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Factors Determining the Use of Guaranteed Loans by  
U.S. Commercial Banks  

 

The use of Farm Service Agency (FSA) loan guarantees has grown in importance over 

the past decade.  In fiscal 1999, the level of new guaranteed obligations rose to over $2 billion–

clearly more than the obligations for direct loans.  Total guaranteed obligations remained above 

$2 billion for the next five years.  In fiscal 2003, total guaranteed obligations reached an all-time 

high of $2.6 billion.  The FSA guaranteed loan program is the major form of government 

supported credit assistance for production agriculture.  It is clear Congress intends the FSA 

guaranteed loan program to continue to serve family-sized farm operations by providing 

government assisted credit when private sources decline to do so without government backing. In 

addition, a considerable proportion of the program’s annual allocation is directed toward 

beginning and socially disadvantaged1 (SDA) borrowers.   Given the significant support that this 

program provides to production agriculture, it is critical that key aspects be examined in order to 

determine whether efficient delivery of federal funds is being achieved.  This study provides 

information on how to encourage more lender use and increase overall program efficiency.   

Purpose and Overview of Study 

This study examines factors impacting the use of FSA guaranteed loans by commercial 

banks in the U.S. during fiscal years 1995-2003.  Annual funding for the FSA guaranteed loan 

program is obligated by the federal government, but banks and other creditor providers are the 

actual sources of loan principal.  To be eligible for program support, agricultural borrowers must 

be creditworthy, family-sized operations unable to receive credit at reasonable rates and terms in 

                                                 
1 The Agricultural Credit Act of 1987 (P.L. 100-233) defines an SDA farmer as one who may have been subject to 
racial, ethnic, or gender prejudice because of their identity as members of a group without regard to their individual 
qualities.  Generally, beginning farmers have less than 10 years experience owning or operating a farm. 



 

the absence of a guarantee.  If the borrower defaults, the federal government reimburses the 

lender for a portion (up to 95 percent) of lost principal and interest.  While banks are not the only 

credit providers using FSA loan guarantees, they are the major recipients.   

Although a number of studies have analyzed various dimensions of the guaranteed 

program in the past, this study is the first to use a multi-state, multi-year approach at the bank 

(firm) level.  Past analyses of the program have shown that there is significant geographic 

disparity in the use of guaranteed loans.  The results of this study provide a better understanding 

of the past performance of the guaranteed program and how well program policy and structure 

have ensured serving the intended farmer-operator clientele.   

The study identifies lender and farm financial characteristics that influence the propensity 

of a bank to use guaranteed loans as well as variables that affect the level of program usage.  A 

previously-developed bank portfolio selection model with investment choices for agricultural 

loans, non-agricultural loans, and government securities is modified to include an asset choice 

for guaranteed agricultural loans (which offer lenders reduced exposure to loss but carry higher 

transactions costs).  The model implied by the solution to this expected profit maximization 

problem is then estimated using a double-hurdle, econometric model.  Choice of independent 

variables for the econometric model is guided by the theoretical model.  Bank asset size, loan-to-

asset ratio, agricultural loan-to-total loan ratio, and multi-bank holding affiliation are among the 

lender variables considered.  State-level farm financial variables include debt servicing ratio, 

debt-to-asset ratio, variability in net farm income, variability in the value of farm assets, and 

other variables.  

Bank use of the program is considered for three categories of farm borrowers:  all 

guaranteed, beginning only, and SDA only.  For each borrower category, separate regression 
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models are estimated for farm ownership (longer term, primarily real estate) and operating loans 

(short to medium term, primarily non-real estate).  A double-hurdle specification is employed to 

account for incidental truncation in the loan volume dependent variable.  Incidental truncation 

occurs because loan volume is only observed if a bank makes a guaranteed loan.  The first 

equation is a “selection” equation and is estimated as a probit model with the binary dependent 

variable indicating whether a bank made a guaranteed loan to a borrower(s) in a given year.  It 

predicts the likelihood of a bank using guaranteed loans to serve its farm borrowers.  The second 

equation is a “volume” regression equation and is estimated using the dollar amount of 

guaranteed loans made by a bank in a given year as the dependent variable.  The second equation 

explains variations in loan volumes for banks originating guaranteed loans.  

Review of Prior Studies 

Five prior studies focused on the use of FSA guaranteed loans (Koenig and Sullivan 

(1991), Sullivan and Herr (1990), Dixon, Ahrendsen, and McCollum (1999), Settlage et al. 

(2001b), and Dodson and Koenig (2003)).  The Koenig and Sullivan study was a descriptive 

analysis of commercial banks making at least one guaranteed loan in fiscal 1988.  Sullivan and 

Herr again used fiscal 1988 data to examine the characteristics of participating lenders and how 

lender behavior affected the guaranteed loan program.  Dixon, Ahrendsen, and McCollum 

identified characteristics of banks and economic forces that influenced commercial bank 

utilization of FSA guarantee programs in Arkansas during fiscal years 1990-1995.  Settlage et al. 

(2001b) identified which farm operator, farm economy, and commercial bank characteristics 

were most important in determining guaranteed loan principal outstanding in the U.S. for 1990-

1998.  Dodson and Koenig (2003) used county-level data to model the use of FSA farm loan 

programs between 1995 and 1999.     
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All but one of the previously discussed studies faced sample constraints.  While national 

in scope, both Koenig and Sullivan and Sullivan and Herr examined only one year of data, fiscal 

1988.  Guaranteed loans were just beginning to overtake direct loans as the favored credit 

delivery instrument to FSA borrowers in 1988.  Since 1988, the dollar volume of guaranteed 

loans has increased substantially.  In addition, 1988 was a recovery period for the agricultural 

sector after the bust of the early 1980s, so it is quite likely that the results of those studies were 

influenced by uncommon economic conditions.   

Dixon, Ahrendsen and McCollum tried to capture the time dimension by using six years 

of data.  Changes in farm income and value of land were weak proxy variables for completely 

measuring farm financial conditions.  Furthermore, they sampled in a relatively small geographic 

area, one state, so their results need to be tested on a national basis to have greater validity for 

policymaking and program evaluation.  The Settlage et al. (2001b) principal outstanding models 

were national in scope, but the level of aggregation at the state level complicated the 

interpretation of results from a policymaking perspective.  This study overcomes the sampling 

issues faced by these previous studies by choosing a national sample over a span of nine years, 

fiscal 1995 through 2003, and obtaining data at the bank (firm) level. 

