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Agricultural economists have long recognized that the choice of an appropriate 

probability distribution to represent crop yields is critical for an accurate measurement of 

the risks associated with crop production. Anderson (1974) was first to emphasize the 

importance of accounting for non-normality in crop yield distributions, changes in crop 

yield variation over time and location, and the interdependence between crop yields and 

prices for the purpose of economic risk analyses. 

Since then, numerous authors have focused on this issue (Gallagher 1987; Nelson 

and Preckel 1989; Moss and Shonkwiler 1993; Ramirez, Moss and Boggess 1994; Coble, 

Knight, Pope and Williams 1996; and Ramirez 1997 among many others). These authors 

have provided irrefutable statistical evidence of non-normality and heteroskedasticity in 

crop yield distributions, specifically, of the existence of kurtosis and negative skewness 

in a variety of cases. The possibility of positive skewness has been documented as well 

(Ramirez, Misra and Field 2003). 

The three general types of statistical procedures that have been used for the 

modeling and simulation crop yield distributions are the parametric, the non-parametric 

and semi-parametric approaches; all of which have distinct advantages and 

disadvantages. The parametric method is based on assuming that the stochastic behavior 

of the underlying the variable of interest can be adequately represented by a particular 

parametric probability distribution function. For this reason, the main weakness of this 

method is the potential error resulting from assuming a probability distribution that is not 

flexible enough to properly represent the yield data. Since crop yield data sets do not 

often span over long time periods, especially in the case of individual farms and specialty 

crops, the main advantage of this method is that it performs relatively well in small 
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sample applications. Distributions that have been used as a basis for this method include 

the Normal, the Log-normal, the Logistic, the Weibull, the Beta, the Gamma and the IHS.   

The non-parametric approach has opposite advantages and disadvantages. Since 

this method is free of any functional form assumption, it is generally more flexible and 

exhibits a lower model specification error risk. A main disadvantage of this technique is 

that it is not very precise in small sample applications or when the model includes several 

explanatory variables. Also, non-parametric methods don’t allow for the prediction or 

simulation of crop yields beyond of the observed sample time frame and can’t measure 

the impacts of explanatory factors on yield levels (Horowitz and Lee 2002). A final 

disadvantage of the non-parametric approach is its theoretical complexity and intensive 

computational requirements (Yatchew 1998). 

Semi-parametric methods such as single-index models, partially linear models, 

non-parametric additive models, and non-parametric additive models with interactions, 

have become increasingly popular in the econometrics literature because they combine 

the advantages while eliminating some of the problems of the parametric and the 

nonparametric approaches (Horowitz and Lee 2002; Ker and Coble 2003; Norwood, 

Roberts and Lusk 2004). Semi-parametric models are more flexible than parametric 

models and provide for a more precise estimation than non-parametric methods in small 

sample applications although at expense of a greater specification error risk. 

Extensive efforts have been devoted to the issue of what is the most appropriate 

probability distribution to be used as a basis for parametric or semi-parametric methods. 

Gallagher (1987) used the well-known Gamma density as a parametric model for the 

soybean yields distribution.  Nelson and Preckel (1989) proposed a conditional Beta 
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distribution to model corn yields. Taylor (1990) considered the issue of estimating 

multivariate non-normal densities using a conditional distribution approach based on the 

hyperbolic tangent transformation. Ramirez (1997) introduced a modified inverse 

hyperbolic sine (IHS) transformation (also known in the statistics literature as the SU 

distribution), as a possible multivariate non-normal and heteroskedastic crop yield 

distribution model.  More recently, Ker and Coble (2003) proposed a semi-parametric 

model based on the Normal and the Beta densities. 

Empirical comparisons of leading parametric models have been attempted in the 

recent literature (Norwood, Roberts and Lusk 2004). These comparisons, however, have 

overlooked key theoretical considerations and, therefore, not been able to elucidate the 

superiority of any of the existing models (Ramirez and McDonald 2006). 

Statistically, any particular probability distribution can only accommodate a 

limited subset of the theoretically feasible mean-variance-skewness-kurtosis (MVSK) 

hyperspace and, therefore, it is only capable of adequately modeling underlying data 

distributions which moments happen to be contained within that subset. Individually, or 

even as a collective, the parametric models previously discussed in the literature only 

span a relatively small region of the MVSK hyperspace (Ramirez and McDonald 2006). 

This research contributes to the yield and price distribution modeling literature by 

introducing a system of three parametric distributions that is capable of accommodating 

the basic characteristics of the stochastic behavior of a random variable, i.e. all 

theoretically possible MVSK combinations, addressing the main disadvantage of 

parametric models that has been cited in the literature to date. The proposed system 
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substantially reduces the lack of flexibility concern and the resulting risk of model 

specification error previously associated with the parametric approach. 

Other important advantages of the proposed system is that it can jointly model 

non-normality, heteroscedasticity, and/or autocorrelation, and it can be expressed in a 

multivariate form in order to model the joint distribution of two or more crop yield and/or 

price variables of interest. It is therefore hypothesized that this system is generally 

superior and can supersede all currently used parametric distribution models. 

The Proposed Parametric Distribution Modeling System 

Statistical theory suggests that the inherent capacity of a parametric probability 

distribution model to adequately represent most crop yield distributions that could be 

encountered in practice is mainly determined by the range of each of the first four central 

moments (mean, variance, skewness and kurtosis) that can be accommodated by the 

assumed probability distribution model.  

