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Abstract:
In this paper we introduce inverse demand systems that include quadratic scale terms.
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catch restrictions.
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1. Introduction

In recent years, there has been a resurgence of interest in inverse demand systems,

especially in the agricultural economics literature.  Studies that report estimates of

inverse demand models include Barten and Bettendorf; Thurman and Easley; Park

Thurman, and Easley; Eales, Durham and Wessels; and Holt and Bishop for fish;

Moschini and Vissa; Eales and Unnevehr; Eales; Holt and Goodwin; and Kesavan and

Buhr for U.S. meat demand; Brown, Lee, and Seale concerning the demand for oranges;

and Huang for composite food and nonfood commodities.  In inverse demand systems,

quantities are exogenous and prices (marginal valuations) are the dependent variables as

opposed to ‘direct’ demand systems where quantities are endogenous.  It is advantageous

to treat quantities as fixed in cases where quantities can not adjust in the short run or for

non-market goods where prices are not readily available.

While there have been several prior efforts to estimate inverse demand systems

for various commodities, some of these earlier studies have employed systems that

implicitly assume linear scale curves (e.g., Holt and Bishop).  In this paper, a functional

form that includes quadratic scale terms is developed, the Normalized Quadratic Inverse

Demand–Quadratic Scale System (NQID-QSS).1  Linearity in scale is then a special case

of the more general form.

The price equations reported below in (1) are indicative of inverse demand

systems occasionally reported in the literature (e.g., Holt and Bishop).

                                               
1 Two additional functional forms including quadratic scale terms were developed (the Generalized
Leontief Inverse Demand – Quadratic Scale System and the Direct Translog – Quadratic Scale System).
However, due to space constraints, only the NQID-QSS will be presented here.
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where ypii =π  denotes the ith normalized price, with y denoting expenditure and pi the

nominal money price, and )(qai  and )(qbi  denoting the ith first partial derivatives of

)(qa  and )(qb , respectively, where )(qa  and )(qb are linear homogeneous and concave

functions.

As with direct demand systems derived from expenditure functions linear in u, (1)

is a potentially restrictive specification.  Specifically, if q  is scaled by an arbitrary

constant, )1( τ , say, than πi will be linear in τ–a linear scale curve.2  The parallel in direct

demand systems is quasi homotheticity, where Engle curves are straight lines that do not

necessarily emanate from the origin.

In direct demand systems, restricting demand functions to be linear in expenditure

implies that consumers will purchase the same proportion of each commodity at every

income level.  Introduced to combat this potential limitation, systems with quadratic

Engle curves were first explored by Howe, Pollak, and Wales.  Gorman independently

introduced demands quadratic in income.  Comparable to linear Engle curves, linear scale

curves imply the potentially implausible result that marginal valuations associated with

consuming proportionally more of all goods in the bundle will be the same irrespective of

the size of the initial bundle.

                                               
2  Similarly, if all prices in an expenditure function that is linear in u are scaled by the same (positive) factor

of proportionality, )1( τ , the resulting demand curves will be linear in τ–a system of linear Engle curves.
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2. Quadratic Scale Systems

Following Ryan and Wales (1996), it may be shown that quadratic demand

systems are generated from indirect utility functions of the form
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where ∑=
k kk qpy  is total expenditure, T

nppp ),,( 1 �=  is a n-vector of money prices, f

and g are homogeneous of degree one in prices, and h is homogeneous of degree zero in

prices.  Equation (2) can be rearranged to solve for the expenditure function, yielding
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At present we are interested in creating a distance function correspondent to (3) in

order to generate inverse demands.  For a given level of utility u, a vector of consumption

quantities T
nqqq ),,( 1 �= , and a representative consumer’s indirect preference function

)(πϕ , the distance function is defined as

})(:{min  ),(          )4( uqquD T ≥= πϕπ
π

,

where, D is an ordinal measure of ‘distance,’ and T
n ),,( 1 ππ=π �  denotes a vector of

normalized prices.  As discussed by Deaton and Deaton and Meullbauer, distance

functions are non-increasing in u and are increasing, homogeneous of degree one, and

concave in q .  Intuitively, the distance function is the amount by which q  must be

divided in order to bring it on to indifference surface u.

