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El NiZZo/Southern Oscillation Effects on Farmland Values in the United States

In May of 1997 scientists observed changes in the atmospheric pressures in the Pacific Ocean

that indicated the upcoming of yet another El NiZo cycle.  The 1997 El NiZo event was one of

the strongest on record and, in conjunction with the 1998 La NiZa event, was responsible for

causing extensive economic damage due to heavy rains, snow, and floods throughout the world.

The agricultural sector is especially sensitive to the extreme weather events attributed to the El

NiZo/La NiZa cycle.  The effects of this cycle, also called the El NiZo/Southern Oscillation cycle,

or ENSO cycle, on specific crops and on prices of agricultural commodities has been well-

documented in the past few years.  Handler (1984) studied corn yields in the mid-western United

States and found that there is a relationship between warm sea surface temperatures in the Pacific

and high yields in the corn-belt region.  Thompson (1990; 1992; 1993) also found a relationship

between crops and ENSO cycles: corn yields in the mid-western U.S. were greater during El

NiZo years and lower than normal during La NiZa years, whereas the opposite effects were found

for wheat yields in the Dakotas and winter wheat in Kansas and Oklahoma.  Tiller and Ugarte

(1998) found that prices of simulated yields for eight crops were lower under during ENSO

cycles, which they attributed to yield increases.  Brunner (1998) found that El NiZo years cause

commodity price inflation of about 3.5-4 %.

Most of this research has been focused on one crop, or just a small number of crops, with

little attention paid to how ENSO cycles affect the agricultural sector as a whole.  We deviate

from the traditional crop yield/price approach and instead examine the impact of ENSO related

weather variation and its impact on farm values.  The analysis rests on “Ricardian” rent theory,
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which suggests that weather induced changes in land productivity are capitalized into farmland

values.

ENSO Cycles and Farmland Values

Our model adapts the two-stage approach used by Mendelsohn et al. (1994) to evaluate

the impact on agriculture due to global warming.  Mendelsohn et al. developed an empirical

model for climate changes based on Ricardian land value theory.  In the Ricardian theory, land

rent in agriculture is simply the difference between revenues and production costs.  Revenues are

a function of quantity produced and the market price.  Research has shown the quantity produced

will depend upon weather related variables (e.g., precipitation and temperature), as will prices

for agricultural commodities.  Indeed, the literature cited in the introduction has found a link

between ENSO cycles and agricultural output and agricultural prices.

A simple model will show that land rents are also a function of ENSO related weather

variability.  For any given agricultural market, let aggregate supply be described as a function of

output price (P), a measure of ENSO related weather variability (ENSO), and other

climatological variables (W), so that the supply curve is given by QS=QS(P,W, ENSO).  Further,

the aggregate demand for the commodity is also a function of the market price. Assuming the

demand for the commodity is a derived demand, other arguments of the demand function are the

price of the final output (POut) and the price of substitute inputs (PSub), so that aggregate demand

is given by QD=QD(P, POut, PSub).  Equating aggregate supply and aggregate demand, and

solving for the equilibrium market price shows that market price is also a function of ENSO

related weather variation,  P=P(POut, PSub, W, ENSO).
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Now let an individual producer’s supply curve be denoted by a lower case q(.), where the

arguments of individual producer supply are the same as the aggregate supply.  Producer rent in

any time period t is then given by, Rt = [Pt(POut, PSub, W, ENSO)* qt(P,W, ENSO) ! Costst],

where costs are simply the sum of factor prices times factor quantities.  Farmers will attempt to

maximize rents at any time period t.  Ricardian theory views the value of farmland as the

capitalized value of the future stream of benefits from farmland, in perpetuity.  Thus we obtain

an expression for farmland values by taking the sum of rents over time, where the term in the

denominator is the discount factor reflecting an interest rate, i,

Farmland Value = 3 Rt(ENSO, other variables) / (1+i)t

Mendelsohn et al argued that:

…with farms, land rents tend to be a large fraction of total costs and can be estimated
with reasonable precision.  Farm value is the present value of future rents, so if the interest rate,
rate of capital gains and capital per acre are equal for all parcels, then farm value will be
proportional to the land rent.

The Expected Effect of ENSO Cycles on Farmland Value

The impact of ENSO-related weather variation on rents and farmland values is unclear.

