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A QUADRATIC |NVERSE DEMAND SYSTEM

Introduction

In empirical demand analysis, it may be more appropriate to have quantities exogenous, and prices
adjusting to clear the market.: it is the case of agricultural markets, under supply management programs.
Furthermore, in the time-horizon of most time-series data in applied work (monthly or quarterly), supply
can be reasonably treated as fixed in the short run: this is obviously true for perishable products.

Inverse demand systems have been proposed in empirical work: Barten and Bettendorf (1989)
derived a Rotterdam-type inverse demand system; indirect translog demand systems date since
Christensen et al. (1975); Moschini and Vissa (1992) and Eales and Unnevehr (1994) proposed a linear
inverse demand system that resembles the more common (direct) AIDS.

Recently, there have been questions that a parsimonious representation of preferences may be able tc
fit well actual data: in direct demand systems, further terms in income are required, for some goods, to
provide a better picture of reality. Banks et al. (1997) have proposed a Quadratic Almost Ideal Demand
System QUAIDS): it has been derived as a generalisation of the PIGLOG preferences, starting from a
(general) representation of the indirect utility function. In the case of inverse demand systems, we may
have the analogous situation; thus we may need to augment common inverse demand systems to
account for further non-linearities. It is an important remark, especially if we use the estimated model
for simulation and/or forecasting: the quadratic specification allows for more flexibility, and the more
we move from in-sample values, the more the gain in flexibility may reduce the bias.

Further problems in empirical demand analysis may result from the large number of parameters that
have to be estimated under flexible specifications: this number increases quadratically as the number of
goods increases. In order to reduce the parameter space, we may resort to assumptions on the structure
of consumers' preferences. In direct demand systems, it has been proposed to maintain weak separability of
the direct utility function (Blackorby et al., 1978), because it may result in a gain in degrees of freedom and,

if applied to a complete demand system, it would provide unconditional elasticities (Moschini et al., 1994).



A common empirical problem may also result from attempting to maintain the standard properties of
demand theory. In fact, while symmetry, homogeneity and adding-up are easily built into the most
popular demand systems, imposing the curvature condition (i.e. negative semidefiniteness of the
Slutsky/Antonelli matrix) may create serious econometric problems in terms of convergence of the
objective function (Moschini, 1998). A solution is that of reducing the rank of the matrix: the resulting
model is semiflexible, according to Diewert and Wales (1988), and allows a further reduction in the
parameter space, although it restricts substitution possibilities among goods.

In this paper, we derive a (quadratic) inverse demand system that generalises the (almost ideal)
inverse demand system of Moschini and Vissa (1992) and Eales and Unnevehr (1994): this
generalisation nests the linear specification. We also extend previous work on separability and derive
the proper parametric restrictions within the inverse specification. Finally, we provide an illustrative

example in which we estimate a concave, separable and semiflexible inverse demand system.

A quadratic inverse demand system

The parallel between cost function and distance function is well known (Blackorby et al., 1978): thus
standard functional forms applied to the cost function can be extended to the distance function.

Start from a distance function of the form:

Qulb(q) O
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(1) In D(u,q)=1Ina(q) -
whereu indicates utility, I&(qg), b(q) andA(q) are functions of the vector of quantitigsthe minus sign
states that the distance function is decreasing lin order to guarantee some properties for the distance

functionD(u,q) (i.e. homogeneity of degree 1gh we requirea(q) to be homogeneous of degree 1y,in
andb(qg) andA(q) homogeneous of degree Ogn

By applying the derivative propertydIn D(u,q)/0Ing, =w (u,q) =(p,q)/m, wherep indicates
prices andm indicates income (expenditure), we get compensated quantity-dependent demand
functions: given the adopted functional form for the distance function, we get:
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By exploiting the fact that d=1 the distance function is an implicit representation of the direct
utility function, that isU(qg) =In a(q)/[}\(q)[lha(q)+b(q)], we get uncompensated inverse demand

functions:
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To get a parametric specification of a quadratic inverse demand system, Wwa(sgtas a translog

guantity aggregator function:
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b(g) as a Cobb-Douglas quantity aggregator function:
(5) b(@) =[] 4

and A(q) as a linear quantity aggregator function:
(6) A@=3 4 Inq

Hence, the parametric specification is:

