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Modeling Price Impacts of Backward Vertical Integration in the US Pork Industry

The U.S. pork sector is evolving from an industry of small, independent firms vertically linked by

spot markets to one of substantially larger firms vertically connected through contractual agreements and

integration.  Potential consumer benefits of  tighter vertical arrangement include higher quality pork

products (Martinez et al.) sold at a lower prices, although the nature of this benefit is still debated [Abiru,

Greenhut and Ohta (1976, 1979), Quirmbach, Warren-Boulton, and Westfield]. There is concern that a

highly consolidated, vertically coordinated industry may lead to market foreclosure, a situation in which

independent producers no longer have open markets in which to sell their output (Salinger).  Consequently,

the evolution of the pork industry presents a dilemma for policy makers (Barkema and Cook).

The objective of this paper is to develop an econometric model of backward integration by

oligopsonistic pork processing firms into an upstream hog production stage, and to simulate the price

impacts of vertical integration at the consumer and producer price level.  Following Perry, backward

integration is defined as the fraction of the upstream limiting production factor (e.g., farm land, feedlot

facilities and water supply) that downstream processors control.  Perry’s measure was first exploited

empirically by Azzam in his study of the fed cattle industry, though the current study differs substantially

from Azzam’s pioneering effort.  First, Azzam presumes monopsony in regional markets while the current

study considers an oligopsonistic, national pork market. Secondly, a multi-output, variable proportions

technology is posited for the downstream processor in lieu of a single output, fixed proportions production

technology. Finally, the current study explicitly accounts for the difference between the total slaughter hog

quantity and open market hog quantities. Theoretical restrictions derived from the model transform the

variable associated with unavailable open market hog quantities in order to utilize USDA slaughter data.

Before proceeding, a brief discussion will relate the conceptual model to the various forms of

vertical arrangements actually observed in U.S. pork processing. In the model, two extreme cases of

vertical relationships between hog producers and processors are considered; vertical integration and open

market transaction.  A parameter λ  is introduced to represent the proportion of hogs produced via vertical
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integration, and 1- λ is the non-integrated portion of the industry.  Of particular interest is what the

parameter λ captures when the pork sector is organized according to a continuum of vertical arrangements

including both vertical integration and coordination (e.g., contracting), with the latter predominating

(Lawrence et al.).  Importantly, a specific economic outcome is observed in time series data which arises

from existing vertical arrangements.  The modeling strategy is to find a single parameter, λ, which groups

the continuous spectrum of vertical arrangements into the two polar cases and still reproduces the same

economic outcome.  Consequently, the vertical integration parameter is the weighted average of the two

vertical arrangements. As an example,  a λ of 0.25 indicates the economic outcome observed in the time

series data is consistent with an industry that is 25% vertically integrated. Such an interpretation of λ is in

the spirit of the conjectural variations parameter commonly found in the New Empirical Industrial

Organization (NEIO) literature when studying market power. Ultimately, this parameter may be increased

to simulate increasing levels of vertical integration, and resulting price impacts may be discerned.

Conceptual Framework

The model is composed of an upstream production stage and a downstream processing stage.  In

the upstream production stage, hogs are produced using farm inputs, while in the downstream stage the

intermediate hog input is combined with other inputs to create a variety of processed pork products.  The

upstream stage consists of many individual producers who take farm input and hog output prices as given.

The downstream stage is composed of a handful of pork processors who act competitively in all but the

intermediate hog input market. The downstream oligopsonists acquire the intermediate hog input from both

independent producers and from their own upstream subsidiaries; two groups of producers that are

assumed to share the same production technology.  This hog production technology will be discussed first,

followed by a discussion of an individual processor’s maximization problem from which one derives the

optimal pork output supply, total hog input demand, and open market hog input purchases.  The behavioral

equations of the individual processor are then aggregated and may be estimated econometrically in

conjunction with the pork product demand equations of consumers and the open market hog supply
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equation of independent hog producers.  The aggregate econometric model is then used as a basis for

simulating price and welfare effects of vertical integration.

