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A QUADRATIC INVERSE DEMAND SYSTEM

Introduction

In empirical demand analysis, it may be more appropriate to have quantities exogenous, and prices

adjusting to clear the market.: it is the case of agricultural markets, under supply management programs.

Furthermore, in the time-horizon of most time-series data in applied work (monthly or quarterly), supply

can be reasonably treated as fixed in the short run: this is obviously true for perishable products.

Inverse demand systems have been proposed in empirical work: Barten and Bettendorf (1989)

derived a Rotterdam-type inverse demand system; indirect translog demand systems date since

Christensen et al. (1975); Moschini and Vissa (1992) and Eales and Unnevehr (1994) proposed a linear

inverse demand system that resembles the more common (direct) AIDS.

Recently, there have been questions that a parsimonious representation of preferences may be able to

fit well actual data: in direct demand systems, further terms in income are required, for some goods, to

provide a better picture of reality. Banks et al. (1997) have proposed a Quadratic Almost Ideal Demand

System (QUAIDS): it has been derived as a generalisation of the PIGLOG preferences, starting from a

(general) representation of the indirect utility function. In the case of inverse demand systems, we may

have the analogous situation; thus we may need to augment common inverse demand systems to

account for further non-linearities. It is an important remark, especially if we use the estimated model

for simulation and/or forecasting: the quadratic specification allows for more flexibility, and the more

we move from in-sample values, the more the gain in flexibility may reduce the bias.

Further problems in empirical demand analysis may result from the large number of parameters that

have to be estimated under flexible specifications: this number increases quadratically as the number of

goods increases. In order to reduce the parameter space, we may resort to assumptions on the structure

of consumers' preferences. In direct demand systems, it has been proposed to maintain weak separability of

the direct utility function (Blackorby et al., 1978), because it may result in a gain in degrees of freedom and,

if applied to a complete demand system, it would provide unconditional elasticities (Moschini et al., 1994).
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A common empirical problem may also result from attempting to maintain the standard properties of

demand theory. In fact, while symmetry, homogeneity and adding-up are easily built into the most

popular demand systems, imposing the curvature condition (i.e. negative semidefiniteness of the

Slutsky/Antonelli matrix) may create serious econometric problems in terms of convergence of the

objective function (Moschini, 1998). A solution is that of reducing the rank of the matrix: the resulting

model is semiflexible, according to Diewert and Wales (1988), and allows a further reduction in the

parameter space, although it restricts substitution possibilities among goods.

In this paper, we derive a (quadratic) inverse demand system that generalises the (almost ideal)

inverse demand system of Moschini and Vissa (1992) and Eales and Unnevehr (1994): this

generalisation nests the linear specification. We also extend previous work on separability and derive

the proper parametric restrictions within the inverse specification. Finally, we provide an illustrative

example in which we estimate a concave, separable and semiflexible inverse demand system.

A quadratic inverse demand system

The parallel between cost function and distance function is well known (Blackorby et al., 1978): thus

standard functional forms applied to the cost function can be extended to the distance function.

Start from a distance function of the form:
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where u indicates utility, lna(q), b(q) and λ(q) are functions of the vector of quantities q; the minus sign

states that the distance function is decreasing in u. In order to guarantee some properties for the distance

function D(u,q) (i.e. homogeneity of degree 1 in q), we require a(q) to be homogeneous of degree 1 in q,

and b(q) and λ(q) homogeneous of degree 0 in q.

By applying the derivative property, mqpuwquD iiii )(),(ln),(ln ≡=∂∂ qq , where p indicates

prices and m indicates income (expenditure), we get compensated quantity-dependent demand

functions: given the adopted functional form for the distance function, we get:
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By exploiting the fact that at D=1 the distance function is an implicit representation of the direct

utility function, that is [ ])()(ln)()(ln)( qqqqq baaU +⋅= λ , we get uncompensated inverse demand

functions:

