseline case 0.0027930 0.1001 0.8971 882.93
Shredding 0.0008904 0.0579 0.9412 821.45
Rotation 0.0005140 0.0443 0.9552 848.39

The effects of lower refuges can be analyzed if some very low level of mobility is

assumed, so as to allow the pest population in the Bt field not to dwindle.  In such cases,

as for the higher refuge, crop rotation is more efficient than shredding, and it is again

more effective in terms of resistance.  However, mobility, even at levels as low as one in

one thousand, dominates the local population dynamics so that the marginal benefits of

these techniques tend to be low.  Table 8, for instance, illustrates what happens at 0.1%

                                                       
5 See Secchi and Babcock (1999) for some preliminary results on alternative population dynamics.
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mobility with refuge fixed at 10%.  The effects on the non-Bt field are negligible and

therefore are not reported.

Table 8 – Simulation results with 0.1% mobility, at 10% refuge
Final frequencies
RR
Homozygote
resistant

RS
Heterozygote

SS
Homozygote
susceptible

Net Present
Value of
production per acre
      ($/acre)

Baseline case 0.0000002 0.0008852 0.9991 882.96
Shredding 0.0000002 0.0008804 0.9991 821.47
Rotation 0.0000001 0.0007665 0.9992 848.46

Conclusion

The comparisons carried out in this paper tend to underestimate the value of the two

resistance-delaying mechanisms examined because they do not explicitly consider the

direct costs of monitoring and the consequences of non-compliance.  The costs of

monitoring pure refuge strategies may be extremely high, particularly because the corn

planted on refuge is to have the same phenological characteristics of the Bt corn, so that

the two are virtually indistinguishable.  Laboratory tests would have to be carried out to

determine what type of corn has been planted.  Since the refuge is enacted via producer-

grower contracts, the monitoring burden resides primarily on the seed producers.  The

industry faces a trade-off in monitoring resistance development.  On the one hand, it is

aware of the non-renewable nature of susceptibility and has therefore an interest in

managing resistance.  On the other hand, however, it does not want to unnecessarily

increase the size of the refuge, since that would decrease sales of the Bt seed, which sell

at a premium (technology fee).  The EPA has established the need of instituting refuge on

the grounds that Bt is used in spray form in organic and Integrated Pest Management
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(IPM) crop production and that finding organically acceptable, low impact backstop

technologies for Bt sprays may require very long time horizons (EPA, 1998).  Therefore,

in order to assess the total social costs of resistance, an explicit economic evaluation of

the Bt technology in the spray form is needed.  If such a comprehensive cost-benefit

analysis confirms the need for resistance management plans, crop rotation and shredding

are possible candidates to supplement refuge in preserving susceptibility. However, the

results of the simulations conducted with some positive levels of mobility indicate that

the risk of resistance development may not be elevated if market penetration is

incomplete.

The most important factors affecting the comparisons between scenarios are the costs

of implementing the alternative resistance-delaying mechanisms.  This suggests that

incentive mechanisms to facilitate their adoption could include target subsidies on

traditional corn hybrid seed prices and shredding for farmers planting Bt crops.



13

References

Environmental Protection Agency, 1998, The Environmental Protection Agency’s White
Paper on Bt Plant-pesticide Resistance Management, Environmental Protection Agency,
Washington D.C.

Hurley T.M., B.A. Babcock and R.L. Hellmich, 1997, Biotechnology and Pest resistance:
An Economic Assessment of Refuges, Center for Agricultural and Rural Development,
Working Paper 1997 WP 183, Iowa State University, Ames, IA.

Hurley T.M., S. Secchi, B.A. Babcock and R.L. Hellmich, 1999, Managing the Risk of
European Corn Borer Resistance to Transgenic Corn:  An Assessment of Refuge
Recommendations, Center for Agricultural and Rural Development, Staff Report 99-
SR88, Iowa State University, Ames, IA.

Lazarus W.F. and B.L. Dixon, 1984, Agricultural Pests as Common Property:  Control of
the Corn Rootworm, American Journal of Agricultural Economics, Vol. 66, pp.456-465.

Mason C.E., M.E. Rice, D.D. Calvin, J.W. Van Duyn, W.B. Showers, W.D. Hutchinson,
J.F. Witkowski, R.A. Higgins, D.A. Onstad, and G.P. Dively, 1996, European Corn
Borer Ecology and Management, North Central Regional Extension, Publication No.327,
Iowa State University, Ames, IA.

Onstad D. W. and C. A. Guse, 1999, Economic analysis of Transgenic maize and
Nontransgenic Refuges for managing European corn Borer (Lepidoptera:  Pyralidae),
mimeo, Center for Economic Entomology, Illinois Natural History Survey, Champaign,
IL.

Miranowski, J.A., 1984, Impacts of Productivity Loss on Crop Production and
Management in a Dynamic Economic Model, American Journal of Agricultural
Economics, Vol. 66, pp.61-71.

Peck S.L., F. Gould and S.P. Ellner, 1999, Spread of Resistance in Spatially Extended
Regions of Transgenic Cotton:  Implications for Management of Heliothis virescens
(Lepidoptera: Noctuidae), Journal of Economic Entomology, forthcoming.

Jose H. D., L. L. Brown, 1996, Costs of Harvesting and Hauling Corn Stalks in Large
Round Bales, Cooperative Extension, University of Nebraska, Institute of Agriculture
and Natural Resources, on the Web at http://www.ianr.unl.edu/pubs/nebfacts/nf310.htm.

Secchi S. and B. A. Babcock, 1999, A Model of Pesticide Resistance as a Common
Property and Exhaustible Resource, mimeo, Center for Agricultural and Rural
Development, Iowa State University, Ames, IA.