There are major differences between the present study and that conducted by Dodson and 

Koenig (2003).  The first is the difference in observational unit.  Dodson and Koenig (2003) 

followed a county-level approach, while the current study employs a firm-level approach to 

guaranteed loan use.  The second difference lies in the explanatory variables chosen for the 

models, particularly those relating to lenders.  The county-level models of the previous authors 

failed to incorporate lender characteristics (other than simple presence within a county which 
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was positive and significant) as indicators of guaranteed loan use.  This study seeks to identify 

bank-level variables that determine use of guaranteed loans by banks.     

The previous studies did not specifically model guaranteed loan origination to SDA and 

beginning farmers.  Targeted lending to SDA and beginning farmers is a critical aspect for the 

future of the guaranteed loan program.  The guaranteed loan volume originated to these groups 

has increased significantly in past years.  Given the mandate of FSA to target these two borrower 

groups, there is no indication that their importance to the guaranteed loan program will lessen.  

The present study examines commercial bank lending to these farmer borrower groups by 

estimating sub-models that explain the propensity of banks to make loans to SDA and beginning 

farmers as well as the volume of loans made to these groups.  

Research Methodology 

The propensity and intensity of guaranteed loan usage by lenders can be modeled by a 

variation of Pederson’s approach to determining bank lending decisions.  Pederson (1992) 

analyzed portfolio adjustments of commercial agricultural banks in Minnesota during the period 

1976-87.  He developed an asset allocation model in which the bank’s problem was to select the 

mix of loan assets and securities that would generate desired levels of portfolio return and risk.2  

The framework was used to identify portfolio adjustments to changes in expected rates of return 

and alternative sources of risk.  Following this approach, optimal portfolio mix is determined by 

maximizing the firm’s objective function subject to a constraint.  The firm is assumed to be risk 

averse in a risky environment.  The ultimate goal of the modeling is to derive a behavioral 

equation that explains the quantity of guaranteed agricultural loans originated by banks in a 

given year.   

 
                                                 
2 The return and loss equations for fixed and variable rate loans in his models were specified in Santomero (1983). 
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As in Pederson, the portfolio allocation decision for a bank can be stated as: 
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Here, λ is the coefficient of absolute risk aversion, and W is the amount of bank funds available 

for investment.  E(π) and var(π) are expected profit and variance of profit, respectively.  The 

quantity of funds invested in the ith asset category is represented by qi.  The ρi indicate the 

portion of qi that counts against the bank’s lending limit.  A bank may invest in variable and 

fixed rate contracts in three loan markets:  (1) non-agricultural, (2) agricultural non-guaranteed 

and (3) agricultural guaranteed.  In addition, banks may invest in short-term government 

securities.  The subscript i indexes the asset market (1=non-agricultural loans, 2=agricultural 

non-guaranteed loans, 3=agricultural guaranteed loans, and 4=government securities).  The 

constraint in the above maximization problem is modified from Pederson to accommodate the 

fact that only the non-guaranteed portion of a guaranteed loan (ρ3) counts toward a bank’s legal 

lending limit (for non-guaranteed loans and government securities, ρi  equals one).3

The profit identity is written as: 
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where  and  are the ex post random returns from variable and fixed rate contracts in each 

loan category and φ  is the proportion of variable rate loans held in each loan category.  The rate 

of return earned on government securities held by the bank is r, and 

iVR iFR

i

R  is the market interest rate 

                                                 
3 In practice, banks may choose ρ3.  While in reality ρ3 is variable, it is standard practice for it to be fixed at 0.1 or 
0.05 depending on the type of loan.  In this model, it is not considered as a decision variable. 
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(cost of funds).  As in Pederson, the bank is assumed to formulate an estimate of market rate 

variability and then set the spread between the fixed and variable rate to compensate for rate 

uncertainty.  Borrowers then choose between fixed and variable rate loans, so the proportion of 

variable-rate lending is exogenous to the bank.  In the model,  ( ) are functions of several 

factors including the variable (fixed) contract rate, the underlying expected profitability of the 

project for which the loan proceeds fund, the overall variance of the returns of the funded 

project, the overall variance of the market interest rate (  only), and the transaction cost 

associated with making a particular type of loan.

iVR R

R

                                                

iF

iV

4

The general solution to the maximization problem implies that the optimal allocation of 

assets is a function of the proportions of variable-rate loans in each of the three loan asset 

categories, loan demand (which when observed reflects not only borrower but also lender 

behavior), expected returns and variance of returns on projects funded by each loan type, 

variance of the market interest rate, covariance between the market interest rate and expected 

returns on projects for each loan type, covariance between expected returns of projects across 

loan types, the transaction cost associated with making a particular type of loan, the expected 

rate of return on securities, and the level of funds available to the bank to make additional loans. 

Econometric Considerations 

 A complete bank model would contain multiple equations each expressed as a function of 

the several variables listed above.  Each equation would correspond separately to each of the 

loan categories in the bank’s portfolio.  As pointed out by Pederson, portfolio equilibrium 

adjustments imply that the allocations to each asset category are determined simultaneously.  

From an econometric standpoint, the most efficient approach to estimating a system of 

 
4 Derivation of both expected return equations may be found in Settlage (2005). 
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simultaneously determined asset equations is Zellner’s seemingly unrelated regression (SUR) 

(Greene).  However, in the case of this particular model, it is not possible to use a conventional 

SUR approach.  One reason is the large number of zero observations on the dependent variable 

corresponding to guaranteed agricultural loan volume.  Most banks do not make FSA guaranteed 

loans and even those who make FSA guaranteed loans do not necessarily do so every year.  The 

information contained in the dependent variable corresponding to volume of guaranteed loans is 

part qualitative (to make a guaranteed loan or not make a guaranteed loan) and part quantitative 

(the volume of guaranteed loans made).   

 One procedure used to analyze such limited dependent variables in a single equation 

framework is tobit (Tobin).  An alternative approach that allows greater flexibility in modeling 

the effects of the independent variables on both the decision to participate in the guaranteed loan 

program and the level of guaranteed loan participation is to use a two-equation, double-hurdle 

model.  The double-hurdle model as developed in Greene is as follows.  First, a “selection” 

equation is specified as: 

.0 if     0       ),(Φ1]0[Prob

,0 if     1            ),(Φ]0[Prob

≤=−=≤

>==>

itititit

itititit

qzq

qzq
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'
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where qit is equal to the amount of guaranteed loans made, zit is a binary variable that equals 1 if 

a bank is observed to make a guaranteed loan in a given year (qit
 is positive) and 0 if a bank does 

not make a guaranteed loan (qit
 is zero) and Φ(.) is the standard normal cumulative density 

function.  The “selection” equation (γ'wit) determines whether or not a bank will participate in 

the guaranteed loan program in a given year. 

