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Dynamic Analysis with Time Series Models: Simulation and Empirical Evidence 
Carlos W. Robledo and Hector O. Zapata

Abstract.

The performance of the FPE, AIC, HQ and SC criteria in choosing lag-length, and the effect on the

impulse-response functions, are studied in a Monte Carlo simulation. The experiments include stationary,

cointegrated, and mixed unit root VAR and MA cases.

Keywords: Statistical selection criteria, cointegration, mixed unit roots, impulse response functions,

small sample properties.

I. Introduction

Impulse response functions (IRF) are often used in agricultural economics to study price dynamics,

market integration, and linkages between the macroeconomy and the agriculture, among other areas.

However, macroeconomic data sets for the postwar era are comparatively short, which has led observers

to question the statistical reliability of impulse response estimates from unrestricted vector

autoregressions --VARs (Lutz Kilian, 1998).

Confidence bands for impulse response estimates are often based on Lütkepohl’s (1990)

asymptotic normal approximation, Runkles’s (1987) nonparametric bootstrap method, or the parametric

Monte Carlo integration procedure of Doan (1990). More over, if the variables in the system are

cointegrated, the procedure described by Lütkepohl and Reimers (1992) can be followed and which

verifies well known asymptotic properties. In the presence of unit roots (or mixed unit roots), Phillips

(1998) describes the impulse response asymptotic distribution which closely resembles the cointegrated

case.

Although the recent developments in time-series econometrics (units-roots, cointegration, etc.)

have helped improve our understanding of nonstationarity and its role in time series modeling, however

some questions remain. One that has not been studied much relates to the effect of chosen lag-length

through alternative statistical selection criteria (SSC). More importantly, limited work is available on this

issue and its relationship to various orders of integration when modeling a system such as a vector

autoregression (VAR). Thus, the main objective of this paper is to present and discuss the results of some

relevant empirical evidence attained through Monte Carlo experiments, in choosing lag-length through
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alternative SSC and its effect on the IRFs. The “what if” scenarios considered, due to their empirical

relevance for VARs, are: (a) all I(0) series, (b) all I(1) series, and (c) some I(0) and others I(1) series.

The paper is organized as follows. Section II describes the notation and models adopted, Section

III  introduces details of  the simulation design. Section IV presents the results in two separate

subsections, one related to the SSC results and the other on the small sample properties of IRFs in

presence of mixed unit roots. Last Section V is discussion.

II. Notation and main results used.

The VAR model

To focus the discussion and establish notation, first a VAR model is described. Consider a k-variate data

series y of length T+p, generated by a covariance stationary VAR(p) process with intercept v,

yt = v + A1 yt-1 + … + Ap yt-p + ut , (1)

where the lag order p is assumed to be finite and known, ut is a identically and independently distributed

white noise disturbance, with mean zero and covariance matrix Σu.

Criteria for VAR Order Selection

When the lag order p is unknown, and if forecasting (for analysis purposes) is the objective, it makes

sense to choose the order p such that a measure of forecast precision is minimized (Lütkepohl, 1993).

Akaike (1969) suggested to base the VAR choice on the approximate 1-step forecast mean squared error

(MSE) Σ ŷ (1)=
T+Km+1

T  Σu, where m denotes the order of the VAR process fitted to the data. To make

this criterion operational Akaike suggests using the LS estimator for Σu,with degrees of freedom

adjustment, and taking the determinant of the resulting expression. The resulting criteria is called the final

prediction error (FPE) criterion, that is,

FPE(m) = 




T+Km+1

T−km−1
a

K

 det( Σ
~

u), (2)

where Σ
~

u  stands for the MLE estimate of  Σu (see for instance, Lütkepohl (1993), eq 4.2.11).

Based on the FPE criterion the estimate p̂(FPE) of p is chosen such that,

FPE[p̂(FPE)] = min{FPE(m)|m = 0, 1, …, M}. (3)

That is, VAR models of orders m=0, 1, …, M are estimate and the corresponding FPE(m) values

are computed. The order minimizing the FPE values is the chosen as estimate for p.
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Akaike (1974), based on a quite different reasoning, derived a similar criterion, abbreviated as

AIC (Akaike’s Information Criteria). For a VAR(m) process this criterion is

AIC(m) = ln |Σ
~

u(m)| + 
2mK2

T . (4)

The estimate p̂(AIC) for p is chosen so that this criterion is minimized.