Defining Vertical Integration

Following Perry, the technology of upstream hog producers is assumed to be constant returns to

scale for all output levels, but the marginal production cost is increasing due to the limited availability of a

specialized factor.

Let C(x, λ) be the variable cost function of any subset of hog producers who produce x with a

fraction λ of the limiting factor {0 < λ ≤1}.  Constant returns to scale in the production technology implies

that C(x, λ) is linearly homogenous in its arguments.  In particular,

( )( ) , ,1 1C x C
x

λ λ
λ

= ∗ 



 .

The technology is such that producing x units of the hog output with λ of the limiting factor costs a fraction

λ of the expense of producing the quantity x/λ with all of the limiting factor.2  Notice that C(• ,1) is

equivalent to the industry’s variable cost function.

Differentiating (1) with respect to x, it is apparent that the marginal cost of producing x units for

the subset of producers who own λ of the limiting factor is equivalent to the industry’s marginal cost of

producing x/λ units of the output.  That is:

( )
( )

, ,
2

1∂ λ
∂

∂
λ

∂
C x

x

C
x

x
=







  .

Given the assumption that hog producers are price takers in their output market, (2) indicates that the hog

supply function for producers owning λ of the limiting factor is equivalent to the industry supply function

shifted horizontally by λ.  Thus, the upstream industry supply curve can be continuously and horizontally

partitioned into supply curves of producers owning fractions of the limiting factor, and a downstream

                                                       
2 For example, producing x with one third of the limiting factor is one third as costly as producing three times x
with all of the limiting factor.
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processor’s backward integration can be defined in terms of the fraction of the upstream limiting factor that

he owns (Perry).  Specifically, let λ i be the fraction of the upstream limiting factor owned by the ith

downstream processor and let  λ = Σλi.  Then, as defined by Perry, λ is the extent of backward vertical

integration in the industry.  A λ near zero suggests the industry is relatively more disintegrated whereas a λ

near one suggests the industry is nearly integrated.

The Processor’s Profit Maximization Problem

The ith processor produces various pork outputs using a hog input (xi)  and other processing inputs

(li ).  The hog input is obtained from two sources, open market purchases ( )xi
o  and internal production

( )x xi i
o−  of the processor’s upstream subsidiary which produces the needed hogs at a minimum cost.  The

processor treats the price of pork products (P) and the price of non-hog processing inputs (Sl) as

parameters.  Given the extent of backward integration (λ i), the processor maximizes profit by choosing

total hog input quantity, open market hog purchases and the quantity of non-hog processing inputs. The

maximization problem is written as:

( ) ( ) ( ) ( )3a C xi xi
o

i S f
xi li xi

o
R xi li P Sl li W xo xi

o

,
max , ,,− − −−












λ

where R is the revenue function for pork products, and C is the cost function of the upstream subsidiary

who treats as parameters the farm input prices (Sf).  Notice that the oligopsonistic processor can influence

the open market price of hogs (W) via the linkage between x xi
o oand  where  Σi x xi

o o= .   A unique

feature of (3a) is that the revenue function treats hogs as an input while the subsidiary cost function treats

hogs as an output; consequently, analysis is always focused on the intermediate hog product.  Also, the

revenue function specification is conducive for examining the multiproduct case considered in this study as,

via Shepherd’s lemma, ∂R/∂Pi is the processor’s conditional output supply of pork product i.  Without loss

of generality, the optimization in (3a) can be decomposed into a revenue maximization problem and a hog
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input expenditure minimization problem where the latter involves an optimal choice between open market

purchases and internal production of the hog input.  Specifically,

( )

( )
( )

3b

R xi li P Sl li

xi
o i

C x
i

x
i
o

i
S

f
W xo x

i
o given x

i
xi li,
max

,

min , ,

−

− ≡ −






+
































Γ λ
.