7) w=a +Zy” Ing, —Bilna(q)—/\iw:;)[lna(q)]z

where, given the homogeneity property of the distance function and symmetry property of demand
functions, the following set of restrictions applies:
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We term this model as the Inverse Quadratic AIDS (IQUAIDS), although we recognise the improper
use of the term “almost ideal”, since this model does not share the same aggregation properties of the

AIDS-QUAIDS specifications. The linear specification of Moschini and Vissa (1992) and Eales and

Unnevehr (1994) is nested into the quadratic model: it is retrieved by s&ttng i .

In inverse demands the analogues of (uncompensated) price elasticities are (uncompensated) quantity

elasticities, (also known as price flexibilities); after definmgpi/m as normalised prices, then quantity



elasticities are given byf; = (97, /0q;)(q; /) =dIn7, /dInq; ; on the other hand, the analogues of
expenditure (income) elasticities are the scale elasticities (flexibilities).

Quantity elasticities can be derived &s = (awi /dIn qj)/wi -9, , whereg; is the Kronecker delta

(8=1 fori=j andd;=0 otherwise). Given our parametric specification, they are computed as:
Vi B A 2Ina(q) AB 1 2_
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Scale elasticities, defined a$, Ealnrri(eq*)/a In@, where 6 is a scale parameter such that

q=6q, are retrieved by exploiting the relatidn = z f, . In our quadratic specification, we have:
I
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The link between compensated and uncompensated flexibilities is obtained using the scale
decomposition of inverse demands (Anderson, 1980), that is the analogue of the Slutsky decomposition
in direct demands. A change in the quantity of a good produces a change in (normalised) prices: the total
change in prices can be decomposed in a substitution effect and in a scale effect. The (Antonelli)
substitution effect is the change in prices that allows to move along the initial indifference curve to
induce a consumption of goods in the new proportion; the scale effect is the change in prices that,

moving along the new ray from the origin, will induce to consume the new bundle on the final

indifference curve. Hence the Antonelli substitution effect is defined,as aﬁi(q,u)/aqj , Where

m(q,u) indicates compensated inverse demand, and the Antonelli equation becomes
a, =01 /dq; — T, (am(eq*)/ae) (see Anderson, 1980). The matrix of Antonelli substitution effects

laijJ is just the (symmetric) matrix of the second derivativeld(afg); concavity ofD(u,q) in quantities

ensures that the Antonelli matrix is negative semidefinite. The Antonelli effects can be used to class

goods agj-complements (i&;>0) andg-substitutes (i&;<0), according to Hicks (1956).



It is more convenient to express the Antonelli equation in elasticities terri§ asf; —w; f; where

fijc is the compensated quantity-elasticity; starting from this relation it is possible to derive the Antonelli

substitution effect in our quadratic specification as:
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While symmetry, adding-up and homogeneity can be imposed globally by parametric restrictions,
negativity involves inequality constraints; furthermore, since the Antonelli substitution terms involve
shares, prices and income, there do not exist parameter values ensuring that negativity will be satisfied
globally. Therefore negativity can be checked after estimation for some values of the variables, or,
otherwise, it can be imposed only locally, at a given point.

If we scale quantities to equal unity at a point (e.g., the mean of the sample), the expressions for

elasticities and the Antonelli substitution effects become simpler: in fact, at thislpaif) = o, and
b(g) =1. Given that the parametep cannot be estimated, it is fixed before estimation. However the

chosen value does not affect estimation results: hence, we acaFQet

Elasticity formulas at the scaling point become:

(12) el P
w, w,
(13) f=-Piy
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while the Antonelli terms are computed as:

(14) a, =y, +ww -3, ]

It is interesting to note that, at a scaling point, elasticity formulas and Antonelli substitution terms for
the quadratic specification boil down to those of the linear specification (at the scaling point). The

proposed IQUAIDS specification is of course flexible, but it does not reach the so called “minimal

property” (Barnett and Lee, 1985), because it(hak) additional parameters.