Ramirez and McDonald (2006) outline a re-parameterization technique that 

expands any probability distribution by two parameters which specifically and uniquely 

control the distributional mean and variance without affecting the range of skewness and 

kurtosis values that can be accommodated by that distribution. The expanded distribution 

obtained through this re-parameterization can therefore model any conceivable mean and 

variance in conjunction with the set of skewness-kurtosis combinations that were allowed 

by the original distribution. In addition, the mean, variance, skewness and kurtosis of the 

resulting parametric model can be specified as linear or non-linear functions of 

exogenous variables so that these four distributional moments are allowed to change 

across observations as those variables take different values. 
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In this study, Ramirez and McDonald’s (2006) re-parameterization is applied to 

the Johnson system, which includes the SU, the SB and the SL or Log-Normal 

distributions. Unlike other frequently assumed distributions such as the Beta and the 

Gamma, the Johnson system exhibits the key property of being able to accommodate any 

and all theoretically feasible skewness-kurtosis combinations (figure 1). However, each 

of those combinations is inherently associated with a fixed set of mean-variance values. 

This re-parameterization enhances the flexibility of the Johnson system to where it can 

model all theoretically feasible MVSK combinations. The re-parameterization begins 

with the original two-parameter system, which is defined as follows: 

(1)  )(sinh 1 Υ×+=Ζ −δγ  for the SU, 

(2) )ln(Υ×+=Ζ δγ  for the SL, and 

(3) )]1/(ln[ Υ−Υ×+=Ζ δγ  for the SB distribution, 

where Y is  a non-normally distributed random variable based on a standard normal 

variable (Z). 

 From (1), (2) and (3) it follows that: 

(4)  )sinh()sinh( NZ
=

−
=Υ

δ
γ  for the SU, 

(5) NeZ
=

−
=Υ )exp(

δ
γ  for the SL, and 

(6) 
)1())exp(1(

)exp(
N

N

e
e

Z

Z

+
=

−
+

−

=Υ

δ
γ

δ
γ

 for the SB distribution, 

where N is a normal random variable with mean of 
δ
γ

−  and variance of 2

1
δ

. 
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 Following Johnson (1949): 

 (7) E[Y] = SUF=×− )/sinh()5.0exp( 2 δγδ  

V[Y]= SUG=+××− −−− }1)2cosh(){exp(}1){exp(5.0 122 γδδδ , 

(8) E[Y] = SLF=− −− )5.0exp( 12 γδδ  

V[Y] = SLG=−−− −−−− 21212 )}5.0{exp()22exp( γδδγδδ , and 

(9) E[Y]= SBF  

V[Y] = SBG ;      

for the SU, SL and SB distributions, respectively; where SBF and SBG are lengthier formulas 

of the parameters γ  and δ . The skewness and kurtosis coefficients of the SU, SL and SB 

distributions are lengthy functions of γ  and δ as well. All of these formulas, an a Gauss 

6.0 program to compute the first four central moments of these distributions given values 

for γ  and δ  are available from the authors. 

The random variables (Y) corresponding to each of the three distributions are then 

standardized to have a mean of zero and a variance of one, as follows: 

(10)  2/1

)sinh(

SU

SUS

G
FN −

=Υ  for the SU, 

(11) 2/1
SL

SL
N

S

G
Fe −

=Υ  for the SL, and 

(12) 2/1
)1(

SB

SBN

N

S

G

F
e

e
−

+=Υ  for the SB distribution.  

Note that after standardization, the parameters γ  and δ  no longer affect the mean 

and the variance of the distributions, rather, they are focused on controlling distributional 
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skewness and kurtosis only. Yet, since standardization only involves subtracting from 

and dividing the original random variables (Y) by constants, the distributions 

corresponding to these standardized variables ( SY ) can still accommodate the same sets 

of skewness- kurtosis combinations allowed by the SU, SL and SB distributions in the 

original Johnson system.  

The final step in the re-parameterization process is to expand the SY  distributions 

so that, instead of being zero and one, their means and variances can be controlled by 

parameters or by parametric functions of explanatory variables as follows: 

(13) )()( βσσ t
S

tt
S

t
F

t XYZYY −=Μ−= , 

where SY  is as defined in equations (10), (11) and (12) for the SU, the SL and the SB 

distributions; t = 1,…,T denotes the observations; and Yt
F represents the final random 

variables of interest. From (13), note that for all three re-parameterized variables: 

(14)  βtt
F

t XYE =Μ=][ , and 

 22 )(][ σσ tt
F

t ZYV == ; 

where tX  and tZ  represent vectors of explanatory variables believed to affect the means 

and variances of the distributions, andβ andσ are conformable parameter vectors. Note 

that Mt and σt could also be specified as non-linear functions of tX  and tZ . 

  Further, note that the three probability distributions corresponding to this final set 

of non-normal random variables ( )F
tY  maintains identical shape (i.e. skewness-kurtosis) 

characteristics as the original families in the Johnson system. Therefore, the re-

parameterized system can accommodate any theoretically possible mean-variance-

skewness-kurtosis combination. As a result, it is believed to be sufficient to accurately 



 9

model any crop yield distribution that could be encountered in practice. That is, the 

proposed system addresses the previously discussed lack of flexibility and model 

misspecification risk concerns that have been consistently cited as the main disadvantage 

of parametric probability distribution models. 

Figure 1 illustrates the different skewness-kurtosis (S-K) regions covered by each 

of the three distributions in the Johnson system, as well as by the Beta and the Gamma. 

Note again that any theoretically feasible S-K combination can be accommodated by one 

of the three families in this system. In fact, just the SU and SB are sufficient for this 

purpose, as the SL only spans the curvilinear boundary between the SU and SB. The lower 

bound of the SB distribution is given by 22 −= SK , which is also the upper bound for the 

theoretically impossible S-K region. 