(3) [ ]2)(ln
)(

1
ln

)(
)(ln

ln
)(ln

ln
)(ln

q
q

q
q

qq
a

bq
a

q

b

q

a
w

iii

i ∂
∂−

∂
∂−

∂
∂= λ

To get a parametric specification of a quadratic inverse demand system, we set )(ln qa as a translog

quantity aggregator function:
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and )(qλ as a linear quantity aggregator function:
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Hence, the parametric specification is:
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where, given the homogeneity property of the distance function and symmetry property of demand

functions, the following set of restrictions applies:
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We term this model as the Inverse Quadratic AIDS (IQUAIDS), although we recognise the improper

use of the term “almost ideal”, since this model does not share the same aggregation properties of the

AIDS-QUAIDS specifications. The linear specification of Moschini and Vissa (1992) and Eales and

Unnevehr (1994) is nested into the quadratic model: it is retrieved by setting ii ∀= 0λ .

In inverse demands the analogues of (uncompensated) price elasticities are (uncompensated) quantity

elasticities, (also known as price flexibilities); after defining πi≡pi/m as normalised prices, then quantity



4

elasticities are given by jiijjiij qqqf lnln)()( ∂∂=∂∂≡ πππ ; on the other hand, the analogues of

expenditure (income) elasticities are the scale elasticities (flexibilities).

Quantity elasticities can be derived as ( ) ijijiij wqwf δ−∂∂= ln , where δij is the Kronecker delta

(δij=1 for i=j and δij=0 otherwise). Given our parametric specification, they are computed as:
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Scale elasticities, defined as θθπ ln)(ln * ∂∂≡ qiif , where θ is a scale parameter such that

*qθ≡q , are retrieved by exploiting the relation ∑=
j

iji ff . In our quadratic specification, we have:
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The link between compensated and uncompensated flexibilities is obtained using the scale

decomposition of inverse demands (Anderson, 1980), that is the analogue of the Slutsky decomposition

in direct demands. A change in the quantity of a good produces a change in (normalised) prices: the total

change in prices can be decomposed in a substitution effect and in a scale effect. The (Antonelli)

substitution effect is the change in prices that allows to move along the initial indifference curve to

induce a consumption of goods in the new proportion; the scale effect is the change in prices that,

moving along the new ray from the origin, will induce to consume the new bundle on the final

indifference curve. Hence the Antonelli substitution effect is defined as jiij qua ∂∂= − ),(qπ , where

),( ui q−π  indicates compensated inverse demand, and the Antonelli equation becomes

))(( * θθπππ ∂∂−∂∂= qijjiij qa  (see Anderson, 1980). The matrix of Antonelli substitution effects

[ ]ija  is just the (symmetric) matrix of the second derivatives of D(u,q); concavity of D(u,q) in quantities

ensures that the Antonelli matrix is negative semidefinite. The Antonelli effects can be used to class

goods as q-complements (if aij>0) and q-substitutes (if aij<0), according to Hicks (1956).
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It is more convenient to express the Antonelli equation in elasticities terms as ijij
c

ij fwff −=  where

c
ijf  is the compensated quantity-elasticity; starting from this relation it is possible to derive the Antonelli

substitution effect in our quadratic specification as:

(11)
[ ] [ ]

[ ] 







−−−−+−−−+=

2

32

)(

)(ln
2

)(

)(ln
)2()(ln)(

q

q

q

q
q

b

a

b

a
wawww

qq

m
a jijiijjiiiijiiiijjiij

ji

ij
λλβλβλβλβλβλβδγ

While symmetry, adding-up and homogeneity can be imposed globally by parametric restrictions,

negativity involves inequality constraints; furthermore, since the Antonelli substitution terms involve

shares, prices and income, there do not exist parameter values ensuring that negativity will be satisfied

globally. Therefore negativity can be checked after estimation for some values of  the variables, or,

otherwise, it can be imposed only locally, at a given point.

If we scale quantities to equal unity at a point (e.g., the mean of the sample), the expressions for

elasticities and the Antonelli substitution effects become simpler: in fact, at this point oq α=)(ln a and

1)( =qb . Given that the parameter α0 cannot be estimated, it is fixed before estimation. However the

chosen value does not affect estimation results: hence, we can set α0=0.