The second step is to specify a “regression” equation for nonlimit observations: 

itititit zqE λβλ+′== xβ]1[       (4) 
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where λβ is the product of the error term for (4) and the correlation coefficient between the error 

terms in (3) and (4) and λit is the inverse Mills ratio (IMR) which is a function of the “selection” 

equation parameters.  The “regression” equation models the level of participation by a bank 

making at least one guaranteed loan in a given year.  The IMR accounts for the incidental 

truncation of the dependent variable in the “regression” equation.   

In order to use the double-hurdle approach, the “selection” equation for the guaranteed 

loan model is estimated as a probit model on the full set of data (all banks in the U.S. in every 

sample year).  The resulting parameters are used to estimate the IMR for each observation which 

is then included as a regressor in (4).  The “regression” equation is estimated using ordinary least 

squares (OLS) on the sub-sample composed of all banks making at least one guaranteed loan in a 

given year.  The resulting t-ratios of the individual parameter estimates have an asymptotic, 

standard normal distribution.  This is the Heckman (1979) approach. 

The above discussion relates only to one equation in the portfolio, the guaranteed 

agricultural loan equation.  As every previous study on FSA guaranteed loan has recognized, 

there are two very different types of guaranteed loans.  There are farm ownership (FO) loans that 

are used for purchasing real estate and operating (OL) loans that are used for annual expenses as 

well as purchase of intermediate assets.   

As shown in the one-state sample of Dixon, Ahrendsen, and McCollum, coefficients 

associated with explanatory variables in the FO and OL models differ in magnitude and 

significance level.  This is likely due to differences in the term structures, purposes and volume 

usage of the two loan types.  In the current study where the sample includes the entire U.S., 

pooling the observations into one model would likely result in a specification error.  It is unlikely 

that the two dependent variables respond identically to a given variable so that coefficients 
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would not be homogeneous across the two samples.  Therefore, separate double-hurdle models 

are needed, and a sampling problem arises with the SUR framework.   

Recall, the first equation in the double-hurdle process is estimated using the entire sample 

of banks.  However, the second equation is estimated using only the data contained in the sample 

of banks that used the guaranteed program by originating at least one loan.  This avoids the 

problem of numerous zero observations on the dependent variable.  In order to estimate separate 

double-hurdle models for FO and OL loans, two samples are needed.  One censored sample 

would contain lenders who made at least one FO loan in a given year and the other would be 

comprised of banks who made at least one OL loan in a given year.  The samples for the 

“regression” equations are not identical across the two equations.  Four cases arise:  (1) a bank 

made at least one FO loan but did not make an OL loan, (2) a bank made at least one OL loan but 

did not make a FO loan, (3) a bank made at least one FO loan and at least one OL loan, and (4) a 

bank made no FSA guaranteed loans of either type.  Using a SUR approach in such a situation 

would be exceedingly difficult.  The joint distribution of the error terms of the implied bivariate 

probit model, the regression terms with the IMR terms and those regression models without IMR 

would be very complex as well as the problem of unequal sample sizes for the various equations 

in the complete model.  But given the very large sample sizes in this study, a more practical 

alternative is utilized. 

In order to get around this difficulty, only the equation corresponding to the loan asset of 

particular interest to the study—guaranteed loans—is estimated using separate samples for FO 

and OL loans.  By choosing to ignore the other assets in the bank portfolio, some estimation 

efficiency is lost because information contained in the cross-equation restrictions is excluded as 

well as the joint distribution of the error terms.  This loss of information can be of particular 
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significance in small-sample applications.  Given the sample size in this study (the sample size 

approaches the size of the population of banks times the number of years), the efficiency loss is 

likely minimal and the estimated parameters are consistent. 

Empirical Loan Usage Model 

 Three four-equation models are estimated.  In any given model one selection equation (3) 

and one regression equation (4) are estimated for FO loans and a corresponding pair for OL 

loans. Each of the four equations contains the same explanatory variables, though the estimated 

coefficients corresponding to those variables may differ in sign and magnitude.5  The models 

vary by sample.  The first model has all guaranteed loans, the second sample contains only 

beginning farmer guaranteed loans and the third model has SDA guaranteed loans.  

Limitations on the availability of data challenge the empirical specification of the models.  

For many of the desired variables, it is impossible to obtain an actual data series because the 

exact variable is either unobservable or data have not been recorded in any readily accessible 

format.  In those situations, an alternative (proxy) variable that likely reflects the preferred 

variable is substituted.  This section addresses the choice of variables used in the econometric 

estimation of the loan usage models.  More specific information regarding the construction and 

sources of all explanatory variables may be found in Settlage (2005).   

The first set of explanatory variables contained in (3) and (4) are the proportions of 

variable rate loans made in each of the three loan asset categories:  non-agricultural, non-

guaranteed agricultural, and guaranteed agricultural.  While it is possible to obtain the proportion 

of variable rate guaranteed agricultural loans (VRG) at the lender level from FSA, comparable 

data do not exist for the proportions of variable rate non-guaranteed agricultural (VRA) and non-

agricultural loans (VRN).  Pederson also encountered this problem.  As a proxy, he used the 
                                                 
5 A priori, the sign expectations for a given explanatory variable are identical across the four equations.   
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percentages of farm and commercial-industrial loan volumes written with floating rates which 

are available from national quarterly bank surveys performed by the Federal Reserve System.6   

Two prior studies suggest suitable proxies for the agricultural and non-agricultural loan 

demand parameters.  Turvey and Weersink’s loan contract (demand) model for agricultural loans 

was composed of variables reflecting loan risk probability (liquidity, solvency, profitability, 

repayment capacity, security, farm enterprise type, and region) and interest rates.  Humphrey and 

Pulley’s composite model of bank profit included not only financial inputs (labor, deposits, and 

physical capital) and outputs (deposits and loans) but also a vector of influences recognized 

within the banking industry to affect profitability.   Growth in population and per capita income 

as well as the funding-loan rate spread were characterized in their study as indicators of loan 

demand intensity.  They included loan-to-asset ratio to reflect bank risk. 

In this study, debt servicing ratio (DSR), debt-to-asset ratio (DAR), coefficient of 

variation in net farm income (CVFI), and coefficient of variation in the value of farmland and 

building (CVLB).are included in the loan usage model to proxy the borrower component of the 

loan demand functions for agricultural loans.  Annual data for these farm financial variables are 

available at the state level from the Economic Research Service (ERS).  In addition to these farm 

financial variables, regional binary variables are included in the model to account for geographic 

differences in loan demand and geographic concentrations of beginning and SDA farmer 

populations.  The coefficient of variation in annual per capita (state) personal income (PCI) is 

included to proxy the demand intensity for non-agricultural loans, while lender loan-to-asset 

ratio (LAR) is included to proxy the lender component present in the loan demand functions.   