Application of the Shephard-Hannoch lemma to distance function (4) recovers
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compensated inverse demands.  That is,

),,( ),(          )5( quDqu q
a ∇=π

where πa ( )⋅  is a vector valued function of quantities and the utility target u.  Taking the

second derivatives of the distance function yields the Antonelli matrix,

),(  ),(            )6( 2 quDquA qq
a

q ∇=∇= π .

Antonelli matrix A is symmetric, negative semidefinite, and, due to the homogeneity

condition, is at most of rank n–1.

A distance function specification that corresponds to the expenditure function in

(5) and that, moreover, would be associated with quadratic scale terms is simply:
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where f, g, and h are now functions of quantities and unknown parameters.

When quantities are such that utility level u is attained the useful, albeit arbitrary,

normalization 1),( =quD  is typically applied.  This implies that the distance function

may be inverted, thereby solving for the direct utility function.  Performing the required

manipulations in the present case gives:
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which is the direct utility function corresponding to (7).

By applying the Shephard-Hannoch lemma to (7), compensated inverse

(Antonelli) demands of the form
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are obtained, where fi, gi, and hi are first partial derivatives of f, g, and h, respectively. To

acquire uncompensated inverse demand functions, (8) is substituted into (9) to eliminate

the unobservable utility index, generating
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Several observations are in order regarding (10).  First, if all quantities are scaled

by the same factor (1/τ), then the resulting scale curves clearly involve terms that are both

linear and quadratic in τ.  That is, (10) is consistent with an inverse demand system that

implies quadratic scale curves and, therefore, no longer restricts marginal valuations

associated with consuming proportionally more of all goods in the bundle to be invariant

to initial bundle size.  Second, if iqhi ∀= 0)(  and nq ++ℜ∈∀ , then (10) assumes a form

that is observationally equivalent to (3).  The implication is that with a suitable

parameterization for h, (10) may be used to test for linearity in scale response.

3. Normalized Quadratic Inverse Demand – Quadratic Scale System

For the NQID-QSS,  f ,  h, and g are specified as
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where ∑α=η
k

kk q .

From (12) if kak ∀= 0 , then kqhk ∀= 0)( .  We therefore have a direct way of testing for

linearity of scale curves by using either a Wald or Likelihood Ratio (LR) test.

By substituting (11)–(13) into (10), the normalized quadratic inverse demands

may be written as
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where ak , bk , dk , and Bkj  are unknown parameters, and αk > 0 are predetermined

parameters, k, j = 1,...,n.  We choose a reference vector of quantities ( )Tnqqq **
1

* ,,�= .

As well, we assume that the nxn matrix B with kjth element Bkj satisfies the n restrictions

.          ,0           )15( * TBBqB ==

In addition, we assume that the following restrictions hold at the reference bundle *
q :

,0          1,           )16( *
n

T
q ≥= αα

,0           )17( * =qd
T  and

.1           )18( * =qb
T

These normalizations are necessary for the parameters in the system to be fully identified

(estimable) and to ensure that )(qg  is homogeneous of degree one in q .  The inverse

demand system defined by (14)-(18) is of special interest because it nests the normalized

quadratic inverse demand (NQID) system of Holt and Bishop.
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There is no reason a priori to believe that curvature requirements will be satisfied

spontaneously by the estimated NQID-QSS, even at *q ; curvature may, however, be

imposed at a point (locally) through a Cholesky decomposition of the Antonelli matrix.3

This procedure introduces additional non-linearity into the estimating equations, but with

the significant advantage of guaranteeing that the curvature conditions are satisfied

locally.

4. Empirical Application of Quadratic Scale Models

As an illustration of the applicability of quadratic scale models, we estimate

inverse ex-vessel demands for finfish landed in the South Atlantic region of the U.S.  We

restrict attention to the NQID-QSS.4  The data, compiled from National Marine Fisheries

Service data on monthly finfish landings and total value of landings, cover the period

January 1980–December 1996, for a total of 204 observations.

