
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1

Teaching sustainable resource management in uncertain 

environments 
 

 

 

 

 

 

 

 

Huck 

Environmental Economics and Agricultural Policy Group 
Technical University Munich  

Alte Akademie 14, 85350 Freising-Weihenstephan, Germany 

petra.huck@wzw.tum.de 

 

 

Salhofer 

Environmental Economics and Agricultural Policy Group 
Technical University Munich   

Alte Akademie 14, 85350 Freising-Weihenstephan, Germany 

salhofer@wzw.tum.de 

 

 

 

 

Selected Paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Long Beach, 

California, July 23-26, 2006 

 

 

 

 

 

 

Copyright by Huck and Salhofer. Allrights reserved. Readers may make verbatim copies of this document for non-comercial 

purposes by nay means, provided that this copyright notice appears on such copies. 

 



 2

Abstract 

Dynamic evolutions of resource stocks with stochastic elements in the transition equation are 

in general very difficult to master. Their handling requires a deep understanding of control 

theory,1 probability theory and sometimes even of game theory due to strategic interaction of 

‘agents’. But without strong mathematical backgrounds, students from adjacent research 

fields have a hard time with control theory. The same is true for probability theory and game 

theory. One way to avoid this problem is to change the aim: instead of target function 

optimization, guarantee the continuance of the system within certain boundaries. The latter 

relates to Viability theory.2 Unfortunately, even Viability theory requires more mathematics 

than the ‘average’ student is prepared for.  

The paper at hand will demonstrate how Excel can help here. Excel is applied since it is a 

widespread tool and most students are familiar with its basic features. Therefore students can 

concentrate on how to implement a dynamic system in a spreadsheet and how to simulate 

probability distributions and approximate the distribution of the target function - given 

different control rules. This enables them to assess opportunities and risks associated with 

these control rules.  

One topic appropriate to demonstrate the idea is renewable resource management. As many 

studies state, there is a deficit in sustainable learning not only in economics (Salemi and 

Siegfried 1999; Walstad and Allgood 1999)3, but particular in system dynamic models 

(Moxnes, E. 2000; Pala and Vennix 2005). This is due to the complexity associated with long 

run- and feedback effects, and the complexity becomes even harder when stochastic 

development is included. The purpose of this paper will be to inspire students and to en-

courage them to solve stochastic dynamic problems later on their own – with the simple tools 

at hand presently.  

      JEL references: A22, C73, Q30 

      Key Words: Viability theory; resource management, uncertainty. 
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Introduction 

Excel is a tool not tailored to system dynamics4, dynamic optimisation or game theory5. But 

Excel is very flexible, able to use adequate add-ins and Macros and to be managed via VB 

programs, respectively. Furthermore it is equiped with random number generation according 

to the most relevant probability distributions. But above all, it is widespread. Therefore, more 

and more resource economic textbooks and papers work with Excel spreadsheets. To name 

just some, Conrad (1999) employs Excel for fishery- and forestry models as well as for 

exhaustible resources and pollution management. Buongiorno and Gilles (2003) use Excel in 

the context of forest management. Their spreadsheets take into account constraints through 

environmental policy, biodiversity requirements and integer variables. Examples of adjacent 

fields where Excel is also used, are: Kirschke and Jechlitschka (2002) and Ragsdale (2001). 

The former deal with interventions in agricultural markets. The latter concentrates on business 

and organisational problems.  

Examples of studies in resource economics using Excel to refer to are the work of Gerking et 

al. (2002) and the study paper of Caplan (2004). Gerking et al. (2002) look at the effects of 

decreasing tax rates and increasing environmental requirements on oil and gas drilling and 

coal mine production. Caplan (2004) deals with extraction from a mine.  

But there is one sub area rarely addressed in the literature mentioned above: renewable re-

source management in a stochastic dynamic system. The situation modelled here is inspired 

by Béne, Doyen and Gabay (2001), who deal with viability analysis, yet it allows for 

stochastic elements in the dynamic development up to a defined period and assumes to stay in 

a steady state thereon. 

