
An Inverse Demand Approach to Recreation Fishing
 Site Choice and Implied Marginal Values

Douglas M. Larson and Sabina L. Shaikhø

Selected Paper for the 1999 Annual Meeting of the
American Agricultural Economics Association

Nashville, TN
August 8-11, 1999

øDepartment of Agricultural and Resource Economics, University of California, Davis, CA
95616.  Thanks to Dan Lew for helpful discussions.

  © 1999 by Douglas Larson and Sabina Shaikh.  All rights reserved.  Readers may make
verbatim copies of this document for non-commercial purposes by any means, provide that this
copyright notice appears on all such copies.



An Inverse Demand Approach to Recreation Fishing
 Site Choice and Implied Marginal Values

Abstract

A distance function-motivated approach to the estimation of discrete recreation demand

systems is proposed.  The corresponding system of inverse demands leads naturally to a

motivation of choice from among discrete consumption alternatives based on comparision of

implicit price for the activity to actual market price.  Systems of discrete choices for multiple

activities (or recreation sites) are easily characterized and estimated as a difference in the

multivariate cdf for the observed pattern of (integer-valued) trips.  The model explains both

participation (total number of trips) and the allocation of trips across sites within a coherent,

utility-theoretic discrete choice framework.  This helps resolve difficulties with recreation

demand estimation, including the lack of consistency between discrete and continuous choice

elements in the random utility framework, and the difficulty in imposing and evaluating

preference restrictions such as weak complementarity between public and private goods.



A Distance Function Approach to Recreation Demand
and Resource Valuation

Introduction

 There has been substantial recent interest in the use of random utility models to

characterize recreation demand decisions and welfare values, following the development of the

approach by McFadden and its use in characterizing responses to contingent valuation surveys

(Hanemann).  Much of the appeal of the approach comes from the ease with which substitutes

can be modeled and because of its natural fit with the decisionmaking behind discrete choices,

which is the most realistic description of commodities that inherently-discrete commodities

such as recreation trips.  However, the approach has some limitations that have been hard to

overcome when generalizing from a description of the process of choice made on a single

choice occasion to models of choice over longer periods that include multiple choices.  Perhaps

the most arbitrary decision that must be made in this transition is the specification of the

number of choice occasions a consumer has, because of the role played by the counterfactual

alternative of taking no trips.  Measurement of some variables applicable to choicemaking on

single occasions (for example, the relevant budget constraint) can also be difficult, though these

are second-order in importance compared to the choice occasion problem.  Progress has been

made in integrating participation (number of trips taken) models with site allocation models

(the probability of visiting a given site), but there is not yet a model which rationalizes both

within a utility-consistent structure (Parsons and Kealy; Hausman, McFadden, and Leonard;

Smith 1996, 1997).

 This paper proposes a model of recreation decisionmaking based on the consumer

distance function and associated system of  inverse demands.  The model is fully utility

consistent and can be defined for any length of decisionmaking period, thereby encompassing

either single-occasion or multiple-occasion choices.  The consumer decides on the number of

trips to take to each of several sites during the choice period, based on a comparison of the
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implicit marginal prices of each site to their actual travel prices.  While preferences for

recreational activities are smooth and continuous, the quantities in which they come are integer-

valued, resulting in the optimal number of trips to each site being determined as a discrete

choice from among the available integer-valued alternatives to minimize the distance function.

The model can be applied in either a single-site or multiple-site context.

The Modeling Approach

Both Hanemann and Cameron suggested alternative approaches to the evaluation of contingent

valuation responses to proffered bids in contingent valuation studies of public good provision,

based on the indirect utility function and the expenditure function, respectively.  Using each

approach it is easy to characterize the probability of observing a discrete response (yes or no),

based on observed differences in the continous underlying primitive function and errors

representing unobservables.

Optimal Consumption Choices in the Distance Function Framework

In contrast to these models, both of which are quantity-dependent, this paper develops an

alternative motivation for discrete recreation choices based on the consumer’s distance function

and the associated system of inverse demands.  Let d( ,u) be the consumer’s distance function,x

with =[x ,...,x ] a vector of consumption quantities and u the utility index.  For a given set ofx " 8

consumption quantities , the distance function d( ,u) is defined asx x

  d( ,u) min [1 e( ,u)] (1)x p x ppæ ÷ þ �9

where e( ,u) is the expenditure function from the price-independent version of the consumerp

choice model, e( ,u) min u u( )], with prices  normalized on income M.  Thep p x x px� ÷ þ · �-
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distance function is increasing, homogeneous of degree 1, and concave in , and decreasing in ux

(Deaton and Muellbauer; Deaton; Kim).  The solution to (1) defines the implicit prices ( ,u),:3 x

i=1,...,n, of all goods, and by the envelope theorem,

   d ,u / x ,u (2)` ` æ :a b a bx x3 3

yields the corresponding system of compensated inverse demands, analogously with the

consumer’s expenditure function and corresponding system of compensated direct demands.