The producer observes ENSO effects as extreme weather conditions; depending on the

geographic location of the producer ENSO effects may be manifested, for example, as either

increased or decreased precipitation.  Consider the producer’s rent maximization problem at any

time t.  Rent (profit) maximization requires the producer to equate the value of the marginal

product (VMP) for any input, say fertilizer, equal to its factor cost.   Ex ante, the farmer will

apply fertilizer in accord with his or her expectation with respect to exogenous factors of

production such as precipitation, the outcome of which is unknown at the time the fertilizer input
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decision is made.  Assuming output price is known and the farmer’s expectation is that

precipitation will be some amount µ, the farmer chooses fertilizer level X(µ) as the profit

maximizing level (Figure 1, top).  But precipitation is not known with certainty, instead

following a probability distribution (Figure 1, bottom).  If precipitation is some amount greater

than normal, µ+σ, fertilizer is more productive, shifting the VMP schedule to the right.  While

the producer benefits from the increased productivity (area ACHG), the producer would have

liked to apply amount X(µ+σ) of fertilizer to maximize profits.  Area ACE represents the loss

due to uncertainty.  Now consider precipitation outcome µ!σ.  Fertilizer is not as productive

under low levels of precipitation, so the VMP schedule shifts left.  The producer suffers losses

given by area ABFG.  Of this portion, area ABD represents losses due to overuse of fertilizer.

In either case, uncertainty is the driving force that makes it unlikely that farmers actually

achieve the profit maximizing levels of input use.  Thus, rent and farmland value are not

maximized.  We hypothesize that ENSO cycles represent added variation in weather variables,

thus causing deviations from profit maximizing input use.  The impact on farm values in any

given geographic region will depend on whether ENSO-related climate variation skews the

weather distribution to increase rents (on average, VMP shifts to the right) or skews the

distribution to decrease rents (on average, VMP shifts to the left).

An Empirical Model

Obtaining a Measure of ENSO-Related Weather Variation

The National Oceanic and Atmospheric Administration (NOAA) has divided the contiguous U.S.

into 344 climatological divisions called CLIMVIS regions.  Monthly historical temperature and

precipitation data are available for each region; previous research (Kappene and Ghil) has shown
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that the 1941-1991 time series for precipitation and temperature were stationary. Fourier series

analysis (FSA) was used to separate the ENSO related variability from the other variability

inherent in the time series of temperature and precipitation (DeLurgio 1998; Hamilton 1994).

FSA separates variation in these series into cyclical components and white noise.  ENSO is not a

neatly cyclical phenomena and atmospheric scientists have described ENSO events with cycles

of different periods, but the most common assumption is that ENSO events appear at 4-5 year

intervals.  FSA was applied to the monthly time series for each CLIMVIS division, yielding the

portion of total variance in the series due to ENSO under the assumption of a 4-5 year cycle.  All

variance remaining in the time series was attributed to other cycles (e.g., the 18.5 year wet/dry

cycle) and white noise.

Other Factors Influencing Land Values

Farmland values were available from the Agricultural Census for each county in the

contiguous U.S.  The data set represented a cross-section of data at a given point in time, so that

no variation in the price terms influencing rents (output prices, input prices) was observed.

These terms, therefore, did not appear in the estimation model.  Other factors do influence the

value of land, however, and data were gathered from a variety of sources.  The National

Resources Inventory (NRI) provided data for agricultural land class, soil pH, bulk density,

salinity, clay content and permeability, the degree to which land was flood prone, and land

elevation.  County level data were also available from other Census sources for income and

population density.  For each type of variable, the data were scaled up from point level (NRI) or

county level (Census) to match the CLIMVIS region level.  Additional data for the model

included mean monthly precipitation and temperature data.  Following Mendelsohn et al.,
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precipitation and temperature for the months of January, April, July, and October were included

in the model, as proxy variables for winter, planting, growing, and harvesting conditions.

Empirical Results

Due to missing data, 338 usable observations (out of 344 CLIMVIS regions) were included in

the analysis.  To gauge the effect of ENSO cycles over time, the farmland value model was

estimated for 1982 land values (using 1941-1981 precipitation and temperature data) and for

1992 land values (using 1941-1991 precipitation and temperature data).  Farmland values and

median regional income were converted to constant 1984 dollars.  For each year specification #1

separates variation in monthly precipitation and temperature into ENSO and non-ENSO

components, while specification #2 uses total variation (ENSO + non-ENSO variation).  All

models were estimated using OLS, and were weighted by total cropland in the region.