In contrast, note that the Gamma distribution only spans a curvilinear segment on 

the upper right quadrant of the S-K plane. Although, as the SL, the Gamma distribution 

can be adapted to cover the mirror image of this segment on the upper left quadrant, the 

combinations of S-K values allowed by it are still extremely limited. Also note that this 

segment is the upper boundary of the S-K area covered by the Beta distribution. 

Although the Beta covers a significant area of the S-K plane, the SB can 

accommodate all S-K combinations allowed by the Beta. Therefore, it is likely that the SB 

is at least equally suitable as the Beta in a particular application. Note, however, that the 

region spanned by the Beta is quite narrower than the SB’s, i.e. the Beta only covers a 

subset of the S-K area spanned by the SB. Therefore, it is possible that the Beta is not as 

suitable as the SB in some applications. 
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In short, even if re-parameterized according to the previously discussed (Ramirez 

and McDonald 2006) procedure, because the Gamma and the Beta distributions can not 

accommodate a substantial subset the empirically possible S-K set, they can not be 

expected to be nearly as flexible and generally applicable as the Johnson system. 

Estimation of the Expanded Johnson System 

Estimation of the proposed system can be accomplished by maximum likelihood 

procedures. Since all three distributions originate from one-to-one transformations to a 

normal random variable (N), the transformation technique (Mood, Graybill and Boes 

1974) can be applied to derive their corresponding probability distribution functions 

(pdf). According to this technique the pdf of the transformed random variable ( F
tY ) is 

given by: 

(15)  ))(()())((
))((

)( 11
1

F
t

F
t

F
tF

t

F
tF

t YqPYJYqP
Yq

P −−
−

×=×
Υ∂

∂
=Υ , 

where )(1 F
tYq−  is the inverse of the transformation of N into F

tY  (i.e. the function 

relating N to F
tY ), ))(( 1 F

tYqP −  is the pdf of an independently and identically distributed 

normal random variable N with mean )(
δ
γ

−  and variance 2−δ  evaluated at )(1 F
tYq− , and 

the term )( F
tYJ  is known as the Jacobian of the transformation.  

 Specifically, from equation (13) and equations (10) to (12) it follows that: 

(16) }{sinh)( 11
tSU

F
tSU RYqN −− ==  for the SU , 

(17) }ln{)(1
tSL

F
tSL RYqN == −  for the SL , and 

(18) }
1

ln{)(1

tSB

tSBF
tSB R

R
YqN

−
== −  for the SB random variable, 
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where:  

(19)  SU
t

SU
F

t
tSU F

Z
GR +

×−Υ
=

σ
β 2/1

t )X( , 

(20) SL
t

SL
F

t
tSL F

Z
G

R +
×−Υ

=
σ
β 2/1

t )X(
,  

(21) SB
t

SB
F

t
tSB F

Z
G

R +
×−Υ

=
σ
β 2/1

t )X(
, 

and SLSUSBSLSU GGFFF ,,,, and SBG are as defined in equations (7) to (9). 

The Jacobians are obtained by taking the absolute value of the derivatives of the 

above inverse transformation functions (equations (16, 17 and 18) with respect to F
tY : 

(22) =)( F
tSU YJ

2/12

2/1

)1( tSUt

SU

RZ
G
+σ

for the SU , 

(23)  =)( F
tSL YJ

tSLt

SL

RZ
G
σ

2/1

 for the SL , and  

(24) =)( F
tSB YJ

)1(

2/1

tSBtSBt

SB

RRZ
G

−σ
for the SB distribution.  

The pdfs for the SU, the SL and the SB variables are hence obtained by substituting 

(16) and (22), (17) and (23), and (18) and (24), into equation (15), respectively.  

Following standard procedure, the log-likelihood functions to be maximized in 

order to estimate the parameters of each of these three distributions are obtained by 

taking the natural logarithms of the corresponding pdfs and adding over the t = 1,…,T 

observations: 

(25)  ∑∑∑
===

−=Υ
T

t
t

T

t
t

F
t

T

t

HGPLn
1

22

11

5.0)ln(5.0)}({ δ ; 
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where: 

(26)  
)1()(2 22

2

tSUt

SU
t RZ

G
G

+
=

σπ
δ

, 

δ
γ

δ
γ

+=+++= − )(sinh]1ln[ 12
tSUtSUtSUt RRRH ; 

(27) 
tSLt

SL
t RZ

G
G 22

2

)(2 σπ
δ

= , 

δ
γ

+= ]ln[ tSLt RH ; and 

(28) 
)1()(2 222

2

tSBtSBt

SB
t RRZ

G
G

−
=

σπ
δ

, 

δ
γ

+−= )]1/(ln[ tSBtSBt RRH ; 

for the SU, SL and SB distributions, respectively; 0>tG ; and SUG , SUtR , SLG , SLtR , SBG  

and SBtR  are as defined in equations (7) to (9) and (19) to (21). 