The correspondence between the distance function and the expenditure function is given by

e( ,u) M d( ( ,u),u).  In the distance function formulation, the implicit “price” or marginalp x p� ÷

value of each good x  is determined by consumption of x  and all other goods.3 3

 The distance function can be used to tell an alternative, but equivalent, version of the

standard consumer choice problem, where consumers face parametric prices  and choosep

quantities of each good to maximize their well-being.  In Figure 1, at quantity x  of good 1, the"

"

consumer's marginal value of good 1 is (x ,x ,u), while the price of good 1 is p .  Since:" �" "
"

"

:" "
" "

" "
(x ) exceeds p , the consumer gets a marginal surplus from consuming x , given

consumption of all other goods x   If consumption of good 1 were to increase, �"Ã ceteris

paribus, the consumer's welfare would increase, up to the point where (x ,x ,u) p  and: æ" �" "
"

"

marginal value of good 1 to the consumer just equals its cost (market price)   Intuitively, theÃ

consumer's welfare would be maximized for the consumption bundle  such that ( ,u)x* x*:3

æ p  for all i.  This, in fact, is the case, as can be seen from the primal-dual formulation of the3

consumer's distance function minimization problem (Silberberg),

  min  d( ,u) [1 e( ,u)],,x p p x x p÷ þ �� <

which is equivalent to
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  max  d( ,u) { [1 e( ,u)]}, (3)
,

_ <� � ÷ þ �x p x p x p

for which the necessary conditions with respect to  (comparative statics for parameters ) arex x

  d( ,u)/ x p         for all i.` ` æx* 3 3
"

Equivalently, noting (2), one can write

  ( ,u) p  for all i.: æ3 3x*

That is, optimal quantity choices * are those for which all implicit prices (marginal values)x

:3 3( ,u) of goods equal their marginal cost (market price p ).  The lower panel of Figure 1x*

illustrates the maximum of the primal-dual objective function  at x ._
"

ø

 Note that this is a model of endogenous quantities ( ) being chosen by a consumerx

responding to fixed, parametric prices of goods ( ).  The mechanism for that choice is ap

comparison of the implicit values of goods, resulting from selection of the vector , with theirx

resource cost to the consumer, their market prices .p

Choices with Discrete Consumption Alternatives

The logic of continuous consumer choices via the distance function extends readily to the case

where consumption is integer-valued, as in recreation trips.  The choice process is discussed

first for the marginal decision of taking trips to a single recreation site during an observation

period (e.g., a season or a year), then the model is generalized to consider joint choice of trips

to multiple sites during that same period.  The consumer is assumed to have continuous

preferences for each of the goods, but they are available only in discrete quantities.  The

“market” price is the cost of access to the recreational activities at each site, or the travel cost
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TC  for each site j.  The distance function-based choice process explains both the trips4

frequency and trips allocation decision within a single, coherent, utility maximization process.

Single Site Choice

Consider, first, the choice of how many trips to take to a single recreation site, site 1,

conditional on given levels of trips taken to other sites x . The consumer is assumed to have�"

continuous preferences, but quantities that can be chosen are available only in integer values.

 Continuing the analogy with consumer’s surplus maximization, the optimal continuous

choice is the value x  for which given , the consumer’s surplus area under the inverse
"

ø
�"Ä x

demand for good 1 is maximized.  However, only integer-valued consumption choices are

available, and x will be one of these with probability zero.  In Figure 2, it can be seen that the
"

ø

optimal discrete choice will be between trips x  and x x such that" # "

" " "
æ þ "

   (x , ,u) TC (x , ,u) (4): ë ë : Ã" �" " " �"" "

" # #x x

The reason is straightforward: trips x dominates any smaller level of trips, because reducing
"

"

trips taken below x  (e.g., to x 1) reduces net economic value.  The cost of a trip saved
" "

" "
�

(TC ) is less than the value of the trip to the recreationist [ ( , ,u) , or the area" " �"B �"

B'
"
"

"

"

: > .>x

under the marginal value curve between x 1 and x ].  Similarly, x  dominates all higher
" " "

" " #
�

quantities of trips, because taking additional trips reduces net economic value: the cost of the

additional trip (TC ) exceeds its value [the area under (x , ,u) from x x  to" " " �" " "
: æx 2

x x 1]." "

#
æ þ

 What the researcher  is the actual number of trips taken, x , to site 1, alongobserves
"

!

with the trips taken to other sites, x   What is not known is whether x  was the best outcome
�" "

! !
Ã

in a comparison between x  and x 1, or in a comparison between x  and x 1.  Thus,
" " " "

! ! ! !
� þ
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appending an additive, symmetric, zero-centered error to the marginal value of trips to site 1,

the following probability statement can be made:

 Prob [x  chosen] Prob[ (x 1, ,u) TC (x 1, ,u)
" " �" " �"

! ! ! ! !
" " " " "æ : � þ ë ë : þ þ ¸x x% %

  Prob[ TC (x 1, ,u)  TC (x 1, ,u)æ ë � : � � � : þ ¸% %" " " " " "
! ! ! !