Data for all reported species were aggregated into nine categories comprised of

bluefish, dolphinfish, other finfish, flounder, groupers, scups, trout, snappers, and

tilefish/triggerfish.  There is tremendous variation in landings of each of these species

over time.  It is typical for these fish categories to have their minimum and maximum

values differ by an order of magnitude for both shares and quantities.

As indicated previously, prior to estimation all quantities are normalized to have a

unit mean.  To estimate the NQID-QSS, we convert equation (16) to share form by

multiplying both sides of equation (16) by qi and then appending a stochastic disturbance

                                               
3 See Moschini and Ryan and Wales (1998) for more details on the use of Cholesky decompositions.
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term.  Maximum likelihood estimates are obtained by using the Davidon-Fletcher-Powell

algorithm, and, because the contemporaneous covariance matrix, Ω, is singular, one

equation is deleted from the system.

Because the quantity data are scaled to have unit means, we follow Moschini in

choosing the reference bundle *q  to equal nι , the unit vector.  That is, the means of the

scaled data are used as the reference point.  There is apparently no obvious method for

selecting the predetermined values for α .  We therefore simply follow Diewert and

Wales (1998a, 1998b, 1993) in defining  αi = (1/n) ∀  i.

The unrestricted NQID-QSS (without concavity imposed) does not have a

negative semidefinite Antonelli matrix; there are two positive eigenvalues at the point of

approximation.  Imposing concavity does not change the numerical values of negative

eigenvalues by much.  And while positive eigenvalues become negative after imposing

curvature restrictions, their values typically lie very close to zero, suggesting that the rank

reduction procedures of Diewert and Wales (1988b) may be justified.

Single-equation R2 values are in the range 0.67-0.93, revealing that each equation

in the model fits the data fairly well, especially considering that the dependent variables

are expenditure shares and that the data are monthly.  Imposing concavity on each model

has little effect on individual equation R2 values.  However, an examination of log

likelihood values reveals that the imposition of concavity does diminish the explanatory

power of the model somewhat.

                                                                                                                                           
4 The GLID-QSS and DTL-QSS were also estimated, but results are not reported in the interest of brevity.
Results are available upon request.  While the results obtained from these models were similar to those for
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Following Moschini, LR tests are used to determine how far the rank of the

Antonelli matrix may be reduced before causing a significant decline in model fit.  LR

test results indicate that the rank of the NQID-QSS may be reduced to K = 5 with no

significant change in log likelihood function values.  The rank K = 5 model is therefore

the version of the NQID-QSS used to calculate welfare loss estimates in the following

section.  By using the rank K = 5 model, the number of estimated parameters is reduced

from 60 to 54.

As indicated previously, an interesting question is whether or not the estimated ai

terms are significantly different from zero.  If, in fact, iai ∀= 0 , then quadratic terms no

longer appear in the estimated equations.  Furthermore, if these restrictions hold the

NQID-QSS model reduces to the globally concave NQID model (with linear scale

curves) of Holt and Bishop.  LR tests reveal that the null hypothesis of linear scale curves

may be rejected at the 1% level for the unrestricted, restricted, and K = 5 models.

Therefore, there is strong empirical evidence that linearity in scale is not a viable

assumption in the present application.

5. Estimated Welfare Losses

Not only does imposing curvature satisfy economic theory, it also enables us to

obtain consistent money-metric estimates of welfare losses caused by quantity reductions.

By using the theory presented in Kim, the estimated inverse demand system may be used

to examine welfare costs associated with forced reductions in fish landings.

Compensating variation (CV) is defined as the amount of additional (normalized)

                                                                                                                                           
the NQID-QSS, the NQID-QSS nonetheless provided the best overall fit to the data.



10

outlay necessary for the consumer to achieve u0 while facing the new quantity vector 1q .

Positive values for CV  indicate that consumers are worse off when facing the new

quantities, 1q , than they were with the initial quantities, 0q .

In a similar manner, (normalized) equivalent variation (EV) associated with a

change in quantities from q0 to q1 represents the amount of additional (normalized)

expenditure that is necessary for the consumer to accept utility level u1 while continuing

to face the original quantity vector, 0q .  As for CV , positive EV  values indicate

consumers are made worse off under 1q  than under the base quantity vector, 0q .  For

non-homothetic preferences, CV will be less than EV for a decrease in the quantity of a

single good (Kim).