An adjustment that facilitates estimation and interpretation is re-defining the 

distributional shape parameters as follows: for the SU γ=-µ, for the SB γ=µ, and for all 

three families δ=1/θ.  Also in the case of the SL, after re-parameterization, γ becomes a 

redundant coefficient and, thus has to be set to zero. Then, for both the SU and the SB 

µ<0, µ=0 and µ>0 are associated with negative, zero and positive skewness, respectively, 

and all three families approach a normal distribution as θ goes to zero. This also allows 

for testing the null hypothesis of normality as Ho: θ=µ=0. Finally, for the purposes of 

estimation, the following parameter range restrictions are recommended: for the SU 

0<θ<1.5 and -15<µ<15; for the SB 0<θ<100 and -7.5<µ<7.5; and for the SL 0<θ<1.  
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A Multivariate Johnson System Model 

Another advantage of the Johnson system is that, because its three distributions originate 

from transformations of normal random variables, a multivariate form involving one, two 

or all three of the Johnson system distributions can be obtained on the basis of a 

multivariate normal distribution. This is important because many applications involve 

estimating and simulating joint yield distributions from several farms, counties, regions, 

commodities, etc. which are correlated with each other and can not a priory be assumed 

to exhibit the same distributional shape parameters or even follow the same distribution.  

Because of the previously discussed flexibility of the expanded Johnson system, 

its multivariate arrangement allows for a direct estimation of the correlations between a 

set of non-normal random variables even when the probability distributions associated 

with those variables are markedly different, i.e. each of them may exhibit any 

theoretically feasible MVSK combination. In addition, likelihood ratio (LR) tests can 

be conducted to ascertain if the means and/or variances of some or all of the variables 

follow the same time trends or are similarly affected by changes in other exogenous 

factors. LR tests can also be used to evaluate if sub-sets of these variables that are best 

characterized by a particular family of distributions (SU, SL or SB) exhibit exactly the 

same shape parameters γ  and δ , i.e. identical skewness and kurtosis levels. 

This is particularly important when estimating yield distributions because the 

data available at the country, regional, and particularly at the individual county and 

farm levels are often fairly short time series. Therefore, precise estimation of mean and 

variance trends and of the shape parameters determining the distributional skewness 

and kurtosis, is often not possible with univariate models. As exemplified in the 
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following applications section, this issue can be addressed by consolidating univariate 

models into a parsimonious multivariate Johnson system model that is more statistically 

efficient in using the limited crop yield information available for estimation. The log-

likelihood function needed to estimate this model is derived next. 

For a model with M variables that are contemporaneously correlated the 

(MTxMT) correlation matrix is: 

(29) TΙ⊗Σ=Ω ,  

where TΙ  is a TxT is identity matrix, ⊗  is the Kroenecker product operator and Σ  is the 

following MxM matrix containing the correlations between the random variables 

corresponding to each of the M equations: 

(30) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∑

1

1

1

21

221

112

L

MMMM

L

L

MM

M

M

ρρ

ρρ

ρρ

 

Then, the vector of normally distributed random variables underlying the proposed non-

normal pdf models can be expressed as ),,(~ 2 Σ− −
M

M

M
M NN δ

δ
γ , where Mγ  and Mδ  are 

(Mx1) vectors of parameters, ___ indicates an element-by-element vector division, and Σ  

is the previously discussed correlation matrix. The joint probability density function for 

the random vector MN for any observation t is: 

(31) }]){(}'){(5.0exp[)()2()( 12/1

1

2/
M

M

M
MM

M

M
M

M

j
j

M
MN NNNP δ

δ
γδ

δ
γδπ +Σ+−Σ= −−

=

− ∏ , 

 Following the multivariate transformation technique (Mood, Graybill and Boes 

1974), the joint probability density function for the non-normal random variable 
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vector F
MΥ  is obtained by applying any of the three previously discussed (SU, SL or SB) 

transformations {equation (10), (11) or (12), and (13)} to each of the elements of MN : 

(32) )),(()()( 1 F
MtMN

F
Mt

F
MtM YqPYJP −×=Υ   

where PM is the multivariate normal density defined in equation (34), )(1 F
MtM Yq−  is an Mx1 

vector of inverse (SU, SL or SB) transformations from the elements of MN  into the elements 

of  F
MtY , and t denotes the fact that, because all of the transformations involve equation (13), 

the resulting multivariate non-normal density will exhibit different mean and variance 

vectors over time. 

 Also in (32) )( F
MtJ Υ  is the MxM Jacobian matrix of the vector transformation: 

(33) ∏
= ∂
∂

=

∂
∂

∂
∂

∂
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∂
∂

∂
∂

∂
∂
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∂

∂
∂

∂
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∂
∂

∂
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∂
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F
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F
t

M
F
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F
t

F
t

F
t
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 Therefore, the multivariate nonnormal density function for time period t is: 

(34) )( F
MtMP Υ = )])(()')((5.0exp[)2(}{ 1112/12/

1
M

F
MtMMM

F
MtMM

M
M

j
jF

jt

j YqYq
Y
N

γδγδπδ +Σ+−Σ
∂

∂ −−−−−

=
∏  

where the specific Jacobian derivative ( F
jt

j

Y
N
∂
∂

) and inverse transformation functions 

{ )(1 F
MtM Yq− } to be substituted in will depend on which nonnormal (SU, SL and/or SB) family 

of distributions is to be assumed as a model for each of the j=1,…,M random variables 

under analysis. 
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The likelihood function that has to be maximized in order to estimate a 

multivariate non-normal pdf model involving the SU, SL and/or SB families is obtained by 

taking the natural logarithm of equation (34) and adding across all T observations. 

Exemplary Applications 

Gauss 6.0 programs to estimate the parameters of each of the three expanded Johnson 

system distributions on the basis of sample data, as well as a multivariate estimation 

program, have been developed and will be made available by the authors upon request. 

Given estimated or assumed parameter values, these programs also compute the implied 

mean(s), variance(s), skewness and kurtosis, and simulate draws from the estimated or 

assumed distribution(s), which may be used for economic risk analysis. 

Parametric models of farm-level corn yields based on the expanded Johnson 

system (i.e. the SU, the SB and the SL distributions) are estimated using those programs. 