In the model for 1982, most of the variables had the expected sign and were statistically

significant (Table 1).  Increases in income and population density, indicating proximity to urban

areas (i.e., alternative land uses), raise farmland values.  Increasing salinity decreases the value

of land, as does lower soil pH (more acidic land).  The highest land class (Class I, the omitted

category) was worth more than all lower quality land (classes II through VIII).  Farmland at

higher elevations was also worth less.  Mean precipitation and temperature for the key months

showed results broadly similar to those found by Mendelsohn et al.

In specification #1 for 1982 land values, five of the eight ENSO related variation

measures for precipitation and temperature were statistically significant.  Four variables showed

that ENSO related variance had a negative effect on farmland value (April, July, and October

precipitation) whereas July temperature variation had a positive effect.  Five of the eight non-
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ENSO related variation measures were statistically significant, of which four were negative.

Specification #2 combined the ENSO and non-ENSO variation into a single measure of total

variation without regard to ENSO cycles.  Only three of the eight variation measures were

statistically significant (January and July temperature, and October precipitation).

We can test whether separating precipitation and temperature variation into ENSO and

non-ENSO components was worthwhile by using an F-test to compare the coefficients across the

two models. Specification #1 was the unrestricted model with the following general form,

NENENXvalue ''
~

')ln( δγβα +++=

where EN is the vector of eight ENSO variation measures, NEN is a vector of eight non-ENSO

variation measures, and X is a vector of all other variables.  Specification #2 was the restricted

model with the following general form,

)('''')ln( NENENXTVXvalue +++=++= ωβαωβα

where the elements of TV are the total variation for each monthly measure of precipitation and

temperature, which are equal to the ENSO-related component plus its non-ENSO component.

The test, therefore, has 16 restrictions (γ=ω and δ=ω, for all eight variation measures) across

specifications #1 and #2.  The F-statistic for the restrictions had a value of 2.18 whereas the

critical value was 1.67; the null hypothesis was rejected, suggesting that ENSO- and non-ENSO

related weather variation affect farmland values in different magnitudes.

With the exception of the population density variables, results for specification #1 of the

1992 land value model were broadly comparable to the 1982 results.  For the variables of

interest, however, the 1992 land value model changed considerably.  Of the eight ENSO-related

variation measures, only two (April precipitation and October temperature) were statistically
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significant.  Both variable coefficients were negative.  Four of the eight non-ENSO variation

measures had statistically significant coefficients.  Conducting the F-test across specifications #1

and #2, the null hypothesis that the coefficients across the two models were equal was not

rejected (F=1.09; Fcv=1.67).  For 1992 land values, decomposing precipitation and temperature

variation into ENSO and non-ENSO components did not improve the model.  This suggests that

ENSO-related variation in precipitation and temperature do not affect farmland values

differently.

The Impact of ENSO-Related Weather Variation on Farmland Value

The last three ENSO cycles (corresponding to the 1982, 1987, and 1992 El NiZos) have been

more severe than past ENSO cycles.  This raises the question of whether ENSO-related variation

in the precipitation and temperature time series is becoming larger relative to non-ENSO

variation. For  relatively small increases in ENSO variation, the effect on farmland values can be

calculated by examining the total derivative of the model,

dNENdENdXdValue exp(.)exp(.)exp(.) δγβ ++=

where exp(.) is the exponential of the empirical model.  If the change in the ENSO vector (dEN)

is small, then dX and dNEN can be set equal to zero.  Assuming a 10% increase in all

components of the ENSO variation vector, the 1982 model predicts that farmland values across

the U.S. would, on average, decrease by $30.62 per acre (with a 95% confidence interval of

$2.74 - $57.05).  This represents, on average, about a 4% loss in value.  Agricultural land values

in the mountain west were not affected substantially, but land values in the midwest, southeast,

northeast, and Pacific northwest experienced declines in value (Figure 2).
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As might be expected, the 1992 results were mixed.  The model predicted an average loss

of $12.68 per acre, but the 95% confidence interval includes the value of $0, ranging from a loss

of $34.81 per acre to a gain of $7.59 per acre.  Thus, despite the predicted loss of about $13 per

acre, it cannot be stated that ENSO-related weather variation influenced agricultural land values

in 1992.  The average loss was about 2% of land value.  Again much of the mountain west

experience little change in farmland value, as did the northeastern U.S. (Figure 2).  Losses in

land value were concentrated in the midwest and southeast, with gains in northern California.