" �" " �"
x xand 

  F[ (x 1, ,u) TC ] F[TC (x 1, ,u)] (5)æ : � � � � : þ" " " "
! ! ! !

" �" " �"
x x

where F[ ] is the cdf of .  This is a familiar form used frequently in double-bounded÷ %"

dichotomous choice CVM studies.  If, alternatively, the errors associated with (x 1, ,u): �"
! !

" �"
x

and (x 1, ,u) were different (say  and ) and assumed to be jointly normally: þ" " #
! !

" �"
x % %

distributed, a bivariate probit model would result.

 To see how (5) can be estimated in a manner parallel to what is done in the existing

literature, let the distance function be parameterized in a generalized quadratic form, as

  d( ,u) x ½ x x u (6)x æ þ ÷ þ ÷ ÷ þ ÷ /! # #! 4 4 34 3 4

3 3 4

! !!
!

3 3 3" x

  

with corresponding inverse compensated demands of the form

  ( , x u ,    for i=1,...,n. (7): ?¶ æ þ ÷ þ ÷ ÷ /3 3 34 4 3

4

x # # "!
!

3 3 3" x

To initialize the model, note that d( ,u)  when all quantities are chosen optimally, which isx æ "

the maintained hypothesis of the model; substituting this into equation (6), the term including

utility is

  u 1 [ x ½ x x ] . (8)÷ / æ » � þ ÷ þ ÷ ÷ ¼

!
3 33

!" x
! # #! 4 34

3 3 4

! ! !

4 3 4
! !!
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given the pattern of trips to all sites [x ,...,x ] observed for the individual.  Using (8) inx! ! !

" 8
æ

(7), the inverse demand system expressed in terms of observables is

: ¶ æ þ ÷ þ ÷ » � þ ÷ þ ÷ ÷ ¼3 3 34 3 ! 4 34
! ! ! ! !

4 3 3 4

4 4 3 4
( x 1 [ x ½ x x ] , for i=1,...,n. (9)x # # " ! # #! ! !!

Using (9) in  (5), the probability statement for the observed trips x  to site 1, given  is
" �"

!0 x Ä

Prob [x  ] (x - ) x 1 [ (x -1)
" �" " 4 "

! ! ! !
" "" "4 " ! ""

4¦"

l æ þ " þ þ » � þx F # # # " ! #[ 0 !

   x ½ (x -1) x x ½ x x ] TCþ þ þ þ ¼ �! ! !!
4¦" 4¦" 3¦"4¦"

"4 "" "4 34 "
! ! # ! ! ! !

4 " " 4 3 4
# # # # ]

  TC (x + ) x 1 [ (x +1)� � þ " þ þ » � þF # # # " ! #[ {" " "" "4 " ! """ 4 "

4¦"

! !0 !

       x ½ (x +1) x x ½ x x ] . (10)þ þ þ þ ¼! ! !!
4¦" 4¦" 3¦"4¦"

"4 "" "4 34
! ! # ! ! ! !

4 " " 4 3 4
# # # # }]

While (10) looks somewhat cumbersome, it should be pointed out that the only difference in

the terms being subtracted is that one is evaluated at x and the other is evaluated at!

"
þ "

x .  If the single-site model is estimated without any information about other trips 
" �"

! !
� " x

taken to other sites, a simpler form results.  In this case, the implicit price function for site 1 is

  ( x 1 [ x ½ (x ) ] ,: ¶ æ þ ÷ þ ÷ » � þ ÷ þ ÷ ÷ ¼" " "" " ! " ""
! #

" " "
x # # " ! # #

   [ (1 )] ( ) x ½ (x ) ]æ þ ÷ � þ þ ÷ ÷ þ ÷ ÷ ÷ ¼# " ! # " # " #" " ! "" " " " """ "

#

   x ½ (x )æ þ ÷ þ ÷ ÷# # #w w ww #

" "" " "" "
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where [ (1 )], ( ), and .  In the single site# # " ! # # " # # " #w w ww
" " ! "" " " " """" ""

æ þ ÷ � æ þ ÷ æ ÷

model with only information on trips to that site, not all parameters of the distance function are

identified, and cannot be identified.!!

 For this simpler case, the probability of observing x  is    
"

!