Elasticity formulas at the scaling point become:
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while the Antonelli terms are computed as:

(14) [ ]iijjiijij wwwma δγ −+= −

It is interesting to note that, at a scaling point, elasticity formulas and Antonelli substitution terms for

the quadratic specification boil down to those of the linear specification (at the scaling point). The

proposed IQUAIDS specification is of course flexible, but it does not reach the so called “minimal

property” (Barnett and Lee, 1985), because it has (n-1) additional parameters.
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Separability in inverse demands

The notion of direct weak separability (DWS) essentially relates to the possibility of partitioning goods

in the direct utility function U(.). More formally, if the set of indices of the n goods is N={1,...,n}, DWS

implies that these goods can be ordered in S separable groups according to a mutually exclusive and

exhaustive partition Ψ={N1,N2,...,NS} of the set N. For example, any utility function U(.) is directly

separable in the partition Ψ if it can be written as:

(15) ))(,...,)(()( 110 SSuuUU qqq =

where us(.), s=1,…,S are sub-utility functions that depend on a subset qs of goods (Blackorby et al., 1978).

The separable structure of U(.) implies restrictions on the substitutability of goods belonging to different

groups. In particular, the marginal rate of substitution between two goods belonging to the same group is

independent of all goods that are not in that group. Moschini et al. (1994) have derived necessary and

sufficient conditions for DWS in direct (quantity-dependent) demand functions. Kim (1997) has derived

restrictions from homothetic DWS in inverse demands, in terms of the Antonelli elasticities of

complementarity, which are defined as k

c

ikik wf≡ρ .

Theorem 1. The utility function U(q) is weakly separable in the partitionΨ if and only if
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Proof. To show that DWS implies the above set of restrictions, we start from the Hotelling-Wold

identity (Anderson, 1980; Weymark, 1980) that defines inverse demands as:
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that can be expressed in elasticity terms, using the notion of quantity-elasticity (flexibility)ikf , as:
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(19) hgjkik NkandNjiff ∈∈=− ,0

which is equivalent to the restrictions in (16).

To prove necessity, we consider that the set of restrictions in (16) implies:
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where πi≡pi/m are normalised prices. Manipulation of (20) leads to the following equality:
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In inverse demands, it may be more interesting to analyse the role of (weak) separability of the

indirect utility functions (IWS). Assuming that goods can be partitioned in the indirect utility function

according to the partition Ψ, then V(π) can be written as:

(23) ))(,...,)(()( 110 SSvvVV =

where vs(.), s=1,…,S are sub-utility functions that depend on a subset πs of normalised prices.

Given the duality between cost function and distance function, and between direct and indirect utility

functions, we may extend results of implicit separability obtained by Blackorby et al. (1991) to the

indirect utility function. Starting from theorem 3 in Blackorby et al. (1991), we may follow the approach

in Moschini et al. (1994) and write the following necessary and sufficient conditions for IWS:
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where with ),( u
i

q
−π  we indicate compensated inverse demands of normalised prices, while Γ(q,u) and

Ξ(q,u) are some appropriately defined functions. Following Anderson (1980), compensated inverse

demands give the levels of normalised prices that induce consumers to choose a consumption bundle

that is along a ray passing through q and that gives a utility u. On the other hand, uncompensated

inverse demands πi(q) give the level of normalised prices that induce consumers to choose the

consumption bundle q. Compensated and uncompensated normalised prices are equal once quantities

are properly scaled: therefore, we define the bundle qq θ=*  as exactly the bundle along a ray through

the origin that gives utility u: then we may write the equality:

(26) ),()(),()(),( ^* θπθππππ qqqqq iiiii uu ≡=⇒= −−

Then, by the definition of the distance function as the amount by which q must be divided in order to

bring it on the indifference curve u, we may define 1/θ=D(q,u) and substitute it in (26); then, using (25),

the restrictions in (24) can be written as:
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where Θk(q,u) is a function that depends on the good qk we are considering.

