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ABSTRACT:

This paper explores two alternatives for estimating systems of equations with multiple

censored variables: Maximum Simulated Likelihood and a two-step technique that seems to

be well suited for large samples. The empirical part of the paper estimates a system of cost,

cost shares and revenue shares equations of Italian farms using both approaches.
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1. Introduction

There are many examples in economics of models that can be represented by systems of

equations with several censored variables: systems of demand equations where some

consumers choose not to buy several of the goods in the system (Wales and Woodland,

1983; Lee and Pitt, 1986; Phaneuf, 1999) or systems of input demand and supply equations

where firms choose not to produce several of the outputs or not to use several of the inputs

in the system (Lee and Pitt, 1984;  Huffman, 1988).

The latter example is the object of interest of the present paper since we claim that the

estimation of a system of input demand and output supply at a high level of detail is very

important for the microsimulation and welfare analysis of farm policy. For example, the

policy analysis of the cereal market would not be as relevant if the model cannot explain

the choice associated to the production of tender and durum wheat. In Italy, the first is

produced in the North, the latter in the South and an aggregate treatment of generic wheat

would not allow policy makers to target sound regional policies. In agricultural samples, it

is common that a substantial number of farms do not produce the full set of outputs and do

not use the full set of inputs. In this case, we have a system of equations with censored

variables.

The methodological part of the present paper describes two alternative approaches for

estimation of systems of equations with multiple censored variables. The first one, is the

estimation of the system of equations by simulated maximum likelihood. The main problem

of this approach is the need to evaluate high dimensional integrals. We propose to compute

these integrals using a probability simulation method. The second one, proposes a two step

methodology that seems promising for large samples, or for relatively small samples and

large systems of stacked equations. In the first step, the system of linear Tobit equations is
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estimated equation by equation for relatively small random samples on which we

implement the jackknife technique to obtain consistent parameter estimates while reducing

the computational burden. The second step uses a minimum distance estimator for

imposing the parametric constraints required by economic theory.

The empirical part of the paper estimates a system that includes a cost function, the input

demand shares and revenue share equations of Italian cereal farms using both approaches.

The method of simulated maximum likelihood is considered the exact method, while the

two stage Tobit system estimation is the approximation that most closely reproduces the

same data generating process. This empirical example provide a nice setting for an

interesting comparison of both techniques. Our experimental setup has been chosen also

with the objective to learn about the consistency properties of the proposed estimators and

the optimal stopping rules of the simulation procedure.

The structure of the paper is as follows: Section 2 reviews theoretical issues related to cost

and input demand equations wit censoring, Section 3 discusses the two estimation methods

for systems of equations with multiple censored variables, Section 4 presents an empirical

application to the sample of Italian cereal farms.

2. Theoretical issues

Cost functions can be used to measure the welfare impact on farms of changes in input

prices or in output quantities. The welfare impact can be different depending on the

exogenous characteristics of the farm describing exogenous characteristics. The modified

cost function can be written as:

{ }C( )  min   st  F( ) = 0 w, y, d wx  x, y, dx= (1)
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where w is a vector of input prices, y is a vector of outputs, d is a vector of demographic

characteristics, x is a vector of inputs and F is a transformation function with the usual

properties. The structure of the minimization problem implies that the cost function is

homogeneous of degree one on input prices. Two additional properties of the cost function

are of interest for estimation purposes. First, by Shephard’s lemma we have that:

x ( ) =
C( )

wi
i

w, y, d
w, y, d∂
∂

(2)

where, xi is the i-th component of the input vector and wi is the price of that input. These

input demand functions are homogeneous of degree zero on input prices. Second, if farmer

are maximizing profit, we have that:

p =
C( )

yj
j

∂
∂
w, y, d

 (3)

It is common practice to estimate the cost function together with the equations implied by

Shephard’s lemma and the  profit maximization condition (Huffman, 1988). The properties

derived from the optimization structure of the model can be tested/imposed as well. Our

methodological approach assumes that the zero realizations are the outcome of physical or

technological constraints thus justifying a Tobit structure.

 3. Methodological issues

In this section, we review two feasible methods of estimation for systems of equations with

multiple censored variables: maximum simulated likelihood and a minimum distance

estimator.