Conclusions/Future Research

The analysis suggests that ENSO-related weather variation may have influenced farmland values

in 1982, but in 1992 farmland values did not respond to ENSO variation any differently than

non-ENSO variation.  Did this result occur because the measure of ENSO variation was

inadequate, or because farmers now receive advanced warning about ENSO cycles and engage in

“defensive” farming practices?  With respect to the first question, the FSA approach limits the

ENSO effect to a harmonic 4-5 cycle.  Alternative variance decomposition techniques, such a

singular spectrum analysis, allow one to identify and extract variation due to anharmonic cycles

such as the ENSO phenomena (Kappene).  This line of research should clearly be pursued.

With respect to farmer adjustments to ENSO warnings, Costello et al. recently developed

a model linking ENSO forecasts to management of salmon fisheries.  Under different ENSO

forecast scenarios, salmon harvesting can be managed to maximize producer and consumer

surplus in commercial and recreational fishing.  It is possible that, given ENSO forecasts in

recent years, farmers might have managed farm enterprises to limit rent losses.  This response

should also be investigated.
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Table 1. Farm Value Model: Dependent variable is ln(value per acre)
Independent variable 1982

Model 1       Model 2
1992

Model 3        Model 4
Constant 19.28       (0.0001) 23.47        (0.0001) 23.715      (0.0001) 23.755     (0.0001)
Income 3.09E-5    (0.0553) 2.7E-5      (0.0874) 6.6E-5      (0.0001) 5.2E-5     (0.0001)
Population Density 8.24E-5    (0.0539) 5.5E-5      (0.2020) 4.5E-5      (0.3507) 4.6E-5     (0.3346)
Population Density^2 -2.82E-9   (0.0964) -1.93E-9   (0.2663) -2.1E-9     (0.2737) -1.91E-9  (0.3248)
Salinity -0.149       (0.0001) -0.169       (0.0001) -0.075       (0.0607) -0.085      (0.0312)
pH -0.165       (0.0010) -0.190       (0.0001) -0.197       (0.0002) -0.215      (0.0001)
Bulk Density 0.007       (0.8780) 0.007        (0.8687) 0.035        (0.4547) 0.040       (0.3827)
Land Class II -2.755      (0.0001) -2.825       (0.0001) -2.736       (0.0001) -2.763      (0.0001)
Land Class III -3.228      (0.0001) -3.262       (0.0001) 3.084        (0.0001) -3.090      (0.0001)
Land Class IV -3.619      (0.0001) -3.600       (0.0001) -5.718       (0.0001) -3.256      (0.0001)
Land Class V -4.796      (0.0001) -4.292       (0.0001) -5.718       (0.0001) -5.359     (0.0001)
Land Class VI -3.870      (0.0001) -4.020       (0.0001) -3.713       (0.0001) -3.756     (0.0001)
Land Class VII -4.16        (0.0001) -4.307       (0.0001) -3.959       (0.0001) -3.898     (0.0001)
Land Class VIII -1.680       (0.0175) -2.207       (0.0024) -1.087       (0.1796) -1.494     (0.0514)
Clay 0.064        (0.3652) 0.078        (0.2646) 0.076        (0.2881) 0.072       (0.3036)
Permeability 0.027        (0.3652) -0.028       (0.5831) -0.012       (0.8187) -3.4E-4    (0.9948)
Flood Prone -0.692       (0.1682) -0.916       (0.0673) -1.600       (0.0035) -1.827      (0.0005)
Elevation -9.62E-5   (0.0001) -0.0001     (0.0001) -1.07E-4   (0.0001) -1.1E-4    (0.0001)
Moisture quarter 1 0.310        (0.2322) 0.173        (0.5017) 0.842        (0.0073) 0.801       (0.0098)
Moisture quarter 2 0.108        (0.6660) -0.053       (0.8320) 0.543        (0.0578) 0.635       (0.0245)
Moisture quarter 3 -0.242       (0.1817) -0.058       (0.7489) -0.467       (0.0695) -0.398      (0.1016)