As noted in Pederson, comparable data on agricultural and non-agricultural sector returns 

are difficult to find.  Pederson assumes banks qualify or approve their borrowers at the existing 
                                                 
6 This variable is constant across banks for a given year. 
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or expected loan rate and that the underlying project generates returns with expected value 

equaling or exceeding the outlays required to service and repay the debt (though some actual 

outcomes may deviate from the expected level of returns).  A series of regional interest rates are 

obtained from the Federal Reserve’s Survey of Terms of Bank Lending to Farmers and used to 

proxy the expected rate of return on agricultural loan projects (ARET).  Expected rates of return 

for guaranteed agricultural loans (GRET) are computed from guaranteed loan data provided by 

FSA, and non-guaranteed agricultural loan rates of return (NRET) are calculated from FDIC Call 

Report data as described in more detail in Settlage (2005). 

Following Pederson, it is assumed the effects of the credit risk variables are mapped into 

the expected default rates for each loan type.  Thus, the expected default rate on guaranteed loans 

(GDEF) is assumed to reflect the variability of guaranteed loan returns, the covariation of 

guaranteed loan returns with non-guaranteed loan returns, and the covariation between 

guaranteed loan returns and the market interest rate.  The expected default rates for non-

guaranteed agricultural loans (ADEF) and non-agricultural loans (NDEF) follow the same 

convention.  The seasonally adjusted charge-off rates reported quarterly by the Federal Reserve 

for agricultural loans were used to model the variable ADEF, while the variable NRET was 

calculated for each bank using quarterly Call Report data.   

The bank’s actual monetary cost of making a loan is nearly impossible to estimate.  The 

actual cost encompasses the potential resources expended in originating and servicing the loan as 

well as collecting on the loan in the event of a default.  Most of these costs are not measurable in 

terms of dollar amounts from the data available.  To proxy the costs associated with making the 

types of loans considered in this study, the following variables are used:  bank affiliation with a 
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multi-bank holding company (MBHC), agricultural loan-to-total loan ratio (AGTL), and 

guaranteed major lender status (MAJLDR). 

The expected rate of return or yield on securities (SRET) is computed using Call Report 

data for each lender, and the variance of the market interest rate (MKTVAR) is derived from the 

monthly federal funds rate series.  Total bank funds are measured by total bank assets (ASSET).   

The exact empirical specification of the loan usage model can be written as below 
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itkitkitkitk
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itkitkitkitkitkkkit
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where k indicates equation number.  The first equation corresponds to the FO selection equation, 

the second equation corresponds to the FO regression equation, and the third and fourth 

equations correspond to OL selection and regression equations, respectively.  Equation (5) is 

modified to include the IMR for the regression equations. 

The selection equations are estimated using the entire population of banks in the U.S. as 

the sample for all three models.  The FO (OL) selection equation dependent variable is defined 

as 1 if a bank is observed to make a FO (OL) guaranteed loan in a given year, 0 otherwise.  The 

IMRs are estimated and the sample is reduced to having only observations for banks with a 

positive FO (OL) guaranteed loan volume in a given year.7  This reduced sample is used to 

estimate the regression equations that include the estimated IMRs.  The dependent variables in 

the regression equations are the annual volumes of FO and OL guaranteed loans observed for a 

given bank, respectively. 

                                                 
7 For the second and third models, only observations for beginning farmer and SDA loans are in the reduced 
samples. 
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Results and Discussion 

The results of the estimated selection and regression equations for guaranteed FO and OL 

loan usage for all borrowers are listed in table 1.  In order to assess the validity of the equations, 

the hypothesis that all coefficients equal zero was tested.  In all four equations (selection and 

regression models for both FO and OL loans), this hypothesis was clearly rejected.  Measures of 

explanatory power were also considered.  The probit model predicted 91% of the observations 

correctly.  This result was only slightly better than if all observations were predicted as not 

making a loan.  In that case, the prediction success rate would have been 90% (90% of the 

observations in the primary sample had a value of zero for the FO guaranteed lender indicator).  

The probit model correctly predicted 83% of the observations (1% better than the naïve approach 

of predicting no guaranteed loans made).   

The R-squared for the FO regression equation indicated that the independent variables 

explained 11% of the variation in the amount of FO loan volume originated by banks in a given 

state.  This means most of the variation in the level of FO guaranteed volume was left 

unexplained—not unusual for firm level data since much of the variability is firm specific.  Also, 

there was difficulty in finding suitable lender-level proxies for the variables indicated by the 

theoretical model to be included in the models.  The level of aggregation was likely too high.  

Dixon, Ahrendsen, and McCollum as well as Dodson and Koenig (2003) examined a number of 

variables, particularly those that represent borrower demand, at the county level.8  However, 

given the national scope of this study, it would have been enormously difficult to follow such 

precedents resulting in considerable measurement error.  Model fit for the OL regression 

                                                 
8 Dodson and Koenig (2003) measured the loans by the borrower county of origination, and the unit of observation 
in this study is bank by state of origination.  With branching it is difficult to know exactly what county a bank is “in” 
and what competition is in that market. 
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equation was better with an R2 of .21.  This may be due to the fact that many more OL loans are 

made than FO loans.   

FO Loan Usage Model 

In the FO selection model, thirteen of the 21 variables (including the constant but not 

accounting for the regional binary variables) were significant at the 5% level.  All significant 

variables had expected signs except PCI, FOGRET, and SRET.  The estimated coefficients for 

DSR, DAR, and CVLB indicated that rising debt servicing ratios, debt-to-asset ratios and 

increasing variation in the value of real farm assets at the state level were associated with a 

higher likelihood that banks would originate guaranteed FO loans.  Increases in these three farm 

financial demand variables would be associated with an overall reduction in repayment capacity 

and increasing risk in the agricultural sector.  Such factors would likely persuade a lender 

considering an agricultural loan to use a loan guarantee.   

Significant and positive coefficients were found for the variables LAR, MBHC, AGTL, 

MAJLDR, and ASSET.   The estimated models signified that banks with higher loan-to-asset 

ratios, affiliated with multi-bank holding companies, lending larger proportions of their total loan 

portfolio to agriculture, having significant past history of using guaranteed loans, and larger asset 

size were more likely to originate guaranteed loans.  Dixon, Ahrendsen, and McCollum also 

found significant coefficients for LAR, AGTL, and ASSET in their modeling of the propensity of 

Arkansas banks to use guaranteed FO loans during fiscal 1990-95.  The significant marginal 

effects9 for LAR and AGTL in the model were .209 and .290, respectively.  These indicated that a 

.01 unit change in a bank’s loan-to-asset ratio led to a .002 increase in the probability of the bank 

                                                 
9 The marginal effects contained in tables 1, 2, and 3 represent the change in the dependent variables for a 1 unit 
change in the independent variables.  Since a number of the independent variables are ratios, a change of .01 is more 
likely.  The marginal effects for those variables are divided by 100 for more logical interpretation. 
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making a guaranteed FO loan, while .01 unit change in a bank’s agricultural loan-to-total loan 

ratio resulted in a .003 greater chance.     