To obtain money metric measures for CV and EV, we simply multiply the

normalized CV and EV values by total expenditure, yielding:

[ ] ,),(),(           )19( 00100 quDquDmCV −=  and

[ ] ,),(),(           )20( 01110 quDquDmEV −=

where m0 represents total base expenditure.  By using equations (19) and (20) along with

the estimated distance functions defined by (7) and (13)-(18), we are able to estimate

welfare losses associated with an arbitrary reduction of the quantity landed for a

particular finfish species.  To calculate estimates of CV and EV, the semiflexible model

with the smallest rank that is supported empirically is used.  Therefore, the K = 5

SNQID-QSS model is used to obtain empirical estimates.  The welfare loss estimates at
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the sample means and in 1996 are reported in Table 1.

6. Conclusions

In this paper, the methods of Ryan and Wales (1996) for estimating functional

forms with quadratic Engel curves were applied to inverse demand systems in order to

develop analogous systems with quadratic scale curves.  Curvature restrictions were

placed on the Antonelli matrix in order to satisfy economic theory, as well as allowing us

to perform welfare evaluations.  Because several eigenvalues of the Antonelli matrix are

close to zero following the imposition of concavity, rank reduction is used to decrease the

number of parameters estimated without significantly harming the fit of the models.  The

result of this rank reduction is a set of semiflexible inverse demands.

The model developed here was used to estimate a system of inverse demands for

finfish landed commercially in the South Atlantic from 1980-1996.  Importantly, we

found empirical support for including quadratic scale terms; a Likelihood Ratio test of the

model that maintained linear scale curves (i.e., Holt and Bishop’s NQID) indicates that

this model is clearly rejected.  The empirical results also suggest that reduced rank

models may be used without a significant loss in fit, with the K = 5 SNQID-QSS

appearing to have the most empirical support.  This model was used to obtain

compensating and equivalent variation estimates associated with an arbitrary ten percent

reduction in the quantity landed for individual species.  Overall, it appears that including

quadratic terms in inverse demand specifications offers an improvement in modeling

systems in which quantities are taken as exogenous and may prove beneficial in future

applications to inverse demand models.
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Table 1. Compensating and Equivalent Variations for a 10 Percent Reduction in
Catch for Selected Categories of South Atlantic Fish (K=5 SNQID-QSS Model)

Fish Category CV($)      %CVi      EV($)     %EV      Total Value ($)
            1996

Bluefish        1,262,361       1.98           1,281,407     2.01     13,049,400

Dolphinfish        1,289,856       2.02 1,308,752     2.05     10,017,600

Other Finfish        1,393,120       2.18 1,435,323     2.25     12,933,400

Flounder        1,194,401       1.87 1,219,327     1.91     14,274,400

Grouper           414,834       0.65    418,215     0.66       4,554,193

Scups           210,549       0.33    211,179     0.33       2,325,790

Trout           278,613       0.44    279,961     0.44       2,666,190

Snapper           265,493       0.42    266,440     0.42       2,642,197

Tile/Triggerfish           133,867       0.21    134,175     0.21       1,368,399
    63,831,569

        Sample Means
Bluefish        1,276,728       2.17 1,298,053     2.21     12,593,953

Dolphinfish        1,110,701       1.89 1,126,181     1.92     11,339,527

Other Finfish           941,960       1.60    963,192     1.64       8,999,917

Flounder        1,037,957       1.77 1,058,963     1.80       9,968,914

Grouper           345,102       0.59    347,675     0.59       3,815,150

Scups           280,740       0.48    282,055     0.48       2,892,517

Trout            479,438       0.82    484,078     0.82       4,335,100

Snapper           281,571       0.48    282,699     0.48       2,997,860

Tile/Triggerfish           161,688       0.28    162,171     0.28       1,803,673
                58,746,611

                                               
i %CV and %EVdenote CV and EV respectively as a percentage of total expenditure on South Atlantic fish.
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