Thus, taking two goods (i,j)∈Ng and a good (k)∈Nh, by using equation (27), necessary and sufficient

conditions for IWS can be restated in terms of the Antonelli elasticities of complementarity as:

(28)
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Homothetic DWS (i.e. separability of the sub-utility functions) implies that the distance function is

implicitly separable in the same partition of the direct utility function. Under homothetic separability, we

have that the above set of restrictions becomes jkik ρρ = (see also Kim, 1997); this is a consequence of

the fact that along a ray from the origin the marginal rate of substitution is constant. Hence, under

homotheticity of the sub-utility functions (for both the direct and indirect utility), we have that DWS

and IWS provide the same restrictions.
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In order to count the number of restrictions that are implied by our separability assumptions, we may

resort to the formula proposed by Moschini et al. (1994: their equation (10), page 63) for DWS in direct

demand systems; the formula applies also to either DWS or IWS in inverse demands. Furthermore, the

(i,j,k) non–redundant combinations implied by the separable structure can be retrieved using the scheme

proposed by Nayga and Capps (1994: their table 4, page 805).

Separabilty and concavity in the IQUAIDS: the case of DWS

The local separability restrictions in (16) can be expressed in terms of the parameters of any flexible

functional form. In our case, if we consider the scaling point such parametric expressions become the

same for both the IQUAIDS and the (linear) inverse AIDS  (IAIDS), and take the form:

(29)
hg
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kjjkjk
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,
α
α
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βαβαγ

Also concavity of the Antonelli matrix can be imposed only locally, using the Cholesky

decomposition; a necessary and sufficient condition for negative semidefiniteness of a matrix [ ]ijaA ≡  is

that it can be written as ΓΓ−= 'A , where [ ]ijτ≡Γ  is an upper triangular matrix (Diewert and Wales,

1987). Ryan and Wales (1998) shows that this procedure preserves flexibility of the underlying

functional form. The notion of semiflexibility pertains to the possibility of restricting the substitution

matrix and reducing the parameter space, and it may be a solution when the estimation of the fully

concave model gives problems of convergence. The solution originally adopted by Diewert and Wales

(1988) was that of restricting the rank of the matrix ΓΓ ' . Moschini (1998) extended it to derive a

semiflexible AIDS model

A concave and separable inverse demand system must accomodate restrictions in (29) on the terms

ijγ , with the imposition of concavity on the matrix [ ]ijaA ≡ , that places restrictions on the matrix [ ]
ijγ ; a

semiflexible specification will impose further restrictions on the matrix of  price coefficients [ ]
ijγ .

In order to provide an empirical example, we have applied the IQUAIDS to meat demand in Italy.

The use of an inverse specification for meat demand may be justified by the relatively fixed supply in

the short run, due to the time lag between investment decisions and final production. Data for the period
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1960-1990 are yearly current and constant price expenditures for private consumption (ISTAT, National

Institute of Statistics). Implicit prices are obtained dividing current by constant price expenditures. We

have specified a conditional meat demand system for beef, pork and poultry. The scaling point is the

sample mean. The model is specified in levels, with a logarithmic trend, and estimated via maximum

likelihood techniques, dropping one of the equations because of singularity of the system. We have also

postulated separability between beef and other meats.

The contemporaneous imposition of the standard set of restrictions (adding-up, homogeneity and

symmetry) together with separability and concavity, may give some technical difficulties, because of

restrictions involving the same parameters. Although a systematic procedure is not feasible, we show how

to solve the problem by following a precise order in imposing the whole set of restrictions.

At first, we impose adding-up, homogeneity and symmetry on the original parameters (α‘s, β‘s, γ‘s and

λ‘s), taking into account that we need to further impose negativity and separability. Since negativity

involves the rank (n-1) matrix [ ]
ijγ , it may be convenient to impose homogeneity on a single row/column

of the (nxn) matrix. We choose as “numeraire” a good which belongs to a group of more than one element,

because only a few of these coefficients may be further restricted under DWS. In our case, homogeneity

was imposed on the poultry coefficients.

The second step is to impose concavity on the Slutsky matrix, even though the characteristics of the

data set may force the adoption of a more parsimonious semiflexible specification, that restricts the rank of

the matrix 'ΓΓ . In our application the rank is restricted to 1.