Separability in inverse demands

The notion of direct weak separability (DWS) essentially relates to the possibility of partitioning goods
in the direct utility functionJ(.). More formally, if the set of indices of timegoods isN={1,...,n}, DWS
implies that these goods can be ordered in S separable groups according to a mutually exclusive and
exhaustive partition#={N1,N,,...,Ns} of the setN. For example, any utility functiot(.) is directly
separable in the partitio# if it can be written as:

(15) U(q)=U"°@(gq’)... us(q?®))
whereu(.), s=1,...,Sare sub-utility functions that depend on a sulyset goods (Blackorby et al., 1978).

The separable structuredf.) implies restrictions on the substitutability of goods belonging to different
groups. In particular, the marginal rate of substitution between two goods belonging to the same group is
independent of all goods that are not in that group. Moschini et al. (1994) have derived necessary and
sufficient conditions for DWS in direct (quantity-dependent) demand functions. Kim (1997) has derived

restrictions from homothetic DWS in inverse demands, in terms of the Antonelli elasticities of

complementarity, which are defined gs= f”f/ W .
Theorem 1The utility function U(q) is weakly separable in the partitibihand only if
(16) py— P, ="F -1 i,jON, and kON,
Proof. To show that DWS implies the above set of restrictions, we start from the Hotelling-Wold

identity (Anderson, 1980; Weymark, 1980) that defines inverse demands as:

au
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independent of quantities of goods outside that group, that is:

d d
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that can be expressed in elasticity terms, using the notion of quantity-elasticity (flexipilig)



(19) fo — 4 =0 i,jON, and k0O N,
which is equivalent to the restrictions in (16).

To prove necessity, we consider that the set of restrictions in (16) implies:

H duq H H dujeq, H
ﬁ du /aq, ), ﬁ du /aq, ),
(20) Z(aq/q)q ﬁ‘;—k: Z(aq/q)q ﬁg_ i,jON, and kKON,

wherert=pi/m are normalised prices. Manipulation of (20) leads to the following equality:

100U ouU nU
(21) — - 0=
T F99,00, 99,00, 1T,

which is equivalent to the restriction:

(22) —GE%E 0

0q,
L . L. 90U /ag
that implies DWS, once we recognise that the tangency condition m;plrew.
i i

In inverse demands, it may be more interesting to analyse the role of (weak) separability of the
indirect utility functions (IWS). Assuming that goods can be partitioned in the indirect utility function
according to the partitiol, thenV(m) can be written as:

(23) V()=Vevi( )., v )
wherev(.), s=1,...,Sare sub-utility functions that depend on a subsef normalised prices.

Given the duality between cost function and distance function, and between direct and indirect utility
functions, we may extend results of implicit separability obtained by Blackorby et al. (1991) to the

indirect utility function. Starting from theorem 3 in Blackorby et al. (1991), we may follow the approach

in Moschini et al. (1994) and write the following necessary and sufficient conditions for IWS:

24 0m (q,u) _ 0=(q,u) 0=(q,u)
(24) g c a5 70
25 om (q.u) _ 0=(q,u) 0=(q,u)
(25) ou r(a,u) 0q ou



where with iz, (q,u) we indicate compensated inverse demands of normalised prices,hi¢ and

=(g,u) are some appropriately defined functions. Following Anderson (1980), compensated inverse
demands give the levels of normalised prices that induce consumers to choose a consumption bundle
that is along a ray passing throughand that gives a utility. On the other hand, uncompensated
inverse demandsz(q) give the level of normalised prices that induce consumers to choose the
consumption bundlg. Compensated and uncompensated normalised prices are equal once quantities

are properly scaled: therefore, we define the bumdllesq as exactly the bundle along a ray through

the origin that gives utility: then we may write the equality:

(26) m@u=m@) O m(u)=mr@a)=mr/(a06)
Then, by the definition of the distance function as the amount by whiulst be divided in order to
bring it on the indifference curue we may defind/6=D(q,u) and substitute it in (26); then, using (25),

the restrictions in (24) can be written as:

am (q.u a7,(a.0
1C! )=®k(q,U) (9,6)
oq, 26

(27)
where@(q,u) is a function that depends on the goptve are considering.

Thus, taking two good§,j) [INg and a goodKk)[INh, by using equation (27), necessary and sufficient

conditions for IWS can be restated in terms of the Antonelli elasticities of complementarity as:

o, _ f -
(28) —k_f— i,jON, and kON,

Homothetic DWS (i.e. separability of the sub-utility functions) implies that the distance function is

implicitly separable in the same partition of the direct utility function. Under homothetic separability, we
have that the above set of restrictions becomgs= o (see also Kim, 1997); this is a consequence of

the fact that along a ray from the origin the marginal rate of substitution is constant. Hence, under
homotheticity of the sub-utility functions (for both the direct and indirect utility), we have that DWS

and IWS provide the same restrictions.



In order to count the number of restrictions that are implied by our separability assumptions, we may
resort to the formula proposed by Moschini et al. (1994: their equation (10), page 63) for DWS in direct
demand systems; the formula applies also to either DWS or IWS in inverse demands. Furthermore, the
(1,j,k) non—-redundant combinations implied by the separable structure can be retrieved using the scheme

proposed by Nayga and Capps (1994: their table 4, page 805).

Separabilty and concavity in the IQUAIDS: the case of DWS
The local separability restrictions in (16) can be expressed in terms of the parameters of any flexible
functional form. In our case, if we consider the scaling point such parametric expressions become the

same for both theQUAIDS and the (linear) inverse AIDS (IAIDS), and take the form:

(29) Vo —aB -aB _a, i, jON_and kON,
-a.B,-a, B, a, ’
Also concavity of the Antonelli matrix can be imposed only locally, using the Cholesky

decomposition; a necessary and sufficient condition for negative semidefiniteness of aﬁrﬁéql* is
that it can be written a®\=-I"'I", wherel = [TUJ is an upper triangular matrix (Diewert and Wales,

1987). Ryan and Wales (1998) shows that this procedure preserves flexibility of the underlying
functional form. The notion of semiflexibility pertains to the possibility of restricting the substitution
matrix and reducing the parameter space, and it may be a solution when the estimation of the fully

concave model gives problems of convergence. The solution originally adopted by Diewert and Wales
(1988) was that of restricting the rank of the matrix . Moschini (1998) extended it to derive a

semiflexible AIDS model

A concave and separable inverse demand system must accomodate restrictions in (29) on the terms

Y, , with the imposition of concavity on the matrix= [%J’ that places restrictions on the matbiég]; a

semiflexible specification will impose further restrictions on the matrix of price coeffichyéip}s

In order to provide an empirical example, we have applied the IQUAIDS to meat demand in Italy.
The use of an inverse specification for meat demand may be justified by the relatively fixed supply in

the short run, due to the time lag between investment decisions and final production. Data for the period

9



1960-1990 are yearly current and constant price expenditures for private consumption (ISTAT, National
Institute of Statistics). Implicit prices are obtained dividing current by constant price expenditures. We
have specified a conditional meat demand system for beef, pork and poultry. The scaling point is the
sample mean. The model is specified in levels, with a logarithmic trend, and estimated via maximum
likelihood techniques, dropping one of the equations because of singularity of the system. We have also
postulated separability between beef and other meats.