The yield data, obtained from the University of Illinois Endowment Farms database, 

included 26 corn farms located in twelve counties across that State. Data are available 

from 1959 to 2003, with a sample size varying from 20 to 45. The mean and standard 

deviations are specified as second and first degree polynomial functions of time, i.e.: 

(35)  2
210 ttX tt ββββ ++==Μ , and 

 tZtt 10)( σσσσ +== ; t=1,…,T. 

Thus, with the exception of the SL in which µ=0; all univariate non-normal 

models initially include seven parameters (β0, β1, β2, σ0, σ1, θ and µ). Normal models 

with the same mean and standard deviation specifications are estimated for comparison. 

Preliminary examination of the results reveals that the maximum values reached 

by the log-likelihood functions (MLLFV) associated with the SL models are lower than 
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the MLLFV corresponding to the SU and SB models in all 26 cases. In fact, the null 

hypothesis of normality (Ho: θ=0) is not rejected in any of the 26 SL models (α=0.1). 

This is expected since Corn Belt corn yields have been previously found to be left-

skewed (Nelson and Preckel 1989; Taylor 1990; Ramirez 1997; Ker and Coble 2003; 

Harri, Coble, Erdem and Knight 2005) and the SL distribution only allows for positive 

skewness (figure 1). Therefore, the SL results are excluded form the following discussion. 

Select statistics about the estimated SU, SB and normal models are presented in 

Table 1. The SB model shows a higher MLLFV than the SU model in 19 of the 26 cases. 

Likelihood ratio (LR) tests reject the null hypothesis of normality (Ho: θ=µ=0) in 17 of 

the 26 SU models and in 18 of the 26 SB models as well (α=0.10). However, when the SU 

or the SB model with the highest MLLFV is selected as the most suitable non-normal 

model, Ho: θ=µ=0 is rejected 20, 14 and nine out of 26 times at the 0.10, 0.05 and 0.01 

significance levels, respectively. Also note that five of the six non-rejections of normality 

(α=0.10) correspond to the smaller (T≤30) sample sizes. 

Out of the 20 cases that are classified as non-normal, the SB models exhibit the 

highest MLLFV in 14 cases and the SU models in six cases (table 1). The MLLFV 

differences between the estimated SU and SB models corresponding to each of the 20 non-

normal yield distribution cases range from near zero up to 4.23 units, with 14 being in 

excess of 0.5 units, eight larger than one unit, and five exceeding two units. The 

cumulative distribution functions (CDFs) implied by the estimated SU and SB models for 

farms b, s, o, k, n and a are derived on the basis of simulated yield data (n=10 million) in 

order to assess the empirical relevance of such range of MLLFV differences. 
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Two statistics, AD and MD, are computed from these CDFs. AD is the average of 

125 vertical percentage distances between the CDF with the highest MLLFV and the 

other. Distances are computed for yield values ranging from 25% to 150% of the mean 

yields at equal 1% intervals (CDF values beyond that range are negligible in all cases). 

MD refers to the maximum of those 125 vertical distances. 

The SU and the SB models for farm b exhibit nearly identical MLLFVs. 

Accordingly, both the average and the maximum vertical percentage differences between 

the CDFs implied by these two models (AD=0.06%, MD=0.23%) are negligible. In the 

case of farm s, the SU model’s MLLFV is only 0.58 units higher than the SB’s. The 

average and maximum vertical percentage differences (AD=1.04% and MD=3.25%) are 

considerably higher in this case. The MLLFV for the SB model corresponding to farm o is 

1.14 units higher that the SU’s, which results in an AD of 1.58% and a MD of 4.14%. A 

MLLFV difference of 2.09 units (farm k) is associated with even larger (2.48% and 

5.99%) average and maximum CDF differences (figure 3). Larger (2.31 and 3.05) 

MLLFV differences (farms n and a, respectively) produce more extreme average (2.47% 

and 3.64%) and maximum (8.17% and 19.58%) vertical CDF differences. 

In short, the larger MLLFV differences between the SB and the SU models in this 

application do translate into substantial discrepancies in these models’ probabilistic yield 

predictions. Also note that the four largest MLLFV differences correspond to models 

estimated on the basis of relatively large (T≥43) sample sizes, which suggests that 

additional meaningful differentials could be observed if all sample sizes were of at least 

this magnitude. In principle, this confirms the need to consider both the SB and the SU as 

potential crop yield distribution models in any particular application. 
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 The S-K combinations corresponding to the SU or to the SB model with the 

highest MLLFV for each of the yield samples analyzed are presented in figure 3. Three of 

the estimated SU distributions (farms a, i and x) exhibit quite large (>50) kurtosis values 

and are thus not shown in figure 3. The S-K combinations of the remaining 17 non-

normal distributions stretch from fairly low to relatively high S-K value combinations. In 

fact, 15 of those 17 can be grouped into three categories. Category A includes seven farm 

yield distributions with low or negative kurtosis and low negative skewness. Category B 

encompasses five distributions with moderate levels of positive kurtosis and negative 

skewness. Category C involves three yield distributions with higher levels of positive 

kurtosis and negative skewness. 

The previously discussed multivariate estimation methods can be used evaluate if 

or to which extent the yields corresponding to the farms in each of those categories could 

be adequately represented by SU and/or SB distributions with the same shape (θ and µ) 

parameter values, i.e. exhibiting identical skewness and kurtosis levels. They can also be 

used to assess if the functions modeling the means and standard deviations of those yield 

distributions are identical or at least share some common parameter values. The 

contemporaneous correlations between the farm yield distributions in each of those 

categories can be simultaneously estimated in the process. 