3.1. Maximum Simulated Likelihood

The likelihood function of a system of equations in the case in which all endogenous

variables are above the censoring levels is given by:
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1 1 mL  =  f(u , ..., u ), (4)

where the ui’s are the random disturbances of the system of equations and f is the

probability density function of a multivariate normal function with mean zero and variance

Ω. The likelihood function for an observation in which the n first endogenous variables out

of m are censored is:

L ... f(u , ..., u )du ...du

f (u , ..., u ) ... g(u , ..., u | u , ..., u )du ...du

2 1 m 1 n

1 n+1 m 1 n n+1 m 1 n

=

=

−∞−∞

−∞−∞

∫∫

∫∫

cnc

cnc

1

1
(5)

where,  f1 is the marginal probability density function of the uncensored portion and g is the

conditional marginal density function.

Expression (5) represents a portion of the likelihood function with an n-dimensional

definite integral. Under the common assumption of multivariate normality of the

disturbances of the system this integral does not have a closed form solution. Therefore,

estimating the system of equations by maximum likelihood requires an efficient method for

evaluating the high dimensional definite integrals. Maximum Simulated Likelihood (MSL)

consists on simulating rather than calculating these integrals using probability simulation

methods.

Probability simulation methods are based on the fact that the integral of interest represents

the probability of an event in a population. Lerman and Manski (1981) propose generating

a pseudo-random sample of observations from the relevant population and using the

relative frequency of the event in the sample to approximate the integral of interest. This

simulation method is called a "crude frequency simulator" and it was improved in several

subsequent papers. Stern (1992) explains the importance of smoothness in a probability

simulator and proposes an smooth alternative to the "crude frequency simulator". Geweke



6

(1989) and Borsh-Saupan and Hajivassiliou (1993) proposed the GHK simulator.

Hajivassiliou et al. (1996) find that the GHK probability simulator outperforms all other

methods by keeping a good balance between accuracy and computational costs.

The GHK simulator computes the value of the integral:

Pr(  <  <  ) =  g( )da  u b u u
a

b

∫ (6)

where, u is a random vector distributed multivariate normal with mean 0 and variance Ω

and g is the density function of the random vector u. The starting point is that:

Pr(  <   <  )  =  Pr(  <   <  )a u b a Le b (7)

where, L is the lower triangular Cholesky factor of Ω, such that LL'=Ω,  and e is a random

vector of independent standard normal variables. The right hand side of expression (2) is

easier to simulate than the probability in the left hand side due to the triangular structure of

the constrains defined by Le. The intervals defining the event in the right hand side of

expression (7) can be written as:

1 11 1 1

2 12 1 22 2 2

n 1n 1 nn n n

a  <  l e  <  b

a  <  l e  +  l e  <  b

 ...

a  <  l e  +... +  l e  <  b

(8)

where lij, ai and bi are the corresponding elements of L, a and b. Arranging terms in (8) the

event in (7) can be decomposed into the following events:
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(9)

Expression (9) shows the recursive nature of the constraints that affect the random vector e.

As a result, the probability of interest can be written as:

Pr(a <  Le <  b) =  Pr(A )Pr(A A )Pr(A A ,A )...Pr(A A ,...,A )1 2 1 3 1 2 n 1 n 1− (10)

The idea behind the GHK simulator is that expression (10) can be difficult to calculate but

can be simulated instead. Therefore, the GHK simulator can be written as:

~
Pr(a <  Le <  b) =

1

R
 Pr(A )Pr(A e )Pr(A e ,e )...Pr(A e ,...,e )1 2 1r 3 1r 2r n 1r n 1r

r=1

R

−∑ (11)

where the eir´s are drawn sequentially from independent standard normal distributions

truncated by expression (9) and R is the number of simulations. The truncated random

variables eir can be generated smoothly using the integral transform theorem (Ross, 1988).

Once the eir´s are drawn, the terms in the product are calculated as:

Pr(A |  e ,e ,..., e )
b l e ...l e

l

a l e ...l e

li 1r 2r i 1r
i i1 1r i 1i i 1r

ii

i i1 1r i 1i i 1r

ii
−

− − − −=
− −






 −

− −





Φ Φ (12)

where Φ  is the cumulative distribution function of a standard normal distribution function.