Before presenting other two criteria, it is worth mentioning that the limiting probability for

underestimating the VAR order is zero for both p̂(AIC) and p̂(FPE) so that they overestimate the true

order positive probability. However, the limiting probability for overestimating the order declines with

increasing dimension K, and is negligible for K≥5 (Paulsen and Tjostheim, 1985).

Two consistent criteria that have been quite popular in recent applied work are the HQ (Hannan

and Quinn, 1979) and the SC (Schwarz, 1978) criteria, defined as

HQ(m) = ln |Σ
~

u(m)| + 
2 ln ln T

T  mK2, (5)

and

SC(m)= ln |Σ
~

u(m)| + 
ln T
T  mK2, (6)

respectively. As before, the order p̂(HQ)  is such that minimizes HQ(m) for m=0,1,…, M, and

p̂(SC) the one that minimized SC(m) for m=0,1,…, M.

The impulse response functions

The system’s responses to disturbances (expressed in reduced-form), are obtained by the recursion

Φi = ∑
j=1

i
 Φi-j Aj,  i=1, 2, … (7)

where Φ0 = IT and Aj = 0 for j>p.

The orthogonal impulse responses are defined as

Θi = Φi P, i=0, 1, … (8)

where P is the lower triangular matrix of the Cholesky decomposition, thus satisfying PP’=Σu.

The functions of interest are the entries of the orthogonal impulse responses Θi, say θlm,i,  and are

interpreted as the response of variable l to a one-time impulse in variable m, i periods ago.
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The asymptotic distributions of Impulse Responses

Before concentrating in the small-sample statistical properties of the impulse response functions, it is

important to introduce the asymptotics distributions of the IRFs under different VARs specifications.

If the VAR(p) data generating process (DGP) is stationary and stable, and if

T 






α̂−α

σ̂−σ
 →d  N





 0 ; 



Σα̂ 0

0 Σσ̂

then (Lütkepohl, 1990)

T vec(Φi
^ −Φi) →d  N(0, GiΣα̂Gi

’),i=1, 2,… (9)

and

T vec(Θi
^ −Θi) →d  N(0, CiΣα̂Ci

’ + C− iΣσ̂C− i), i=1, 2,… (10)

where the hat on a parameter represents the unrestricted least square estimate of that parameter, α=vec(A1,

…, A1), vec denotes the column stacking operator, σ=vech(Σu), vech is the operator that stacks the

elements on and below the diagonal only,  Gi = 
∂ vec(Φi)

∂α'
, C0 = 0, Ci = (P’⊗IK)Gi , i=1, 2, …, C− i = (IK ⊗

Φi)H,  i=0, 1, 2, …, and H=
∂ vec(P)

∂σ'
.

For a researcher who does not know the true structure of the DGP it is possible to base an impulse

response analysis on an approximating finite order VAR process. The consequences of such an approach

can be found in Lütkepohl (1993, pp314). It the VAR(p) DGP is cointegrated or having unit roots or near

unit roots, equivalent expressions to the stationary case (equations (0 and (10)) can be found in Lütkepohl

and Reimers (1992) and Phillips (1998) respectively.

III. The simulation design.

A Monte Carlo experiment is designed to study the performance of SSC in choosing lag-length for

various sample sizes. Additionally, stochastic properties of the simulated bi-variate series cover scenarios

that are reported in empirical work: a)  stationarity, b) integrated series with cointegration, and c) mixed

unit roots. The performance of  IRFs for each of these scenarios in classical VAR and MA effects is

evaluated by comparing the asymptotic IRFs and their standard errors to the simulated ones. Table 1

contains all simulated model structures.
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Part I: Evaluating the statistical selection criteria

The performance of the FPE, AIC, HQ, and SC criteria is evaluated for the following model

specifications: (i) Stationary VAR (StatVAR), (ii) Stationary MA (StatMA), (iii) Cointegrated VAR

(CoiVAR), (iv) Cointegrated MA (CoiMA), (v) Mixed Unit Roots VAR (MixVAR), (vi) Mixed Unit

Roots MA (MixMA). These six variations combined with four different sample sizes of T=25, 50, 75, and

200, give a total of twenty-four scenarios; each scenario is replicated 1000 times.