Hog expenditure minimization is considered first.  Given the total hog input xi, the processor

allocates hog input expenditures to balance the marginal production cost of his upstream subsidiary with

the marginal open market outlay which includes both the prevailing hog price and an oligopsony

markdown.  Differentiate Γ i  in (3b) with respect to xi
o  and set the resulting expression equal to zero to

obtain the first order condition:
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As in the NEIO literature, the term ∂ xo /∂ xi
o  in (4)  captures the conjectures that the processor has for

competitors’ responses to marginal changes in his own open market purchases. The term 
∂
∂

∂
∂

W

x

x

x
xo

o

i
o i

o

represents the oligopsony markdown while 
( )∂

∂
C

xi
o

•
 is the marginal production cost of the upstream

subsidiary.  The right hand side of  (4) expresses the first order condition in terms of the conjectural

elasticity (θi) of the processor and the inverse supply elasticity or price flexibility (ε) of independent hog

producers. From (4), the ith oligopsonist’s demand for open market hogs can be written as:
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( ) ( ) ( )5 x x x W S x x Wi
o

i
o

i i i f i
o

i i= ≡, , , , ,λ ε θ κ

Equation (5) illustrates how the oligopsonist divides total hog input procurements between open market

purchases and production by its own upstream subsidiaries. Throughout the remainder of this paper, (5)

will be referred to as the hog input allocation rule. Using (5), xi  may be substituted for xi
o in the objective

function (3b).3  Before continuing with the optimization problem, the previous derivation will be made more

concrete by considering a particular functional specification for the upstream cost function.

Specific Functional Form

Following Azzam, specify the cost function for any hog producer whose output is q and owns z fraction of

the limiting factor as:

 ( )6
1

C q z S
q

z
qf( , , ) ,=

+








ν
ε

ε

where ν  captures the impact on C of a set of supply shifters (e.g., input price, Sf ) and ε is the inverse

supply elasticity as defined previously.  The marginal production cost for the ith processor’s upstream

subsidiary can now be written as:

( )
( )

∂ λ

∂
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λ

εC x x S

x x
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i i
o

i i
o

i

−

−
=
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The first-order condition in (4) is then specialized to:

 ( ) ( )7 1ν
λ

ε θ
ε

x x
Wi i

o

i
i

−





 = + ,

whereθ i  is the conjectural elasticity as defined before.  Solving equation (7) for x xi
o

i  in terms of  , one

obtains:

                                                       
3 Expressing hog input usage in terms of xi instead of xi

o is conducive for empirical analysis because aggregate

data are reported in terms of total hogs killed , Σxi.
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( ) ( )8 1
1

x x
W

vi
o

i i i= − +



λ ε θ ε .

Notice in (8) that as λ i approaches zero then xi
o approaches xi suggesting that all of the processor’s hog

input is acquired from the open market.  Equation (8) is the specific counterpart of the hog input allocation

rule in (5).

The Optimal Input Demand and Output Supply

Substituting (5) into Γ i in the second part of equation (3b) provides the minimum hog expenditures:

 ( ) ( ) ( )( ) ( )9 E x C x x x W S W x x Wi i i i
o

i i i f i
o

i iκ κ λ κ≡ − +, , , .

The profit maximization problem in (3b) then involves a revenue function as well as the hog input

expenditure function:

( ) ( )10
xi li

R xi li P Sl li E xi W i,
max , , .− −


















κ

Differentiating the processor’s objective function in (10) with respect to the remaining two choice variables,

and setting the resulting expressions equal to zero, will yield first order conditions for intermediate hog

input and other processing inputs demands:
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( ) ( )
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  and

Solving the first order conditions in (11), the optimal demand for the hog input and other processing inputs

can be expressed as:

( ) ( )
( ) ( )
12

12

a x x P S w

b l l P S w

i i l i

i i l i

=

=

, , , ,

, , , .

κ

κ

  and
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One also seeks the output supply of pork products.  Applying Shepherd’s lemma to the revenue

function obtains the conditional output supply vector:

( ) ( ) ( )
13a y P x l

R x l P

Pi
c

i i

i i
,

,
=

∂
∂

 .

The Marshallian supply vector can then be found by substituting the optimal input demands of (12) into

(13a) for xi  and li:

( ) ( ) ( )( )13b y y P x P S w l P S wi i i l i i l i= , , , , , , , ,κ κ .