The third step is the imposition of DWS. Clearly, these restrictions must be rewritten incorporating

the new concave form of the price parameters. This operation requires two types of cautions: first, the

restricted parameters, once all restrictions are imposed, must be independent of each other; second, the

restricted parameters must belong to the set of parameters that can actually be estimated under the

semiflexible specification. Note that this second limit imposes an upper bound to the number of DWS

restrictions that can be maintained in a semiflexible specification.

In the appendix we provide an illustrative example of this 3-step procedure, which refers to our

simple empirical application, while in table 1 we compare estimation results from the three possible



11

specifications of the IQUAIDS: the unconstrained system, the (semiflexible) concave system and the

(semiflexible) concave and separable system. The table allows to verify how the imposition of such

restrictions affect elasticities and R2 values.

Concluding remarks

We have proposed a new inverse demand system, the Inverse Quadratic AIDS (IQUAIDS), that

nests the Inverse AIDS specification. Furthermore, we have derived a set of necessary and sufficient

restrictions implied by direct weak separability and indirect weak separability within inverse demands.

Maintaining both separability and concavity in a demand system allows to ensure that the model

will satisfy integrability conditions while saving degrees of freedom. We have provided an example of

how direct weak separability and concavity can be managed to obtain a set of nonredundant restrictions

within the IQUAIDS, applying the procedure to a 3-good system.

With proper scaling, the imposition of these restrictions at the scaling point in the IQUAIDS does

not imply more complexity than in the IAIDS, since all elasticity formulas for the IQUAIDS exactly

duplicate those for the IAIDS at the point of interest. In principle, our method can be extended to

manage other separability assumptions, such as indirect weak separability or implicit separability, and

other flexible functional forms.

Furthermore, we have shown that separability and concavity can be accomodated within a

semiflexible specification, although the separable structure may place a minimal requirement for the

rank of the substitution matrix. The only drawback is that maintaining both separability and concavity

may produce high non-linearities in the estimated model, and that its implementation may become

cumbersome with many goods and a detailed structure of preferences.
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Table 1: R2 values and estimated quantity- and scale-elasticities at the mean point .

qBF qPK qPO θ

Unconstrained system (11 parameters)
pBF -0.60 -0.09 -0.16 -0.85
pPK -0.24 -0.42 -0.32 -0.97
pPO -0.64 -0.47 -0.26 -1.37

R2 0.964 0.988 -

Semiflexible (rank=1) and concave system
(10 parameters)

pBF -0.60 -0.09 -0.15 -0.85
pPK -0.25 -0.44 -0.28 -0.96
pPO -0.63 -0.43 -0.34 -1.40

R2 0.964 0.987 -

Semiflexible (rank=1) concave and
separable system (9 parameters)

pBF -0.59 -0.13 -0.09 -0.82
pPK -0.43 -0.39 -0.34 -1.16
pPO -0.43 -0.43 -0.38 -1.23

R2 0.964 0.986 -

shares 0.510 0.245 0.246
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Appendix

As a simple example, consider our 3-good system with the following separable tree:

(A.1) ( )),(),()(
321

qququUqU ba=

where q1 is beef. Homogeneity, symmetry and adding-up imply the following restrictions (the “numeraire”

for homogeneity is q3, which belongs to the two-good group):
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while imposing full concavity on the rank-2 matrix implies the following reparameterisation:

(A.3)
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Finally, the separability structure in (A.1) implies one additional parametric restriction:

(A.4)
2

3
21123113 )(

α
αβαγβαγ −+=

Given that we cannot estimate a fully concave model, we are forced to set τ22=0. Under this

specification, we first impose the restrictions in (A.2) on the original price and income parameters, and,

in a second step, we impose the Cholesky expressions on price parameters, setting τ22=0. Now the

separability restriction in (A.4) must be rewritten to take into account that γ13 and α3 are restricted by

homogeneity and both γ11 and γ12 are restricted by concavity. Thus substituting the corresponding

expressions and rearranging, the same restriction becomes:
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