Table 2 two summarizes the results of applying these multivariate estimation 

methods to category B in figure 3, which includes farms e, g, q, d and s. The univariate 

models include seven parameters for each farm yield distribution, for a total of 35. The 

initial multivariate model adds 10 yield correlation coefficients and therefore has 45 

parameters. The MLLFV of the multivariate model (-738.43) is 47.68 units higher than 
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the sum of the MLLFVs for the five univariate models (-786.11). A LTRS of 

2x47.68=95.26 (χ2
(10,0.005)=25.2) easily rejects the null hypothesis of yield distribution 

independence at the 99.5% level; which is a strong argument for using multivariate 

estimation in this case. 

Theoretically, the information that is transferred across the univariate models 

through the correlation matrix (equation 30) makes the multivariate model more 

statistically efficient. Estimation efficiency gains can also be obtained by using the 

multivariate estimation framework to eliminate all statistically redundant parameters. 

This is achieved by comparing the estimates for parameters with similar roles (i.e. the 

estimates for β0, β1, β2, σ0, σ1, θ and µ across the five yield distributions, as well as the 

covariance parameters) and setting them equal if they are within one standard error 

estimate of each other. Each equality restriction is evaluated through likelihood ratio tests 

(α=0.20 to reduce the probability of incorrectly accepting the restriction). In addition, all 

statistically insignificant parameters (α=0.10) are set equal to zero. 

The final multivariate model obtained through the previously described process is 

presented in table 2. In that model, all five distributions share the non-normality 

parameter (θ), while the three SB models exhibit the same µ parameter value. µ is not 

statistically significant in the two SU distributions and, therefore is set to zero.  Models g 

and d and models q and s share intercept parameters (i.e. β0g=β0d and β0q=β0s). Other 

mean equation restrictions include β1q=β1d=β1s and β2q=β2d; that is, the yields from farms 

q and d are found to follow identical time trends which, in turn, are quite similar to the 

trend in farm s yields. 
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In addition the intercepts of the standard deviation equations are found to be the 

same for farms g, q, d and s (i.e. σ0g=σ0q=σ0d=σ0s). Since the slope parameters in those 

equations are all statistically insignificant, it is concluded that the yield distributions for 

farms g, q, d and s exhibit the same constant variance over time. Finally, at 0.70, the 

correlations between yields from farms q and d and q and s, are found to be equally high; 

while the correlations between farms e and q and e and s are similarly low (0.26). At 

0.46, the six remaining correlations are found to be equally moderate (table 2). 

The 29 parameter restrictions imposed to the initial 45-parameter multivariate 

model reduces its MLLFV from -738.43 to -749.34. A likelihood ratio test (LRTS= 

2x(749.34-738.43)=21.82 compared to χ2
(29,0.25)=33.7) does not reject the overall set of 

restrictions leading to the final multivariate model even at an α of 0.25. The highly 

parsimonious (16-parameter) final model makes the best use of the available yield 

information for the purposes of parameter estimation. As a result, on average, the 

standard error estimates in the final multivariate model are about half the size of those in 

the univariate models; and 20 of the 23 standard error estimates are lower in the final 

multivariate model than in the univariate models (table 2). 

In short, the final multivariate model is substantially more reliable than the initial 

set of five univariate models and should provide for am improved representation and a 

more realistic simulation of these five yield distributions for the purposes if risk analysis. 

Conclusions and Recommendations 

The expanded form of the Johnson system advanced in this manuscript can model any 

theoretically possible combination of the first four central moments of a random variable. 

That is, the proposed system can accommodate any mean-variance-skewness-kurtosis 
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combination exhibited by a yield, price or any other distribution that may be encountered 

in practice. None of the probability distribution models previously discussed in the 

literature come close to achieving such property. The three families in this system nest 

the normal density which facilitates testing for non-normality. Also because these 

families are obtained from three alternative transformations to normality, it is possible to 

specify the system in a multivariate form. All of these characteristics are highly desirable 

for the applied modeling and simulation of probability distributions. 

Estimation of the parameters of any of the three expanded Johnson system 

distributions, both in a univariate and a multivariate context, can be accomplished using 

the Gauss programs that have been developed and are available from the authors. Given 

parameter values, these programs also compute the means, variances, skewness and 

kurtosis, and simulate draws from the distribution(s) for use in economic risk analyses. 

An application involving Illinois farm-level corn yields illustrates the estimation, 

characteristics and use of the proposed system. Normality is rejected in 20 of the 26 farm 

yield samples in the analysis, with non-rejection being clearly associated with the smaller 

sample sizes. Although the yield data analyzed is from the same state and crop, the 

skewness and kurtosis combinations implied by the best fitting non-normal models 

extend over a large region of the S-K plane, corresponding to both the SU and the SB 

families. Substantial, empirically relevant differences between the CDFs implied by the 

estimated SU and SB models are found in the several cases where their MLLFVs differ by 

relatively larger magnitudes. Statistically, this suggests that one of the two models is 

likely inferior to the other in those cases, which corroborates the need for probability 

distribution models that can span larger regions of the S-K space. 
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Theoretically, it is known that the most commonly used parametric models based 

on the Beta and the Gamma distributions span S-K regions that are far more restrictive 

than the SB’s and totally preclude the SU’s (figure 1). In addition, the application in this 

manuscript shows that the multivariate estimation capabilities afforded by the Johnson 

system can dramatically improve model quality and provide valuable information about 

the correlations among the variables of interest. Therefore is recommended that the 

expanded Johnson system is considered for use in future empirical work. 