The contemporaneous imposition of the standard set of restrictions (adding-up, homogeneity and
symmetry) together with separability and concavity, may give some technical difficulties, because of
restrictions involving the same parameters. Although a systematic procedure is not feasible, we show how
to solve the problem by following a precise order in imposing the whole set of restrictions.

At first, we impose adding-up, homogeneity and symmetry on the original parané&tefss( y's and

A's), taking into account that we need to further impose negativity and separability. Since negativity
involves therank (n-1)matrix [yij J it may be convenient to impose homogeneity on a single row/column

of the (nxn) matrix. We choose as “numeraire” a good which belongs to a group of more thaemoeet el
because only a few of these coefficients may be further restricted under DWS. In our case, homogeneity
was imposed on the poultry coefficients.

The second step is to impose concavity on the Slutsky matrix, even though the characteristics of the
data set may force the adoption of a more parsimonious semiflexible specification, that restricts the rank of

the matrixI'T" . In our application the rank is restricted to 1.

The third step is the imposition of DWS. Clearly, these restrictions must be rewritten incorporating
the new concave form of the price parameters. This operation requires two types of cautions: first, the
restricted parameters, once all restrictions are imposed, must be independent of each other; second, the
restricted parameters must belong to the set of parameters that can actually be estimated under the
semiflexible specification. Note that this second limit imposes an upper bound to the number of DWS
restrictions that can be maintained in a semiflexible specification.

In the appendix we provide an illustrative example of this 3-step procedure, which refers to our

simple empirical application, while in table 1 we compare estimation results from the three possible
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specifications of the IQUAIDS: the unconstrained system, the (semiflexible) concave system and the
(semiflexible) concave and separable system. The table allows to verify how the imposition of such

restrictions affect elasticities and Ralues.

Concluding remarks

We have proposed a new inverse demand system, the Inverse Quadratic AIDS (IQUAIDS), that
nests the Inverse AIDS specification. Furthermore, we have derived a set of necessary and sufficient
restrictions implied by direct weak separability and indirect weak separability within inverse demands.

Maintaining both separability and concavity in a demand system allows to ensure that the model
will satisfy integrability conditions while saving degrees of freedom. We have provided an example of
how direct weak separability and concavity can be managed to obtain a set of nonredundant restrictions
within the IQUAIDS, applying the procedure to a 3-good system.

With proper scaling, the imposition of these restrictions at the scaling point in the IQUAIDS does
not imply more complexity than in the 1AIDS, since all elasticity formulas for the IQUAIDS exactly
duplicate those for the IAIDS at the point of interest. In principle, our method can be extended to
manage other separability assumptions, such as indirect weak separability or implicit separability, and
other flexible functional forms.

Furthermore, we have shown that separability and concavity can be accomodated within a
semiflexible specification, although the separable structure may place a minimal requirement for the
rank of the substitution matrix. The only drawback is that maintaining both separability and concavity
may produce high non-linearities in the estimated model, and that its implementation may become

cumbersome with many goods and a detailed structure of preferences.

11



Table 1: Rvalues and estimated quantity- and scale-elasticities at the mean point .

OsF Oprk Jro 6
Unconstrained system (11 parameters)
Per -0.60 -0.09 -0.16 -0.85
Prk -0.24 -0.42 -0.32 -0.97
Pro -0.64 -0.47 -0.26 -1.37
R 0.964  0.988 -

Semiflexible (rank=1) and concave sysiem
(10 parameters)

Per -0.60 -0.09 -0.15 -0.95
Prk -0.25 -0.44 -0.28 -0.96
Pro -0.63 -0.43 -0.34 -1.40
R 0.964 0.987 -

Semiflexible (rank=1) concave and
separable system (9 parameters)

Per -0.59 -0.13 -0.09 -0.92
PrK -0.43 -0.39 -0.34 -1.16
Pro -0.43 -0.43 -0.38 -1.23
R 0.964 0.986 -

shares 0.510 0.245 0.246




References

Anderson, R.W., 1980, “Some theory of inverse demand for applied demand andysiean
Economic Reviemi4:281-290.