Prob [x ] [ (x - ) ½ (x -1) TC ]
" " "

! w w ww ! #

" "" "" "æ þ " þ ÷ �F # # #0

  [TC { (x + ) ½ (x +1) }]. (11)� � þ " þ ÷F # # #"
w w ww ! #

" "" """ "

0

Multiple Site Choice

While the distance function approach provides an alternative way of characterizing single-site

demands, its real appeal is in its characterization of multiple-site demands.  The model

encompasses the two elements that have been notoriously hard to reconcile within utility-

theoretic random utility model frameworks: the participation or total trips decision, and the site

allocation decision.  The present model provides a means of making probability statements

about patterns of trips distributed among multiple sites for an observation period of arbitrary

length, whether a year, a season, or a “single choice occasion” in the random utility framework,

which is a special case when only one trip is taken to all sites.

 The probability of observing a pattern of trips [x ,...,x ] can be stated concisely asx! ! !

" 8
�

the multivariate extension of equation (5),

 Prob [  chosen] Prob[ ( - ,u) TC ( + ,u) ,...,x x 1 x 1! ! !
" " " " "æ : þ ë ë : þ% %

    ( - ,u) TC ( + ,u): þ ë ë : þ ¸8 8 8 8 8
! !x 1 x 1% %

      F[ ( - ,u) TC ( - ,u) TC ]æ : � Ä ÃÃÃÄ : �" " 8 8
! !x x" "

          F[TC ( + , ,u) TC ( + , ,u)] (12)� � : Ä ÃÃÃÄ � :" " 8 8
! ! ! !

�" �"
x 1 x x 1 x
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where  is the unit n-vector.  The arguments of the cdfs are differences between the market1

price (travel cost TC ) and implicit price of trips ( ) to each site j 1,...,n.  Estimation of this4 4: æ

model raises dimensionality issues similar to those which arise in multinomial probit models.

Recent advances in estimation by simulation have rendered these problems tractable (e.g.,

Hajivassiliou; Hajivassiliou and Ruud).  The advantage of multinomial probits in the distance

function approach, however, over multinomial probits used in random utility, is that the model

explains both participation and site allocation jointly within a single utility function.

Consumption of Single Trips per Period

When the total number of trips taken during the observation period is 1, the model takes a form

similar to the random utility model.  Since trips are, by definition, non-negative integer valued,

the recreationist’s choice is between 0 and 1 trips for all sites, with one site (k) selected. For

this site, it must be true that ( , ,u) TC , while for all other sites j k it must be: " ÷ þ ë ¦5 5 5%

true that TC (1, ,u) .  The probability statement simplifies to4 4 4ë : ÷ þ %

  Prob [k chosen] Prob[TC (1, ,u) ,..., ( , ,u) TC ,...,æ ë : ÷ þ : " ÷ þ ë" " " 5 5 5% %

     TC (1, ,u)8 8 8ë : ÷ þ ¸%

      F[TC ( , ,u) ( , ,u) TC ,...,TC ( , ,u)]æ � : " ÷ Ä ÃÃÃÄ : " ÷ � � : " ÷" " 5 5 8 8

given symmetry of the multivariate distribution.  While the functional form in the cdf arguments

take a different form, one is left with a similar probability statement for observation of the

location of a single trip.  This is, of course, just a special case of the more general distance

function formulation that explains the likelihood of observing multiple trips to all sites.

Conclusions
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This paper has developed an alternative, utility-theoretic, approach to the determination of the

number of trips taken and their allocation among sites in recreation demand analysis.  The

approach is based on the consumer’s distance function and associated system of inverse

demands for recreation at each site.  The recreationist compares the implicit price, or marginal

value, of each good (i.e., actitivity at each site) to its “market” price (the fixed travel cost of

access) and chooses trips to all sites to equate (as nearly as possible given the discreteness of

alternatives) the two.  Because trips are integer-valued, the recreationist's decision is a discrete

choice problem, the solution to which yields the number of trips to take to each site in the

choice set per period.  Because the period of observation can be any length, the model explains

both the number of trips taken and their allocation to different sites.  The model reconciles both

the participation and site allocation decisions within a single, utility-theoretic framework.

Footnotes

1.  The necessary conditions for , x x ( ,u), state that for the market price vector  andp p p3 3

2
æ

utility level u, the quantities  in the distance function should be the Hicksian demandsx

x p2( ,u).

2.  Or, equivalently, x x x ." ø "

" ""
� � þ "
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Figure 1.  (a)  The Choice of Trips When Trips Are Continuous

p1

p1(x1
1,x-1,u)

x1
1 x1

* x1

(b)  The primal-dual distance objective function

x1

0

x1
*

d(x,u)-p1x1-p-1x-1

TC1
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Figure 2.  The Optimal Discrete Choice of Trips

p1
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x1
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