Table 1: Population models adopted for the six variations considered, with K=2, and
 T=25, 50, 75, 200. For the VAR specifications p=2, for the MA specifications p=50.
Model Specifications

StatVAR1

yt = v + A1 yt-1 + A2 yt-2 + ut,       t=1,….,T

ut ~ N









0

0 ;Σu , Σu=



1 0

0 1 , v=



0

0 ,  A1=



-.319 .959

.044  -.264 , A2=



-.160 .932

.050  -.022 .

StatMA2
yt = M1 ut-1 + ut =Σ

i=1
∞ Ai yt-i + ut,       t=1,….,T

ut ~ N









0

0 ;Σu , , Σu=



1 0

0 1 , M1=



-.310711 .8355649

-.00978  -.275499 , Ai=−(−M1)
i

CoiVAR3

yt = v + A1 yt-1 + A2 yt-2 + ut,       t=1,….,T

ut ~ N









0

0 ;Σu , Σu=



1 0

0 1 , A1=



.5 .3

.3 .5 , A2= 



-.5 -.3

-.3 .5 .

Note that |Ik−A1−A2|=0.

CoiMA4

yt = yo + δt + ψ(1) 



Σ

i=1
∞ ei  + ηt − ηo,       t=1,….,T

ei ~ N









0

0 ;Ik , independent of ηt ~ N









0

0 ;Ik ; δ = 



1

0.8670793  is such that

A’δ=0, with A a matrix verifying that A’ψ(1)=0; and

ψ(1) = IK + M1, with |ψ(1)|=0, M1 =



-.310711 .8355649

.5976682 -.275499 .

MixVAR5

yt = v + A1 yt-1 + A2 yt-2 + ut,       t=1,….,T

ut ~ N









0

0 ;Σu , Σu=



1 0

0 1 , v=



0

0 ,  A1=



1   0

0   0.3 , A2=



-.1   0

0    -0.3 .

MixMA6
yt = yo + δt + ψ(1) 



Σ

i=1
∞ ei  + ηt − ηo,       t=1,….,T

ei and ηt as in CoiMA; δ=



0.7

 0 ;  ψ(1)=IK + M1, |ψ(1)|≠0, M1=



.9925923 -.067217

.1475988 .159295

                                                  
1 The specification for this variation closes resembles the example in Lütkepohl (1993), pp 79.
2 The specification for the matrix M1 of this variation is derived from the MA representation of the VAR(2) specification in the StatVAR case, as
in Lütkepohl (1993), pp. 28, eq. [6.2.2].
3 This specification follows Hamilton (1994), pp. 580, eq. [19.1.41]. In the Monte Carlo sample generation process, the Johansen-Juselius (1990)
test was performed to test the hypothesis of cointegration. If rejected, that sample was discharged (co-integration pre-test).
4 This specification follows Hamilton (1994), eq. [19.1.13], pp. 575. Monte Carlo samples were also pre-tested .
5 This specification follows Phillips (1998). The Monte Carlo samples were tested with the Dickey-Fuller (1979) test for the presence of unit
roots.
6 Note that, for this specification, setting the second entry of the vector δ equals to zero makes y2t be stationary, while y2t still has a unit roots. The
Monte Carlo samples are also accordingly pre-tested.
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Part II: Small-sample properties of IRFs

This second part of the study evaluates the effective coverage rate of the nominal 95% asymptotic

confidence intervals for the orthogonal IRFs (Lütkepohl and Reimers, 1992) and compares them to the

Monte Carlo integration intervals. The confidence intervals are constructed for samples of size T=25, 50,

75 and 200, while the Monte Carlo experiments are based on 1000 replications.

The effective coverage is defined as the relative frequency at which the confidence interval

covers the true. The true orthogonal IRFs are derived, accordingly, from the models described in Table 1.

As the simulation results are based on 1000 trials, then the Monte Carlo standard error for the coverage

estimate are less than 0.01 (Kilian, 1998).