However, future research is needed to ascertain whether the expanded Johnson 

system’s allowing for all theoretically possible mean-variance-skewness-kurtosis 

combinations is indeed sufficient to ensure a highly accurate representation of the 

stochastic behavior of any biological or economic variable of interest. If this is proven to 

be the case, there would be no need to consider any other probability distribution but the 

proposed system for the modeling and simulation of continuous random variables.  

References 
 
Anderson, J.R. 1974. “Simulation: Methodology and Application in Agricultural 

Economics.” Review of Marketing and Agricultural Economics 42:3-55. 

Coble, K.H., T.O. Knight, R.D. Pope, and J.R. Williams. 1996. “Modeling Farm-level Crop  

Insurance Demand with Panel Data.” American Journal of Agricultural Economics 

78(2):439-447. 

Gallagher, P. 1987. “U.S. Soybean Yields: Estimation and Forecasting with Nonsymmetric 

 Disturbances.” American Journal of Agricultural Economics 69(4):796-803. 

 



 24

Harri, A., K.H. Coble, C. Erdem, and T.O. Knight. 2005. “Crop Yield Normality: A  

Reconciliation of Previous Research.” Working Paper, Department of 

Agricultural Economics, Mississippi State University, Starkville, Mississippi. 

Horowitz, J.L. and S. Lee. 2002. “Semiparametric Methods in Applied Econometrics: Do 

the Models Fit the Data?” Statistical Modeling 2(1):3-22. 

Johnson, N.L. 1949. “System of Frequency Curves Generated by Method of Translation.” 

Biometrika 36:149-176.  

Ker, A.P. and K. Coble. 2003. “Modeling Conditional Yield Densities.” American 

Journal of Agricultural Economics 85(2):291-304. 

Mood, A.M., F.A. Graybill, and D.C. Boes. Introduction to the Theory of Statistics. 3
rd

ed. 

New York: McGraw-Hill, 1974.
 

Moss, C.B., and J.S. Shonkwiler. 1993. “Estimating Yield Distributions Using a 

Stochastic Trend Model and Non-Normal Errors.” American Journal of 

Agricultural Economics 75(4):1056-1062. 

Nelson, C.H. and P.V. Preckel. 1989. “The Conditional Beta Distribution as a Stochastic  

Production Function.” American Journal of Agricultural Economics 71(2):370-378. 

Norwood, B., M.C. Roberts and J.L. Lusk. 2004. “Ranking Crop Yield Models Using 

Out-of-Sample Likelihood Functions.” American Journal of Agricultural 

Economics 86(4):1032-1043.  

Ramirez, O.A. 1997. “Estimation and Use of a Multivariate Parametric Model for 

Simulating Heteroskedastic, Correlated, Non-Normal Random Variables: The Case 

of Corn-Belt Corn, Soybeans and Wheat Yields.” American Journal of Agricultural 

Economics 79(1):191-205. 



 25

Ramirez, O.A. and T.U. McDonald. 2006. “Ranking Crop Yield Models: A Comment.”  

American Journal of Agricultural Economics 88(4):1105-1110. 

Ramírez, O.A., S.K. Misra, and J.E. Field. 2003. “Crop Yield Distributions Revisited.”  

American Journal of Agricultural Economics 85(1):108-120.  

Ramirez, O.A., C.B. Moss, and W.G. Boggess. 1994. “Estimation and Use of the Inverse  

Hyperbolic Sine Transformation to Model Non-Normal Correlated Random 

Variables.” Journal of Applied Statistics 21(4):289-305. 

Taylor, C.R. 1990. “Two Practical Procedures for Estimating Multivariate Non-Normal  

Probability Density Functions.” American Journal of Agricultural Economics 

72(1):210-217. 

Yatchew, A. 1998.  Nonparametric Regression Techniques in Economics.”  Journal of 

Economic Literature Vol.XXXYI:669-721. 



 26

Table 1. Select Statistics for Illinois Farm-level Corn Yield Models Based on the SU, 

the SB and the Normal Distributions 

 
Farm 
Label 

Sample 
Size 

SU 
MLLFV

SB 
MLLFV

|SU-SB| 
MLLFV

Normal 
MLLFV LRTS Final 

Model 
a 44 -183.62 -186.67 3.05 -191.64 16.033 SU 
b 32 -123.81 -123.81 0.00 -134.94 22.273 SB 
c 44 -186.38 -182.15 4.22 -187.61 10.913 SB 
d 43 -189.23 -189.39 0.16 -192.55 6.632 SU 
e 25 -108.09 -108.00 0.08 -112.23 8.452 SB 
f 27 -128.31 -127.08 1.23 -128.98 3.810 N 
g 31 -133.58 -133.57 0.00 -140.68 14.223 SB 
h 34 -161.15 -160.20 0.95 -161.80 3.200 N 
i 43 -181.27 -184.84 3.58 -185.62 8.712 SU 
j 32 -145.96 -145.94 0.02 -149.20 6.532 SB 
k 27 -120.75 -118.66 2.09 -126.11 14.903 SB 
l 29 -132.56 -132.49 0.06 -132.56 0.130 N 
m 37 -169.08 -169.00 0.09 -171.97 5.931 SB 
n 45 -197.46 -195.15 2.31 -197.47 4.641 SB 
o 42 -189.54 -188.40 1.13 -194.36 11.923 SB 
p 42 -195.34 -195.28 0.06 -197.77 4.971 SB 
q 40 -174.07 -173.55 0.51 -178.18 9.263 SB 
r 33 -145.36 -145.47 0.11 -150.09 9.463 SU 
s 40 -181.77 -182.35 0.58 -184.12 4.701 SU 
t 29 -131.07 -131.05 0.02 -133.79 5.471 SB 
u 44 -201.83 -201.21 0.61 -204.01 5.601 SB 
v 29 -127.78 -126.34 1.45 -131.64 10.613 SB 
w 29 -131.22 -131.24 0.02 -132.56 2.670 N 
x 20 -93.45 -93.96 0.51 -98.42 9.943 SU 
y 29 -135.14 -135.00 0.14 -136.90 3.800 N 
z 30 -143.92 -143.26 0.66 -144.92 3.320 N 