The unexpected negative signs for PCI and FOGRET are puzzling.  With respect to PCI, 

it could be that more variation in incomes signals unfavorable economic conditions, and banks 

cut back on all types of loans including guaranteed loans.  As for FOGRET, the theory of the risk 

structure of interest rates would indicate that rates of return across the various asset types are 

related.  It is possible that FOGRET is accounting for more than just the return on guaranteed 

agricultural loans.  Perhaps it also reflects some of the variation in the rate of return on 

agricultural loans.  ARET is insignificant and expected to be negative.  If FOGRET is explaining 

some of the variation in the dependent variable attributed to both itself and ARET and the 

negative impact on ARET is outweighing the positive expected impact of FOGRET, then this 

would account for the sign contrary to expectations.   

It was expected that higher rates of return on alternative asset choices (like securities and 

non-agricultural loans) would lead to a lower probability of guaranteed loan use.  The negative 

sign for NRET is consistent with this expectation, but the positive sign on SRET is not.  Perhaps 

banks associate higher rates of return on securities with more stable and favorable economic 

outlooks, and thus expand lending to all sectors.  Pederson found similar results.  In his models, 

higher rates of return on non-agricultural loans led to proportionate lending increases to both 

agricultural and non-agricultural loans.  In addition, an increase in the rate of default on 

agricultural loans was significantly associated with decreases in lending to both types of loans. 

 Sixteen of 22 variables in the FO regression equation (including the constant and IMR) 

had coefficients significant at the 5% level.  However, only four of the variables with significant 

estimated coefficients had marginal effect calculations that were significant (DSR, CVLB, ARET, 
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and NDEF).  The marginal effects indicated that banks holding deposits in states in which the 

debt servicing ratio increases by .01 was expected to originate $18,410 less in guaranteed FO 

loan principal per year.  Similarly, banks holding deposits in states in which the coefficient of 

variation in the value of real farm assets increased by .01 unit were anticipated to make $34,080 

more guaranteed FO loan volume.  If there was a .01 increase in the rate of return on agricultural 

loans, then banks would have increased the amount of guaranteed FO loan volume by 

approximately $74,940.  Finally, a .01 increase in the expected rate of default on non-agricultural 

loans was likely accompanied by a $55,300 increase in guaranteed FO loan principal.   

Ten of the variables with significant coefficients in the FO regression model were also 

significant in the FO selection model.  All retained the same signs as they had in the selection 

equation.  The bank variables significantly impact not only the propensity of guaranteed FO loan 

usage by banks, but also the level of usage.  The positive NDEF coefficient supports the portfolio 

switching argument made previously in which banks shift the assets in their portfolio to take 

advantage of higher rates of return and lower expected risk.  If presented with higher expected 

default rates on non-guaranteed agricultural loans, banks would likely choose holding more FO 

guaranteed loans and fewer non-guaranteed assets.  Higher expected rates of return on 

agricultural loans lead banks to hold more of all types of agricultural loans including guaranteed 

FO loans.   

OL Loan Usage Model 

For the OL selection probit model, there were a number of significant coefficients.  As in 

the FO selection equation, the significant coefficients for DSR, CVLB, PCI, LAR, MBHC, AGTL, 

MAJLDR, SRET, MKTVAR, and ASSET had positive signs.  Like in Dixon, Ahrendsen, and 

McCollum, higher values for the variables LAR and AGTL were associated with an increase in 
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the propensity of a bank to originate a guaranteed OL loan.  The positive signs for DSR and 

CVLB are consistent with expectations.  As higher proportions of cash farm income are needed to 

service debt and as variation in the value of farmland and buildings (real farm assets) in the state 

for which a bank holds deposits increases, the likelihood of banks in those states using OL 

guarantees increases.   

The model indicated that an increase in PCI was associated with a higher probability of 

guaranteed OL loan usage.  The positive sign for PCI was consistent with expectations.  More 

variability in the source of repayment for loans likely made banks cautious and prompted them to 

take advantage of the safety in repayment that guarantees offer.  The marginal effect on the 

coefficient for this variable indicated that a .01 increase in PCI led to a .0015 increase in the 

probability of a bank originating an OL guaranteed loan.  The negative sign for ADEF reflected 

cautiousness on the part of banks.  Although it was anticipated that increases in the expected rate 

of default on non-guaranteed agricultural loans would cause banks to choose other types of assets 

available to them, namely guaranteed agricultural loans, it appeared that banks in the sample did 

not make the switch.  Perhaps when agricultural default rates go up, banks shy away from 

lending to this sector in general.   

 Many of the same variables statistically significant in the OL selection equation are also 

significant in the OL regression equation.  A number of them had signs as expected and were 

consistent with those signs discussed in the previous models.  Once again, the bank-specific 

variables—ASSET, LAR, and AGTL—were significant and positive indicating heavier use of OL 

loan guarantees by banks with larger asset size and relatively more aggressive lending policies, 

both in general and toward agriculture.  Consistent with the other three equations in table 1, the 
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variable representing heavy past usage of the guaranteed loan program, MAJLDR, was highly 

significant. 

As in the OL selection equation, the coefficients for PCI and CVLB were significant as 

were their marginal effects.  Banks holding deposits in states for which the coefficient of 

variation in per capita income increases by .01 can be expected to originate an additional 

$47,400 in guaranteed OL principal.  For banks holding deposits in states for which the 

coefficient of variation in real farm assets rises by .01, the expected increase in OL loan 

obligations would be $12,310.  Finally, significant and positive signs for NDEF and MKTVAR 

indicated that a higher expected rate of default for non-agricultural loans and greater market 

interest rate variability likely led guaranteed lenders to shift the investment of their portfolio 

away from these now riskier assets to safer OL guaranteed loans.   

Beginning Farmer Guaranteed Loans 

Results for the selection and regression equations of the guaranteed FO and loan usage 

models estimated for beginning farm borrower loans are displayed in table 2.  The null 

hypotheses that all coefficients were equal to zero in each equation are rejected.  The FO 

beginning farmer probit model predicted 97% of the observations correctly and the 

corresponding OL probit predicted 95% correctly.  Identical results would have been obtained 

using a naïve approach that predicted all zero observations for the dependent variable.  The R-

squared coefficients for the FO and OL regression equations were .165 and .168, respectively.  