 In the framework provided by the test of hypothesis theory, errors Type I and II play an important

role.  The effective coverage rates can be interpreted as an estimate of the probability of committing one

or the other of these errors. If the model adopted is the “correct” one, then the effective coverage rate

provides an estimate of the error Type I probability, meanwhile if the adopted model is  “wrong” the

coverage rate provides an estimate of the error Type II probability. Table II describes the different

experiments considered to obtain effective coverage rates to estimate the probabilities of Type I and II

errors.

For the case where the adopted model is STAT, it is meant that the estimation procedure adopted

is the standard LS procedure, with distribution of the orthogonal IRFs estimates as described in equation

(10). For the cases COI and MIX, the estimation procedure adopted is the restricted maximum likelihood,

with distributions as in Lütkepohl and Reimers (1992) and Phillips (1998). In all cases, it is assumed that

the right lag-length has been chosen.

Table 2. Experiments considered for the evaluation of the orthogonal IRFs via the effective coverage
rates.

MODEL ADOPTED

TRUE Stationary (STAT) Cointegrated (COI) Mixed Unit Roots (MIX)

STAT STAT:STAT(*)

COI COI:STAT(**) COI:COI(*)

MIX MIX:STAT(**) MIX:COI(**) MIX:MIX(*)

A (*) indicates a correct decision in adopting a model for inferences purposes; the effective coverage rate in
that cases estimates the probability of the error Type I.  A (**), on the contrary, indicates that the efective coverage
rate estimates the probability of the error Type II.

The cases STAT:COI and STAT:MIX where not considered in this study because they are

situations that in practice does not occur, meanwhile the cases COI:STAT and MIX:STAT are the most

frequent mistakes observed in the real world of the VARs applications.
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IV. Results

On the performance of the SSC

We present the results of a bivariate model with a true lag-length p=2 for the VAR and p=1 for the MA

specifications. The main results on the use of SSC to choose lag-length are presented in Table 3, with

stationarity (upper block), cointegration (middle block), and mixed unit roots (bottom block).  We

summarize the main results as follows. The stationary case, which is the benchmark, generates the

expected results; all SSC choose the correct lag-length for the VAR(2), and at least the correct, or an

extended, lag-length for the MA(1). This result is consistent with other simulation works. The results are

encouraging. All SSC chose an appropriate lag-length around the true; to our knowledge this is first hand

simulation evidence in experiments that use mixed unit roots as the general setup. For the most complex

cases, the mixed unit roots, we were surprised to find that all SSC remained parsimonious, particularly so

for the MA(1) effects; however, note that the nominal size increases in all cases, and that this is also true

for all experiments where there is a MA(1) effect.

On the small sample properties of the IRFs when unit roots are present

While this experiment was in progress, Phillips (1998) published some theoretical results and Monte

Carlo evidence on IRFs for non-stationary models. One important addition in our experiment is that we

fixed the lag-length to the one most frequently identified by the SSC (p=2 for the VAR models, and p=1

if MA effects are present) in the previous section. To save space, we only report that the stationary case

results in this experiments reproduce the well known theory as in Lütkepohl (1993), that is for a bi-variate

VAR the coverage rates for the simulated confidence intervals were almost identical to the asymptotic

ones, and sometimes smaller. For instance, the IRF of  y2 on y1 had  coverage rates of (0.043, 0.045,

0.052) for one period ahead at samples of sizes 25, 75 and 200; increasing the horizon to nineteen periods,

generated coverage rates of size (0.009, 0.067, 0.153) for the three sample sizes. When MA effects are

present in the VAR models, the SSC most frequently identified a lag-length of k=1; this is an unexpected

result given that MA effects imply infinite AR lags. It is also found that the coverage rates deteriorate

very quickly as the number of IRs is increased. For example, for the same cases discussed above, the set

of coverage rates is (0.077, 0.111, 0.227) and (1, 1, 1).
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Table 3. Lag-length chosen by the SSC, sample size T=75. Numbers in parentheses are percentages on

1000 replications.