Moisture quarter 4 -0.271       (0.2586) -0.186       (0.4463) -0.224       (0.5766) -0.361      (0.3561)
Temperature January -0.018       (0.3430) -0.006       (0.7406) -0.03         (0.1819) -0.033      (0.1245)
Temp January ^2 -0.001       (0.0338) -0.001       (0.0037) -5.6E-4     (0.3031) -7.5E-4    (0.1520)
Temperature April 0.664        (0.0001) 0.550        (0.0001) 0.626        (0.0001) 0.553       (0.0001)
Temp April ^2 -0.005       (0.0001) -0.004       (0.0001) -0.005       (0.0001) -0.004      (0.0001)
Temperature July 0.050        (0.7370) -0.117       (0.4123) -0.270       (0.0968) -0.329      (0.0335)
Temp July ^2 -0.0007     (0.4487) -0.0003     (0.7302) 0.001        (0.1652) 0.001       (0.0851)
Temperature October -0.963       (0.0001) -0.770       (0.0001) -0.682       (0.0005) -0.514      (0.0074)
Temp October ^2 0.009        (0.0001) 0.007        (0.0001) 0.006        (0.0002) 0.005       (0.0018)
Precipitation January 0.020        (0.8105) 0.042        (0.5947) 0.238         (0.0092 0.182       (0.0181)
Prec January ^2 0.007        (0.3887) 0.006        (0.4489) -0.017       (0.0914) -0.011     (0.1996)
Precipitation April 0.626        (0.0001) 0.444        (0.0002) 0.139        (0.2605) 0.247       (0.0335)
Prec April ^2 -0.043       (0.0202) -0.051       (0.0061) 2.98 E-4   (0.9881) -0.026      (0.1411)
Precipitation July -0.348       (0.0001) -0.443       (0.0001) -0.411      (0.0001) -0.406      (0.0001)
Prec July ^2 0.033        (0.0005) 0.044        (0.0001) 0.043        (0.0001) 0.041       (0.0001)
Precipitation October -0.290       (0.0529) -0.286     (0.0578) -0.091      (0.5653) -0.065      (0.6739)
Prec October ^2 0.042        (0.0839) 0.042        (0.0876) 0.059        (0.0361) 0.046       (0.0887)
EN Prec Jan 0.140        (0.4421) 0.117        (0.2323)
EN Prec Apr -0.355       (0.0241) -0.264       (0.0976)
EN Prec Jul -0.299       (0.0718) -0.049       (0.6032)
EN Prec Oct -0.384       (0.0989) 0.052        (0.5341)
EN Temp Jan -0.114       (0.0053) 0.012        (0.6192)
EN Temp Apr -0.178       (0.2741) 0.055        (0.5066)
EN Temp Jul 0.331        (0.0010) -0.100       (0.2938)
EN Temp Oct -0.039       (0.7437) -0.147       (0.0177)
Non EN Prec Jan -0.003       (0.8849) -9.4E-4     (0.9765)
Non EN Prec Apr -0.091       (0.0146) -0.046       (0.1969)
Non EN Prec Jul 0.042        (0.0718) -0.013       (0.6455)
Non EN Prec Oct -0.060       (0.0153) -0.120       (0.0003)
Non EN Temp Jan -0.012       (0.0001) -0.015       (0.0069)
Non EN Temp Apr 0.008        (0.6116) 0.008        (0.6563)
Non EN Temp Jul -0.177       (0.0001) -0.189       (0.0001)



11

Non En Temp Oct 0.011        (0.4902) 0.042        (0.0339)
Total Temp Jan -0.013      (0.0001) -0.014      (0.0001)
Total  Temp April 0.007        (0.6397) 0.013       (0.4698)
Total Temp July -0.136       (0.0001) -0.174      (0.0001)
Total Temp October -0.004       (0.7877) -7.46E-4  (0.9601)
Total Prec Jan -0.005       (0.8108) -0.006      (0.7895)
Total  Prec April -0.032       (0.3665) -0.021      (0.5315)
Total Prec July 0.031        (0.1473) -0.015      (0.5444)
Total Prec October -0.048       (0.0490) -0.085      (0.0008)

F-test 61.528      (0.0001) 65.594      (0.0001) 64.824      (0.0001) 73.577     (0.0001)
Adjusted R^2 0.9052 0.8964 0.9094 0.9065
Error Sum of Squares 50059542.196 56256818.437 51380597.741 54539239.467
p-values in parenthesis

Figure 1.  Rent Maximizing Conditions with Uncertainty
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