To aggregate the previous model, follow Appelbaum’s approach of assuming that the conjectural

elasticities are the same for all processors ( )θ θi i= ∀, .  It is also assumed that each processor owns the

same fraction of the upstream limiting factor ( )λ λi i= ∀, , and denote the sum of λ  for all processors

is simply  λ.  Given these assumptions, the parameterκ i  in equation (5) becomes the same for all i; that

is,κ i = { }κ λ ε θ≡ , , , .S f   It follows that the aggregate versions of first order conditions (11), optimal

input demand equations (12), and optimal pork supply equations (13) can be obtained by suppressing the i

subscripts in those equations.

Similarly, the processors’ hog input allocation rule in (5) can be aggregated as:

 ( ) ( )′ =5 x x x Wo o , κ .

Substituting the aggregate version of ( )12a  into ( )′5  for the optimal demand for hog input (x)

gives the open market demand for hogs:

( ) ( )( )14 x x x P S W Wo o
l= , , , , , ,κ κ

which has to be balanced by the output of independent hog producers whose supply curve, given the price

taking assumption, coincides with their marginal cost curve:
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  ( )
( )

15
1

W
C x S

x

o
f

o=
−∂ λ

∂
, ,

.

From (14) and (15) the equilibrium open market hog quantity (xo) and hog price (W) are determined, given

the required oligopsonistic markdown (Wθε) as observed in (4).

The equilibrium conditions in the pork product market can be obtained by introducing the

consumer demand for the products:

( ) ( )16 y y P= ,Ψ ,

where Ψ  is a vector of demand shifters.  Given the assumption of perfect competition in final output

markets, equilibrium pork prices and quantities can be obtained by solving the aggregate version of

( )13b and (16) simultaneously.

To summarize, the aggregate model of the pork industry has six equations including the total hog

input demand in ( )12a , the open market hog demand in (14), the open market hog supply in (15), the pork

product supply in ( )13b , the retail pork product demand in (16), and the optimal demand for other

processing inputs in ( )12b .  There are six endogenous variables including the total hog input (x), open

market hog quantity (xo) and price (W) [and hence the oligopsony markdown (Wθε)], the pork product

quantity (y) and price (P), and other processing input usage (l).

The equations can, in principle, be estimated jointly as a system with the neoclassical restrictions

associated with the revenue function in (10) tested or imposed. In practice, however, the aggregate input

demand equations ( )12a and ( )12b are exceedingly complex as they are the simultaneous solutions of the

first order conditions in ( )11a  and ( )11b , and this complexity makes them difficult to estimate.  This

limitation can be overcome by estimating the first order conditions instead because all the parameters in

(12) also appear in (11).  Likewise, the empirical expression for the aggregate output supply equation

in ( )13b  is very complex because it includes the simultaneous solution of the first order condition (11).
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Instead of direct estimation, one can estimate the conditional output supply in ( )13a  and then use the

estimated parameters to recover the Marshallian supply equation of (13b).

Empirical Framework

The empirical specification for the upstream variable cost function is in (6) and the subsequent hog

input allocation rule is in (8).  The aggregate version of (8) is:

( ) ( )′ = − +



8 1

1

x x
W

v
o λ ε θ ε .

Given the empirical specification of the cost function for the upstream production stage, the empirical

counterpart of the open market hog supply function in (15) can be expressed as:

( ) ( )17 1

1

x
W

v
o = 



 −

ε
λ ,

where, as mentioned in the discussion of (6), v captures the impact on upstream production costs of a set of

supply shifters.  The supply shifters include the price of feed, the price of feeder pigs, cost of labor, and

dummy variables accounting for seasonal variation in factors related to hog production.  The open market

supply equation in (17), however, is not amenable for empirical estimation because the data for xo are not

available; the slaughter hog series published by the USDA pertains to total hog kills, x.  This data

limitation can be addressed by making use of the allocation rule ( )′8  derived from the hog expenditure

minimization problem.  Substituting ( )′8  into (17), the supply of open market hogs is transformed into:

( ) ( )18 1 1

1
1

x
W

v
= 



 − + +









ε
ελ λ θ ε ,

which can be estimated using available data.