Banks, J., Blundell, R., Lewbel, A., 1997, “Quadratic Engel curves and consumer deRevidly of
Economics and Statistic9:527-539.

Barnett, W.A., Lee, Y.W., 1985, “The global properties of the minflex-Laurent, generalized Leontief,
and translog flexible functional forms€Econometrica53:1421-1437.

Barten, A.P., Bettendorf, L.J., 1989, “Price formation of fish: an application of an inverse demand
system”,European Economic Revige®3:1509-1525.

Blackorby, C., Primont, D., Russell, R.R., 19T8jality, separability and functional structure: theory
and economic application®ew York: North-Holland.

Blackorby, C., Davidson, R., Schworm, W., 1991, “Implicit separability: characterisation and
implications for consumer demandggurnal of Economic Theor$5:364-399.

Christensen, L.R., Jorgenson, D.W., Lau, L.J., 1975, “Transcendental logarithmic utility functions”,
American Economic Review5:367-383.

Diewert, W.E., Wales, T.J., 1987, “Flexible functional forms and global curvature conditions”,
Econometrica55:43-68.

Diewert, W.E., Wales, T.J., 1988, “A normalized quadratic semiflexible functional faloitnal of
Econometrics37:327-342.

Eales, J.S., Unnevehr, L.J., 1994, “The inverse almost ideal demand syBiemopean Economic
Review 38:101-115.

Hicks, J.R., 1956A revision of demand theqr@xford: Oxford University Press.

Kim, H.Y., 1997, “Functional separability and elasticities of complementarigierican Journal of
Agricultural Economics79:1177-1181.

Moschini, G., 1998, “The semiflexible almost ideal demand syst&ufppean Economic Review
42:349-364.

Moschini, G., Moro, D., Green, R.D., 1994, "Maintaining and Testing Separability in Demand Systems",
American Journal of Agricultural Economjcgs: 61-73.

Moschini, G., Vissa, A., 1992, “A linear inverse demand systdouirnal of Agricultural and Resource
Economics17:294-302.

Nayga, R.M., Capps, O., Jr., 1994, “Tests of weak separability in disaggregated meat products”,
American Journal of Agricultural Economics6: 800-808.

Ryan, D.L., Wales, T.J., (1998), “A Simple Method for Imposing Local Curvature in Some Flexible
Consumer-Demand Systemdgurnal of Business & Economic Statistit6:331-338.

Weymark, J.A., 1980, “Duality Results in Demand Thedtytopean Economic Reviet:377-395.

13



Appendix
As a simple example, consider our 3-good system with the following separable tree:
(A1) U(@) =U (0 (@).u'(@,.a)
whereq; is beef. Homogeneity, symmetry and adding-up imply the following restrictions (the “numeraire”

for homogeneity ig}s, which belongs to the two-good group):

Vs = Vi3~ Vas
Vie = Vu Vo
(A.2) Yoo = Ve Vo
B, =-B,~ B,
A, ==A -2,

a,=1-a,-a,

while imposing full concavity on thenk-2matrix implies the following reparameterisation:

_ 2 2
Yu="T,-0a; +a,
(A3) Vi = ~Tyul, —0,0,
;2 _ 32 _ g2

Yo = 7Tg T a, + a,

Finally, the separability structure in (A.1) implies one additional parametric restriction:
(A4) Vis = alﬁs + (y12 - alﬁz)%

Given that we cannot estimate a fully concave model, we are forced te,=@t Under this
specification, we first impose the restrictions in (A.2) on the original price and income parameters, and,
in a second step, we impose the Cholesky expressions on price parameters.seftinjow the
separability restriction in (A.4) must be rewritten to take into accountythaind as are restricted by
homogeneity and botly; and yi» are restrictedby concavity. Thus substituting the corresponding
expressions and rearranging, the same restriction becomes:

A.5 - _T121a2 +a1a2B3 _a1ﬁz(1_a1 _az)
(A9) =y
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