Model FPE AIC HQ SC Property

Sample Size: n=25

VAR(2) 2 (56.5)
3 (12.8)

2 (45.5)
5 (23.0)

2 (50.3)
5 (16.8)

2 (51.8)
0 (22.5)

Stationary

MA(1) 1 (49.5)
2 (23.9)

1 (44.2)
2 (21.5)

1 (56.3)
2 (18.1)

1 (61.0)
0 (28.1)

Stationary

VAR(2) 2 (57.2)
3 (12.6)

2 (44.8)
5 (26.5)

2 (50.9)
5 (20.3)

2 (58.7)
2 (20.6)

Cointegrated

MA(1) 1 (59.5)
2 (15.8)

1 (50.1)
6 (15.8)

1 (68.5)
2 (12.1)

1 (91.3)
2 (6.1)

Cointegrated

VAR(2) 2 (45.7)
3 (12.8

2 (35.8)
5 (28.5)

2 (40.7)
5 (22.0)

2 (54.5)
1 (27.3)

Mixed Unit Roots

MA(1) 1 (64.1)
2 (12.7)

1 (54.2)
6 (17.5)

1 (72.3)
2 (9.4)

1 (92.9)
2 (4.2)

Mixed Unit Roots

Sample Size: n=75
VAR(2) 2 (84.6)

3 (8.4)
2 (83.7)
3 (8.6)

2 (96.9)
3 (2.4)

2 (99.3) Stationary

MA(1) 2 (50.8)
1 (20.3)

2 (49.6)
1 (19.9)

1 (48.6)
2 (44.4)

1 (78.6)
2 (20.3)

Stationary

VAR(2) 2 (86.0)
3 (9.1)

2 (85.2)
3 (9.2)

2 (96.5)
3 (3.1)

2 (99.5)
1 (0.5)

Cointegrated

MA(1) 1 (58.2)
2 (30.1)

1 (56.5)
2 (29.1)

1 (83.4)
2 (14.7)

1 (95.9)
2 (4.1)

Cointegrated

VAR(2) 2 (81.7)
3 (10.6)

2 (81.3)
3 (10.6)

2 (95.7)
3 (3.6)

2 (99.8)
3 (0.2) Mixed Unit Roots

MA(1) 1 (52.9)
2 (33.0)

1 (52.3)
2 (31.7)

1 (81.0)
2 (17.4)

1 (95.6)
2 (4.4) Mixed Unit Roots

Sample Size: n=200
VAR(2) 2 (88.5)

3 (7.2)
2 (88.5)
3 (7.2)

2 (98.6)
3 (1.3)

2 (99.8)
3( 0.2)

Stationary

MA(1) 2 (49.5)
3 (36.1)

2 (49.5)
3 (35.8)

2 (79.4)
3 (13.8)

2 (67.7)
1 (31.2)

Stationary

VAR(2) 2 (87.6)
3 (8.9)

2 (87.4)
3 (9.0)

2 (99.2)
3 (0.7)

2 (99.9)
3(0.10)

Cointegrated

MA(1) 2 (55.7)
1 (30.2)

2 (55.6)
1 (30.2)

1 (67.1)
2 (31.7)

1 (93.4)
2 (6.6)

Cointegrated

VAR(2) 2 (87.4)
3 (8.6)

2 (87.4)
3 (8.6)

2 (99.5)
3 (0.5)

2 (100)
Mixed Unit Roots

MA(1) 2 (70.9)
3 (15.3)

2 (70.8)
3 (15.3)

2 (62.9)
1 (34.3)

1 (73.6)
2 (26.3) Mixed Unit Roots

The results of the cointegrated models in this experiments are as reported in Lütkepohl and

Reimer (1992) for sample sizes greater than T= 50 and a bivariate VAR. The coverage rates for the

simulated confidence intervals were almost identical to the asymptotic ones. For the smallest sample size

(T=25), the simulated confidence interval is wider than the theoretical, as can be seen in Figure 1, panel

(c), meanwhile the coverage rates are above the nominal size. For instance, the IRF of  y2 on y1 had

coverage rates of (0.123, 0.062, 0.057) for one period ahead at samples of sizes 25, 75 and 200; increasing
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the horizon to nineteen periods, generated coverage rates of size (0.15, 0.09, 0.08) for the three sample

sizes.