The empirical model also requires the specification of the processor’s revenue function in (10).

For ease of exposition and to be consistent with the aggregate model, subscripts will be used to denote

processing inputs and outputs rather than individual processing firms.  Three pork outputs (hams, loins,

and bacon) are considered with their prices denoted by P1 for ham, P2 for loins, and P3 for bacon.  The
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processing inputs include labor (l1), energy (l2), transportation services (l3), and the intermediate hog input

(x).  Let z be a vector containing the four input quantities; z = (l1, l2, l3, x).  Consistent with the notation in

the conceptual framework, let the first three input prices be denoted as S
l
i

, i = 1,2,3  and the intermediate

hog input price as W.  A quadratic form is chosen for the revenue function with P1 and P2 being normalized

by P3; the normalization imposes linear homogeneity on the revenue function and eases estimation burden.

Let 
~
Pj  denote the normalized price for Pj, j = 1,2 and let

~
R be the corresponding normalized revenue:

( )~
,

~

~ ~ ~
,

'
'

'

'
'

'

R z P z P z z

P P P z

m m
m

j j
j m

mm
m

m m

j
jj

j
j j

j
jm

m
j m

= + + +

+ +

= = = =

= = = =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

α α β α

β δ

0
1

4

1

2

1

4

1

4

1

2

1

2

1

2

1

4

1

2

1

2

where α’s, β’s,  and δ’s are parameters.

With the above empirical specifications for the cost function and the revenue function, imposing

the symmetry condition that αmm’ = αm’m  and aggregating, one obtains the empirical counterpart of the first

order conditions in (11a)  and (11b):

( ) ( )

( )

19 41

4
41

2
2 0

19
1

4

1

2
0 1 2 3

4a m zm
m jj

P
j

W

b
i im zm

m ijj
P

j
S

l
i

i

α α δ θ ε

α α δ

+
=
∑ +

=
∑ − + =

+
=
∑ +

=
∑ − = =

~
,

~
, , .

   and

The estimated coefficients of (19a) and (19b) are then used to construct the empirical counterparts of

equations (12a) and (12b) which are the optimal input demands.

Similarly, the conditional supply function of the jth pork product can be derived by differentiating

the revenue function with respect to its output price, imposing the symmetry condition that β j j ' = β j j'  and

aggregating:
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( )20
1

2

1

4∂
∂

β β δ
~

~
~

' '
'

R

P
P z

j
j j j j

j
jm

m
m= + +

= =
∑ ∑               j =  1,2.

Equation (20) is the empirical version of (13a) and its estimated parameters will be substituted into the

empirical counterpart of (13b) to obtain the estimated form of the Marshallian supply equation.

Finally, the empirical counterpart of the consumer demand equation for pork products in (16) is

specified in double logarithmic form as:

( )21

1 2 3

1

4

5 6 7

8 9 10

1
ln ln ln ln ln

, , .

y P P y M

SEAS TREND POP j

j o i i
i

o j= + + + +

+ + + =

=
∑ −

γ γ γ γ γ

γ γ γ

where y j  is the demand for the jth pork product and Pj is its price, Po is the price vector of other food items

and non-food items, M is income, y j−1
is the lagged demand accounting for habit formation of consumers,

SEAS is a vector of seasonal dummy variables, POP is a population variable, and TREND captures the

impact of consumption trends such as the shift to leaner diets.

Equations (18) - (21) can be  estimated as a system using  Three Stage Least Squares to account

for endogeneity, contemporaneous correlation, and cross equation restrictions.  Symmetry and price

homogeneity conditions of the revenue function are imposed in the above derivation.  The unrestricted

version of the equation system can be estimated and the restrictions tested.  The convexity of the revenue

function can also be verified via an LDL decomposition procedure as outlined in Moschini and others.

Once the estimated versions of equations (18) - (21) are derived, appropriate simulation techniques will be

used to determine the impacts of increasing vertical coordination on the slaughter hog price/quantity and

producer pork price/quantity.
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