Borsch-Saupan and Hajivassiliou (1993) proved that the probability simulator in (11) is an

unbiased estimator of the true probability.
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3.2. Two steps

In a statistical sense, the present exercise is somewhat akin to the comparison of a full

information maximum likelihood and a two stage least squares estimation. Within the

context of a censored system of demand equations, our two stage approach proposes to

estimate first each demand equation in the corresponding linear reduced form, without

structural restrictions, using the jackknife technique both with the aim of reducing the large

sample/large system problem and as a device to construct the variance covariance matrix of

the truncated cross-equations error terms.  Our object of interest is the expected revenue

share conditional on both the non negative realization of the own share and another share

pairwise:

[ ] [ ]( )
E(w | w 0, w 0) = f z E( | f z , f z, )

=  f z
F(h , k )

h k k h

i i j i i i i j i

i
i j ij

i j
*

ij j j
*

≥ ≥ + ≥ − ≥ −

+ − + −

( , ) ( , ) ( )

( , ) ( ) ( ) ( ) ( )

π ε ε π ε π

π
σ

ρ
ϕ φ ρ ϕ φ

i i i

i
i 1 1

(13)

where % are the reduced form parameters and z are exogenous explanatory variables, k and

h are the standardized f(z,%) functions in the different regimes, � are the censored error

terms, and 'ij are the cross-equations correlation coefficient. The reduced form of the

estimated equations f(z,%) is linear, as the structural specifications do, and does not

incorporate the structural cross-equations restrictions. The variance covariance matrix of

the complete set of parameters �, including the matrix of correlation coefficient, is obtained

using the jackknife estimator:

Σu us us
s  Ss  S

us us
s  S

 
r

dm
nn n

= −








 −









′

∈∈ ∈
∑∑ ∑γ γ γ γ

1 1

m m
(14)
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We then recover the structural demand parameters using minimum distance estimation and

imposing the cross-equations theory restrictions as also previously done by Blundell et

al.1993 and Browning and Meghir 1992 for the estimation of large demand systems:

[ ] [ ]γ γ γ γ γγr u r u r F F= −
′

−







−arg ( ) ( ) min
r uΣ

1 (15)

where (u is a consistent estimate of the variance-covariance matrix of the unrestricted

parameters �u obtained from the jackknife technique.  Note that the computational

algorithm that estimates the unrestricted parameters �u along with its covariance matrix �u

in the first stage, and then recovers the structure in the second stage, is an indirect feasible

generalized least square procedure.  To the extent that it generates consistent and

asymptotically efficient estimates, it provides a computationally convenient alternative to

the full-information maximum likelihood estimation method.

3. Empirical Application

In the present paper, we estimate a system composed by a modified translog cost function

(Lewbel, 1985) and its derivatives with respect to input prices and output quantities.  The

translog cost function modified via a simple translating can be written as:

lnC y y y

y y m( ) m( )

i i
i 1

ij i j
j 1i 1

r r
r 1

rs r s
s 1r 1

ri r i
i 1r 1

i i
i 1

r r
r 1

= + + + +

+ + +

= == = ==

== = =

∑ ∑∑ ∑ ∑∑

∑∑ ∑ ∑

α α α β β

γ ρ σ

0

6 66 4 44

64 6 4

ln ln ln ln ln ln

ln ln ln ln

w w w

w wd d

(16)

where, yi denotes the amount of output i produced, wr is the price of input r and m(d) is a

function of demographic characteristics that can be written as:

m( ) = dk k
k 1

d δ
=
∑

5

(17)

Using Shephard’s lemma, the derivatives of the cost function with respect to the natural
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logarithm of input prices can be written as:

s y  m( )r r rs s
s 1

ri i
i 1

r= + + +
= =
∑ ∑β β γ σln lnw

4 6

d (18)

where, sr is the cost share of input r. Using the profit maximization condition, the derivative

of the cost function with respect to the natural logarithm of output quantities can be written

as:

rs y   m( )i i ij j
j 1

ri r
r 1

i= + + +
= =
∑ ∑α α γ ρln ln

6 6

w d (19)

where, rsi is the revenue share of output i.