For the mixed unit root models the most salient feature of the IRFs, at any sample size, is that

coverage rates deteriorate considerably as the response horizon is lengthened. For example, the coverage

rate of the IRFs of y2 on y1 were (0.168, 0.074, 0.072) and (0.86, 0.896, 0.92) at horizons 1 and 19,

respectively, and sample sizes of 25, 75 and 200. In each of these cases the true model was a VAR.

Figure 1: visual perspective on the behavior of the IRFs and the asymptotic confidence intervals (thick

black lines) versus the simulated one -average results are shown (thin gray lines).

(a)                                                                 (b)

(c)                                                                 (d)

(e)                                                                 (f)

 Y2 -> Y1 (Stat:Stat) n=25

-1

-0.5

0

0.5

1

1.5

0 10 20 30

Periods Ahead

 Y2 -> Y1 (Stat:Stat) n=75
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1
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1
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Results on miss specification. The most interesting findings arise from evaluating what happens when a) a

cointegrated model is estimated as if it were stationary (using a classical VAR on levels), and b) a mixed

unit roots model is estimated as stationary. The results for the estimation of  IRFs of y2 on y1 are reported

for brevity in table 4. First, the coverage rates, when a stationary VAR is estimated on cointegrated data,

are close to the nominal size for short horizons (less than ten periods ahead); then they deteriorate some

(Table 4a). Second, a similar result is found for the estimation of a VAR in levels for a mixed unit roots

model; however, the deterioration of the coverage rates occurs at shorter horizons –less than nine periods

(Table 4b). Third, estimation of a VAR in levels when the variables are cointegrated and have MA

effects, the coverage rate deteriorates right at the first period ahead, at all sample sizes; a similar result

occurs when the true model is mixed.

Table 4. Coverage rates of the IRFs confidence intervals, nonstationary cases modeled as stationary.

COI:Stat
(a)

MIX:Stat
(b)

IR: Y2->Y1 n=25 n=75 n=200 n=25 n=75 n=200

0 0.093 0.058 0.055 0.102 0.067 0.051
1 0.056 0.068 0.065 0.085 0.05 0.054
2 0.072 0.078 0.1 0.092 0.081 0.154
3 0.027 0.06 0.072 0.059 0.078 0.153
4 0.015 0.046 0.05 0.012 0.09 0.2
9 0.003 0.027 0.066 0.197 0.566 0.816
19 0.385 0.192 0.149 0.828 0.939 0.995
29 0.622 0.343 0.224 0.923 0.973 1

V. Conclusions.

This study raises some important issues about what we can expect to learn from empirical research related

to the study of impulse response functions in presence of mixed unit roots and small sample sizes.

First of all it is possible to conclude that all SSC choose the correct lag-length for the VAR(2).

Although this result is consistent with other simulation works,  it is worth mentioning that to our

knowledge this is first hand simulation evidence in experiments that use mixed unit roots. For the most

complex cases, the mixed unit roots, all SSC remained parsimonious, particularly so for the MA(1)

effects. The nominal size increases in all cases  where there is a MA(1) effect.

Secondly, when the stationary case is modeled correctly trough a VAR in levels, the IRFs

confidence intervals are not affected seriously by the sample size. It is not the case for the cointegrated or

mixed unit roots models when modeled correctly via RML, for which the small sample size deteriorates

somewhat the estimates. Although these results are as expected, further research is needed in order to
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provide a more formal characterization of this behavior.  If the variables are cointegrated, and a VAR in

levels is used to estimate the IRFs, although the samples size does play an important role as is already

known is not as important as in the case of mixed unit roots.

It is important to mention that our results are in line with those in Phillips (1998) for the estimated

IRFs, which are shown to be inconsistent at long horizons in unrestricted VARs with some unit roots. In

contrast, RMLE provides consistent estimates that are asymptotically optimal.

Further research is needed on the impact of MA effects on the IRFs. The results here suggests a

considerable deterioration in the reliability of  the estimated IRFs for either cointegrated or mixed unit

root models.

Some caveats of this study are mainly related with the population specification chosen (see Table

1). As has been shown by Spencer (1989) and Todd (1990), the estimated impulse responses can be very

sensitive to changes in the VAR specification, such as the inclusion of trends and additional variables.

Thus, further research has to be conducted in order to provide more insight into this problem. Phillips

(1998) provides theoretical results than should be considered for these purposes.
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