All four equations estimated for the guaranteed beginning borrowers contained a number of 

significant coefficient estimates which indicated explanatory power.  

In the beginning farmer FO selection equation, four borrower demand variables were 

significant.  They were DSR, DAR, CVLB, and PCI.  Model results indicated a higher propensity 
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of making beginning farmer FO loans for lenders holding deposits in states for which the debt 

servicing and debt-to-asset ratios as well as the coefficient of variation in real farm assets were 

rising, and the coefficient of variation in per capita income was falling.  Thus, less repayment 

capacity in the farm sector as well as more variability in farm asset values were associated with 

higher probability of making a beginning farmer FO loan.  More variability in general income 

levels resulted in a smaller chance of a bank making a beginning farmer FO loan.  Higher debt 

servicing ratio and greater variability in farm asset values also significantly increased the 

likelihood of a bank making a beginning farmer guaranteed OL loan as well the volume of OL 

loan principal originated.   

A higher expected rate of return on non-agricultural loans decreased the probability of a 

bank making a beginning FO loan, while greater variance in the market rate of interest increased 

this probability.  The signage of these two variables was directly in line with the switching nature 

of the portfolio selection model.  The strong positive significance of the lender characteristics 

(LAR, MBHC, AGTL, MAJLDR, and ASSET) continued in both the beginning farmer FO and OL 

selection models. 

Only one variable (CVLB) in the FO regression equation for the beginning farmer sample 

was statistically significant at the 5% level, and none had significant marginal effects.  The 

probable reason for so few significant coefficients in this equation is the large amount of 

idiosyncratic variation in the volume of FO loans originated.  The state farm financial variables 

and regional binary variables do not fully account for the factors influencing bank intensity of 

use. 

The list of variables found significant in the beginning farmer OL regression model and 

their respective signs is almost identical to that of the overall (table 1) OL regression model.  In 
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both the selection and regression models, lender characteristics are important.  Larger banks 

(higher ASSET), those more specialized to agricultural lending (larger AGTL), and those with 

aggressive overall lending strategies (higher LAR) are likely to originate more OL loan principal 

to beginning farmers.  Also, farm financial characteristics (DSR and CVLB) were important in 

determining the amount of OL loan volume originated to beginning farmers.  Only two variables, 

ARET and NDEF, had marginal effects that were marginally significant (at the 10% level). 

SDA Farmer Guaranteed Loans 

The results for the SDA model are presented in table 3.  The hypotheses that all 

coefficients in each equation were jointly zero are soundly rejected.  The FO SDA and OL SDA 

farmer probit models predicted 98.9% and 98.4% of the observations correctly, almost the same 

as the sample proportions of zeros.  The R-squared coefficients for the FO SDA and OL SDA 

regression equations were .209 and .179.  

In both SDA loan selection equations, several coefficients were significant as were the 

marginal effects of these variables.  The coefficients for DSR, LAR, AGTL, MAJLDR, MKTVAR, 

and ASSET were all significant at the 5% level with positive signs, while VRA, CVFI, NRET, and 

ADEF had statistically significant, negative coefficients.  Similarly to all other estimated models, 

lenders with more aggressive lending strategies were more likely to pursue guaranteed lending.  

Higher expected rates of return for asset alternatives to guaranteed loans decreased the 

probability of guaranteed loan origination due to lenders switching away from the lower return 

asset to the higher return asset.  Increases in the variance of the market interest rate were linked 

with significant increases in the likelihood of usage for both FO and OL guarantees, and ADEF 

significantly decreased the probability of guarantee usage. 
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Like LAR, AGTL appeared as a positive and statistically significant variable in all probit 

equations estimated in the study.  Lenders with higher agricultural loan-to-total loan ratios likely 

face higher demand for agricultural loans in general and choose to specialize in agricultural 

loans.  Such lenders would have greater opportunity to use guaranteed loans.  Agricultural 

lenders may be savvier when it comes to making use of guaranteed agricultural loans, and it may 

even be the case that such banks have specialized personnel to originate such loans.  Guaranteed 

lenders having originated significant numbers of guaranteed loans in the past year were more 

likely to issue guaranteed SDA loans.  Increases in the variance of the market interest rate and 

larger bank asset size were associated with more banks making SDA loans.  

FSA should expect fewer banks to originate SDA loans in years in which the percentage 

of agricultural loans made at a floating rate is higher as the negative signs of VRA in the probit 

equations confirm.  Variable rate loans expose the lender to more uncertainty than do fixed rate 

loans as there are two sources of potential repayment difficulty for the borrower—that stemming 

from unfavorable project profitability and the chance that the rate of repayment exceeds the rate 

of return on the project.  A .01 increase in CVFI also reduced the probability of making a 

guaranteed SDA OL loan by .00011.  Lenders with higher expected rates of return on non-

agricultural loans (NRET) were .00016 less likely to originate a SDA FO guarantee and .00029 

less likely to originate a guaranteed SDA OL loan.     

In the FO SDA loan volume model, only the estimated coefficient for CVLB was 

statistically significant.  Its marginal effect was also significant.  Two statistically significant 

coefficients (DAR and LAR) were found for the OL SDA loan volume model.  However, the 

marginal effects for these two variables lacked significance.  Thus, the estimated models were 

more successful in identifying those variables associated with lender propensity to issue SDA 
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loans than those predicting the amount of SDA loan volume originated.  This result is not 

surprising given that SDA loan origination is highly demand driven and geographically 

concentrated.  In addition, the demand variables included in the equations characterized the 

financial position of the average farm borrower in a state rather than a select portion of the farm 

borrower population, i.e., those who would qualify for a SDA loan.    

Implications for Policymakers 

 The signs and significance for the independent variables included in each of the estimated 

equations were much the same across loan type and samples.  However, the characteristics 

associated with increased likelihood of making a guaranteed loan were not necessarily the exact 

same characteristics that led to higher amounts of principal obligated.  This finding supported the 

choice of estimator for the study (double-hurdle vs. Tobit model).  The similarities and 

differences between the estimated models have several implications for FSA as they consider 

program policy in the future. 

 For both FO and OL loans in the full lender model, there were distinct lender 

characteristics that indicated a higher probability of guaranteed loan origination.  Lenders with 

larger asset size, higher loan-to-asset and agricultural loan-to-total loan ratios, and multi-bank 

holding company affiliation were more likely to use the FSA guaranteed loan program to serve 

their farm borrowers.  If FSA is interested in expanding the number of banks making guaranteed 

loans in the future, then they should consider targeting lenders with these characteristics.  