 
Notes: MLLFV stands for the maximum log-likelihood function value, |SU-SB| MLLFV 
refers to the absolute value of the SU-SB MLLFV difference, and LRTS indicates the 
likelihood ratio test statistic, which compares the non-normal model with the highest 
MLLFV with the normal model. The superscripts 1, 2 and 3 denote rejection of the null 
hypothesis of normality and the 10, 5 and 1% levels, respectively, according to the 
likelihood ratio test, while 0 indicates non rejection at the 10% level. If the null hypothesis 
of normality is rejected at the 10% level the final model is the one with the highest 
MLLFV, otherwise the final model is the normal. 
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Table 2. Parameter and Standard Error Estimates for the Univariate, and for the 

Initial and Final Multivariate Johnson System Yield Distribution Models for Farms 

e, g, q, d and s 

 
 Univariate Models Initial Multivariate Final Multivariate 

Parameter Par. Est. S.E. Est. Par. Est. S.E. Est. Par. Est. S.E. Est. 
β0e 63.075 5.062 67.524 6.192 66.684 3.909
β1e 2.500 1.011 2.107 1.304 3.247 0.488

100xβ2e 6.991 4.177 6.958 5.676 0.000        .
σ0e 11.832 2.186 8.030 4.045 5.580 3.054
σ1e 0.833 0.171 0.958 0.335 1.397 0.392
µe -1.717 3.110 -2.434 1.229 -5.067 2.316
θe 0.919 0.912 0.654 0.256 0.562 0.067
β0g 114.918 9.817 111.459 19.039 111.162 3.169
β1g 3.700 0.833 4.543 2.604 4.466 0.614

100xβ2g -6.065 1.366 -9.295 6.783 -9.241 2.319
σ0g 22.610 5.512 20.034 13.672 21.760 2.114
σ1g 0.000 . 0.033 0.922 0.000        .
µg -3.443 15.033 -2.378 4.837 -5.067        2.316
θg 0.718 1.182 0.794 0.821 0.562 0.067
β0q 121.588 10.021 130.342 8.502 130.715 3.337
β1q 1.597 1.161 0.522 0.902 0.683 0.170

100xβ2q -0.744 2.925 1.444 1.825 1.029 0.288
σ0q 21.487 13.018 21.310 3.215 21.760 2.114
σ1q 0.018 0.485 0.000        . 0.000        .
µq -1.911 0.657 -1.907 0.294 -5.067        2.316
θq 0.851 0.356 0.748 0.173 0.562 0.067
β0d 97.446 6.364 102.540 6.960 111.162 3.169
β1d 1.333 0.746 0.757 0.892 0.683 0.170

100xβ2d 0.906 1.873 1.884 1.998 1.029 0.288
σ0d 15.302 2.573 14.883 5.766 21.760 2.114
σ1d 0.273 0.055 0.279 0.243 0.000        .
µd -1.889 3.767 -1.010 2.187 0.000        .
θd 0.446 0.398 0.416 0.393 0.562 0.067
β0s 120.137 6.969 129.723 8.275 130.715 3.337
β1s 1.833 0.457 0.743 1.108 0.683 0.170

100xβ2s -2.208 0.551 -0.387 2.632 0.000        .
σ0s 21.738 4.644 23.488 10.967 21.760 2.114
σ1s 0.159 0.055 0.229 0.344 0.000        .
µs -0.982 0.877 -0.683 0.381 0.000        .
θs 0.614 0.334 0.829 0.283 0.562 0.067
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Table 2 (continued). Parameter and Standard Error Estimates for the Univariate, 

and for the Initial and Final Multivariate Johnson System Yield Distribution 

Models for Farms e, g, q, d and s 

 Univariate Models Initial Multivariate Final Multivariate 
Parameter Par. Est. S.E. Est. Par. Est. S.E. Est. Par. Est. S.E. Est. 

ρeg 0.000        . 0.395 0.155 0.462 0.076
ρeq 0.000        . 0.293 0.153 0.262 0.124
ρed 0.000        . 0.465 0.132 0.462 0.076
ρes 0.000        . 0.189 0.160 0.262 0.124
ρgq 0.000        . 0.588 0.106 0.462 0.076
ρgd 0.000        . 0.557 0.114 0.462 0.076
ρgs 0.000        . 0.532 0.147 0.462 0.076
ρqd 0.000        . 0.662 0.092 0.703 0.048
ρqs 0.000        . 0.789 0.069 0.703 0.048
ρds 0.000        . 0.487 0.126 0.462 0.076

 
Notes: The parameter and standard error estimates for β2e, β2g, β2q, β2d and β2s, have been 
multiplied times 100. The dots indicate that the standard error estimates are not computed 
since the parameter estimates have been set equal to zero.
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Figure 1. SU, SL, SB, Beta and Gamma distributions in the S-K plane 
 
Note: The SB distribution allows all S-K combinations in the blue as well as in the yellow (Beta) and 
pink (Gamma) areas. 
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