The homogeneity property of the cost function implies the following parametric restriction:

β β σr
r 1

rs
s 1

r
r 1

  
= = =
∑ ∑ ∑= = =

4 4 4

1 0 1, , (20)

Cost shares have to add-up to 1. This property implies the parametric restrictions in (20)

plus the following parametric restriction:

γ ri
r 1=
∑ =

4

0 (21)

The system of equations formed by expressions (17) to (19) was estimated using data from

a sample of 311 cereal farms in Italy. Data come from ISMEA, a socioeconomic survey of

Italian agriculture designed on the basis of a theoretical model (Caiumi and Perali, 1997).

The outputs produced by the farms are wheat, durum wheat, corn, other grains, forage and

other crops. The inputs used are family labor, land and structure, capital and materials. We

include variables in the analysis that control for the location of the farm in the country:

north west, northeast, center and south.  We also assume that land is fixed in the short run.

As a consequence we treat land size as an exogenous attribute of the farm.  We model the

farmer's decision related to the best combination of outputs to adopt.  We expect that our
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approach towards modeling heterogeneity can properly take into account the fact that some

of the outputs are not chosen because of physical constraints. As an example, durum wheat

is not produced in the North because is not fit to the local meteorological conditions; while

in the south both options are feasible.  This should be captured both by the structure of our

likelihood function and by the design of the matrix of correlation coefficients in the two

step approach.  Given the initial stage of the research, we maintain a level of aggregation

across inputs sufficient to avoid truncation in the input side.  However, both truncated

output decisions and continuous input choices are made jointly. Not all farms in the sample

produce all outputs. In fact, as shown in table 1, there are no farms producing some of all

outputs.  As a result, we have a system of equations with several censored endogenous

variables that we estimated using the two methods outlined in section 3.  The results

obtained until present are encouraging. We deem that it is still too early to present them

formally.  So far,  we know that both approaches are feasible, robust and we can add great

flexibility to our model specification.  The models compare well under a statistical point of

view, so we expect to have similar power in terms of economic reasonableness and

prediction.

Maximum Simulated Likelihood is a time consuming method even with today computers as

the size of either the sample or the system of equations gets relatively large.   The two step

estimator of the system of tobit equations, on the other hand, is not constrained by either

sample or system size. As an example, based on our experience, it is difficult to fit in a

computer with 384 Mb of RAM a sample larger than about 3000 observations within the

estimation of a system of seven equations (that is, about 21000stacked observations)even

with no truncation. Considering that the MSL procedure adopted here runs one observation

at the time, the problem can become very cumbersome.
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Tab. 1.  Descriptive Statistics - Cereal Sector of the Italian Agriculture - 1995 ISMEA data

Variable
Name

Label Mean Std.Dev
.

Min Max

s_wheat output revenue share wheat 0.053 0.135 0.000 1.317

s_durwe output revenue share durum wheat 0.227 0.388 0.000 2.815

s_corn output revenue share corn 0.195 0.356 0.000 2.080

s_grains output revenue share other gr 0.135 0.361 0.000 2.696

s_forage output revenue share forage 0.145 0.428 0.000 5.149

s_others output revenue share other 0.212 0.285 0.000 2.554

lq_wheat log quantity wheat 1.477 2.443 0.000 7.090

lq_durwe log quantity durum wheat 2.682 2.909 0.000 8.006

 lq_corn log quantity corn 2.636 3.209 0.000 8.875

lq_grain log quantity grain 2.449 2.879 0.000 9.616

lq_forag log quantity forage 2.800 3.198 0.000  10.393

lq_other log quantity other 4.070 3.205 0.000 9.687

s_lf input share family labor 0.579 0.218 0.014 0.949

s_t input share land and structure 0.117 0.083 0.004 0.522

s_k input share capital 0.040 0.037 0.000 0.214

s_m input share all materials 0.231 0.145 0.014 0.795

rlh_wagf log family wage per hour (000 Lire) 2.494 0.180 2.020 3.461

rlh_land log price of land&structure / labor unit (000 lire) 0.619 1.081 -2.543 3.689

rlh_cap log price of capital / labor unit (000 lire) -0.620 1.324 -6.410 3.462

rlh_oth log price of material / labor unit (000 lire)  1.346  1.099 -1.787 4.966

l_tc log total cost  11.144 0.689 8.776 14.733

No North - West 0.261 0.440 0.000 1.000

En North - East 0.138 0.346 0.000 1.000

 Centro Center 0.238 0.427 0.000 1.000

Sud South 0.267 0.443 0.000 1.000
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