However, if an overall volume expansion of the FSA guaranteed loan program is desired, it may 

be more efficient to target banks already making a high number of guaranteed loans.  To expand 

the number of guaranteed loans originated, it might be most efficient to encourage banks 
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currently making low numbers of loans per year to make more loans since such banks are 

familiar with the guaranteed loan process.   

 The significance of the lender variables in the selection and regression equations 

combined with current trends in banking can be used to forecast future use of guaranteed loans.  

The coefficients for ASSET had positive signs in all equations.  Banks are continuing to increase 

in size as banks merge or are acquired by larger banks.  If current trends continue, FSA should 

expect those banks to begin or continue to make guaranteed loans in the future.  Also, those 

banks using guaranteed loans will continue to make larger volumes of FO and OL loans—not 

necessarily larger volumes of these types of loans to beginning and SDA farmers—but certainly 

larger volumes to guaranteed borrowers in general.  Since FSA is mandated to target lending to 

beginning and SDA farmers, it may be appropriate to include lender level characteristics such as 

asset size, loan-to-asset ratio, and agricultural loan-to-total loan ratio as criteria for which banks 

FSA should target.  Together with FSA’s Preferred Lender program (PLP) which reduces the 

amount of paperwork involved to originate a guaranteed loan and gives commercial lenders more 

control of the process, FSA has the potential to increase the efficiency of guaranteed loan 

delivery. 

 As expected, results in most equations indicated that banks originating large numbers of 

guaranteed loans in the past had higher probabilities of originating guaranteed loans in the future.  

Major guaranteed lenders also originated a higher volume of principal.  However, major lender 

status did not necessarily indicate that banks would lend more principal to beginning and SDA 

farmers.  In general, the lack of significance of bank-specific variables in the beginning FO and 

SDA models points toward these types of lending being primarily demand driven.  That is to say, 
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a bank may be inclined to make guaranteed loans, but if no potential borrowers fitting these 

criteria enter their applicant pool, they cannot make a loan that fits these categories. 

 The significance of the expected return and default rates indicates that banks consider the 

general lending climate (including alternative investment opportunities) when deciding whether 

to make guaranteed loans.  Banks treated the decision as a portfolio problem choosing to invest 

in an asset when returns were expected to rise (default rates were expected to fall) or switch to an 

alternative when returns were expected to decline (default rates were expected to rise).  The 

widespread significance of these relationships in the selection models supports the theoretical 

specification as a portfolio selection model.   

Some borrower loan demand characteristics were significant.  Debt servicing ratio and 

coefficient of variation in the value of real farm assets were significant in several of the 

estimated models.  In addition, the coefficients of the state-level variables debt-to-asset ratio, 

variation in net farm income and per capita income exhibited noticeable significance.  These 

results also indicate that broad forces beyond the control of FSA affect guaranteed loan usage. 
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Table 1.  Estimated FO and OL Guaranteed Loan Usage Models 
Independent 
Variable 

FO Probit 
Coefficients 

Marginal 
Effects˜ 

FO Regression 
Coefficients 

Marginal 
Effects˜ 

OL Probit 
Coefficients 

Marginal 
Effects˜ 

OL Regression 
Coefficients 

Marginal 
Effects˜ 

Constant -2.743 *** -0.362 *** -5.257 ***   -2.989 *** -0.674 *** -3.230 ***   
VRA -0.127  -0.017  -0.030  0.095  -0.182  -0.041  0.072  0.086  
VRN 0.127  0.017  1.212  1.087  0.893 * 0.201 * 2.348 *** 2.281 ***

DSR 1.690 *** 0.223 *** -0.181  -1.841 ** 1.720 *** 0.388 *** 0.601  0.471  
DAR 1.112 *** 0.147 *** 2.067 *** 0.975  -0.280  -0.063  -0.643 * -0.622 *

CVFI -0.105  -0.014  -0.082  0.021  -0.057  -0.013  0.065  0.069  
CVLB 0.858 *** 0.113 *** 4.251 *** 3.408 *** 0.740 *** 0.167 *** 1.287 *** 1.231 ***

PCI -2.709 *** -0.357 *** -3.257 ** -0.596  1.492 ** 0.336 ** 4.853 *** 4.740 ***

LAR 1.586 *** 0.209 *** 2.153 *** 0.595  1.136 *** 0.256 *** 1.000 *** 0.914 ***

FOGRET -2.101 ** -0.277 ** -4.677 *** -2.613          
OLGRET         -0.297  -0.067  1.345 ** 1.368 **

ARET -1.721  -0.227  5.804 ** 7.494 *** 0.138  0.031  3.157 * 3.146 *

NRET -1.879 *** -0.248 *** -1.338 *** 0.508  -2.559 *** -0.577 *** -0.434 *** -0.241  
FODEF -2.256 * -0.298 * -0.752  1.464          
OLDEF         -0.641  -0.145  1.630 * 1.678 *

ADEF -0.049  -0.006  -0.686 ** -0.638 * -0.430 *** -0.097 *** -0.800 *** -0.768 ***

NDEF -0.102 * -0.013 * 0.452 *** 0.553 *** -0.054  -0.012  0.382 *** 0.386 ***

MBHC 0.063 ***   0.080 ***   0.043 ***   0.042 **   
AGTL 2.199 *** 0.290 *** 1.958 *** -0.202  3.028 *** 0.683 *** 0.642 *** 0.413 *

MAJLDR 1.334 ***   1.468 ***   2.069 ***   0.955 ***   
SRET 1.178 ** 0.155 ** 1.530 * 0.372  1.063 ** 0.240 ** -0.115  -0.195  
MKTVAR 0.060 * 0.008 * 0.163 *** 0.104  0.107 *** 0.024 *** 0.137 *** 0.129 ***

ASSET 0.030 *** 0.004 *** 0.035 *** 0.005  0.030 *** 0.007 *** 0.012 *** 0.010 ***

IMR     1.156 ***       0.093    
Overall Model 
Results†: 

χ2:   10,026.22***

% Correct:  90.71 
F:  33.28***

R2:  .114  Adjusted R2:  .111 
χ2:   18,753.99***

% Correct:  83.29 
F:  127.65***

R2:  .213  Adjusted R2:  .212 
* Significant at the 10% level.  ** Significant at the 5% level. ***Significant at the 1% level.  † “% correct” is the percent of observations in sample correctly 
classified by the probit model.  ˜Marginal effects are not valid for binary variables because they are not continuous.
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Table 2.  Estimated FO and OL Beginning Farmer Guaranteed Loan Models 
Independent 
Variable 

FO Probit 
Coefficients 

Marginal 
Effects˜ 

FO Regression 
Coefficients 

Marginal 
Effects˜ 

OL Probit 
Coefficients 

Marginal 
Effects˜ 

OL Regression 
Coefficients 

Marginal 
Effects˜ 

Constant -3.121 *** -0.123 *** -15.197    -4.043 *** -0.245 *** -3.783 ***   
VRA -1.031 *** -0.041 *** -3.526  0.453  -1.326 *** -0.080 *** -0.413  0.238  
VRN 0.839  0.033  3.288  0.051  1.572 ** 0.095 ** 1.951 *** 1.178  
DSR 1.098 ** 0.043 ** 3.932  -0.308  1.708 *** 0.103 *** 1.429 *** 0.590  
DAR 1.764 *** 0.070 *** 7.685  0.877  0.426  0.026  -0.033  -0.243  
CVFI -0.159  -0.006  -0.628  -0.014  -0.096  -0.006  -0.065  -0.017  
CVLB 1.557 *** 0.061 *** 9.031 ** 3.023  1.327 *** 0.080 *** 0.889 *** 0.237  
PCI -5.238 *** -0.207 *** -20.118  0.101  0.932  0.057  1.032  0.573  
LAR 1.366 *** 0.054 *** 5.492 * 0.220  1.109 *** 0.067 *** 0.803 *** 0.258  
FOGRET -3.029 ** -0.119 ** -13.798  -2.107          
OLGRET         1.401  0.085  1.032  0.344  
ARET 1.595  0.063  7.831  1.675  3.717 ** 0.225 ** 4.761 *** 2.934 *

NRET -1.203 *** -0.047 *** -4.086  0.557  -2.062 *** -0.125 *** -1.034 *** -0.020  
FODEF -0.235  -0.009  6.046  6.955          
OLDEF         -0.651  -0.039  0.202  0.521  
ADEF -0.516 * -0.020 * -1.974  0.016  -0.731 *** -0.044 *** -0.566 *** -0.207  
NDEF 0.123  0.005  0.671  0.197  0.293 *** 0.018 *** 0.282 *** 0.138 *

MBHC 0.067 ***   0.253  -0.006  0.064 ***   0.042 ***   
AGTL 1.291 *** 0.051 *** 4.685 * -0.297  2.016 *** 0.122 *** 1.022 *** 0.031  
MAJLDR 1.099 ***   3.997 * -0.246  1.442 ***   0.721 ***   
SRET 0.913  0.036  3.910  0.385  1.889 *** 0.114 *** 0.930 * 0.002  
MKTVAR 0.155 *** 0.006 *** 0.587  -0.010  0.197 *** 0.012 *** 0.128 *** 0.031  
ASSET 0.028 *** 0.001 *** 0.105 * -0.004  0.026 *** 0.002 *** 0.014 *** 0.001  
IMR     4.316 *       0.557 ***   
Overall Model 
Results†: 

χ2:   3,001.83***

% Correct:  97.40 
F:  13.02***

R2:  .165  Adjusted R2:  .152 
χ2:   7,269.67***

% Correct:  95.34 
F:  25.06***

R2:  .168  Adjusted R2:  .162 
* Significant at the 10% level.  ** Significant at the 5% level. ***Significant at the 1% level.  † “% correct” is the percent of observations in sample correctly 
classified by the probit model.  ˜Marginal effects are not valid for binary variables because they are not continuous.
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Table 3.  Estimated FO and OL SDA Farmer Guaranteed Loan Models 
Independent 
Variable 

FO Probit 
Coefficients 

Marginal 
Effects˜ 

FO Regression 
Coefficients 

Marginal 
Effects˜ 

OL Probit 
Coefficients 

Marginal 
Effects˜ 

OL Regression 
Coefficients 

Marginal 
Effects˜ 

Constant -3.572 *** -0.053 *** -10.973    -3.457 *** -0.070 *** -16.045 **   
VRA -1.381 *** -0.021 *** -1.959  0.813  -1.119 ** -0.023 ** -1.925  1.347  
VRN 1.556  0.023  4.062  0.939  1.722  0.035  7.117  2.081  
DSR 1.256 * 0.019 * 3.999  1.477  2.487 *** 0.050 *** 7.205 * -0.066  
DAR 2.888 *** 0.043 *** 8.479  2.683  1.204 ** 0.024 ** 6.171 ** 2.650  
CVFI -0.716 *** -0.011 *** -2.116  -0.679  -0.557 *** -0.011 *** -1.727 * -0.099  
CVLB 0.830 ** 0.012 ** 6.380 *** 4.714  0.018  0.000  0.069  0.015  
PCI -4.040 *** -0.060 *** -10.142  -2.033  0.274  0.006  4.736  3.936  
LAR 1.556 *** 0.023 *** 3.633  0.510  0.850 *** 0.017 *** 2.906 ** 0.420  
FOGRET -1.590  -0.024  -5.721  -2.529          
OLGRET         -0.891  -0.018  0.068  2.672  
ARET -1.652  -0.025  4.295  7.612  -4.028  -0.082  -5.035  6.742  
NRET -1.065 *** -0.016 *** -1.500  0.637  -1.415 *** -0.029 *** -3.864 * 0.274  
FODEF 0.582  0.009  2.696  1.528          
OLDEF         0.393  0.008  -1.001  -2.151  
ADEF -1.328 *** -0.020 *** -3.193  -0.526  -0.703 ** -0.014 ** -1.499  0.557  
NDEF 0.265 ** 0.004 ** 1.118 * 0.587  0.019  0.000  0.119  0.065  
MBHC 0.020    0.105    0.036    0.062    
AGTL 1.034 *** 0.015 *** 1.495  -0.581  1.235 *** 0.025 *** 3.484 * -0.128  
MAJLDR 1.011 ***   2.023    1.182 ***   3.269 *   
SRET 0.935  0.014  1.424  -0.453  1.290 * 0.026 * 3.155  -0.617  
MKTVAR 0.257 *** 0.004 *** 0.472  -0.044  0.231 *** 0.005 *** 0.551  -0.124  
ASSET 0.027 *** 0.000 *** 0.053  -0.002  0.023 *** 0.000 *** 0.061 * -0.006  
IMR     2.197        3.218 *   
Overall Model 
Results†: 

χ2:   1,639.09***

% Correct:  98.90 
F:  7.19***

R2:  .209  Adjusted R2:  .180 
χ2:   2,631.72***

% Correct:  98.42 
F:  8.70***

R2:  .179  Adjusted R2:  .158 
* Significant at the 10% level.  ** Significant at the 5% level. ***Significant at the 1% level.  † “% correct” is the percent of observations in sample correctly 
classified by the probit model.  ˜Marginal effects are not valid for binary variables because they are not continuous. 

 