Viability analysis replaces the wide-spread target to maximize a net present value of resource 

usage induced profits through the target to keep the system viable. Aubin (1990) introduced 
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the concept of the Viability kernel. In the 2002 “Introduction to Viability Theory and the 

management of renewable resources” he defines “viable evolution” and “viable evolution 

capturing the target” in the following way: The first denotes an evolution ( )tx  not leaving a 

certain subset K  of the state space X . The latter denotes a viable evolution ( )tx  arriving at a 

target C  within finite time6. The viability kernel is then defined as the initial states Kx ∈0  for 

which either a viable evolution exists or an evolution exits which is viable in K  till it reaches 

the target C  in finite time. Evolutions fulfilling the latter of the two conditions are in the 

capture basin, which is ergo a subset of the viability kernel. To manage a resource in such a 

way, that the corresponding evolution is viable, does neither mean to implement a state-

independent management-rule, nor to implement a management rule, which is state-dependent 

to a certain “degree”, but which does not include a reaction to the arrival at the kernel 

boundaries. It means to react when necessary. 

The concept might become more perspicuous, when one tries to get to the bottom of the 

results of famous studies concerning the environmental and economic future of the world. 

One famous report is “Our common future” – a report from the World Commission on 

Environment and Development. It was presented in 1987 and became well-known under the 

name Brundtland-report. At the beginning the Commission states: “… we see .. the possibility 

for a new era of economic growth, one that must be based on policies that sustain and expand 

the environmental resource base. … hope for the future is conditional on decisive political 

action now to begin managing environmental resources to ensure both sustainable human 

progress and human survival” (World Commission on Environment and Development 1987, 

p. 18). In the concept of viability theory, the evolution so fare was viable, but we arrived at 

the boundary of the viability kernel and we have to react on this bang: change our 

management rule. And another issue becomes perspicuous here: the boundary is not defined 

by nature and limits of renew ability solely, but by the economic requirements, too. 
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Two more famous studies on the environmental and economic future of the world are the 

“Limits to growth” from 1972 and the presentation of revised results 20 years later in 1992 

with “Beyond the limits”. In the “Limits to Growth” the authors state, that if all our 

“management rules” stay the same in the next decades, mankind will reach the limits of 

growth within the next century. In the concept of viability theory the authors announced the 

bang on the boundary of the viability kernel. And they emphasized the existence of growth 

rates (for population, capital stock, food production, ...) – i.e. management rules - such that a 

long-run economical and ecological equilibrium exists. Yet, we have to react to our 

impending approach to the boundaries and we have to change our management rules. Further, 

the authors remarked, the sooner we turn towards these ‘sustainable’ growth rates, the more 

likely we can implement this equilibrium. This can be interpreted as the advise not to wait till 

the bang is there, because then the danger of an irreversible step out of the viability kernel is 

serious. Yet, in the revised version 1992, the authors still saw an opportunity to switch to 

‘sustainable’ life. 

The concept of a capture basin as a subset of the viability kernel might become more 

perspicuous, when one looks again in the Brundland-report. Concerning world population size 

two statements link the year global growth rate reaches the replacement-level to the resulting 

stable world population. In case fertility achieves replacement-level in 2010, 50 years later 

population will stabilize at 7.7 billion. But if it achieves the level not before the year 2065, the 

population will increase up to be 14.2 billion at the end (World Commission on Environment 

and Development 1987, p. 106). The global population after stabilization is an example for 

the target to be reached, and the capture basin represents population levels for which viable 

evolutions exist, such that the target is met within finite time.  

 

Summarizing, in contrast to dynamic control theory, viability theory does not look for an 

intertemporal optimum. It asks for the existence of controls, such that an evolution currently 
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in the viability kernel, will stay in the kernel. As long as the evolution is not in danger to step 

beyond the boundaries, the control might be represented by a rule of low complexity (state- 

independent or state-dependent), but in case of a bounce at the boundary, there has to exist an 

adjustment of the rule preventing the system from leaving the viability kernel.  

 

An important aspect emphasised by Aubin, is the non-deterministic character of dynamics on 

earth. We want to introduce this aspect into the adoption of viability theory in the model of 

Béne, Doyen und Gabay (2001). They analyse a setting with a renewable resource and 

economic requirements adding the boundaries of viability. To keep the analysis as simple as 

possible we will leave out capacity aspects they include.  

 

The Model 

Following Béne, Doyen und Gabay (2001) we analyse the management of a renewable 

resource and ask for viability. The renewable resource has a logistic growth function. Yet the 

intrinsic growth rate we apply is uniform distributed within given boundaries; i.e.: 

( )( ) ( ) ( )







 −⋅⋅=
L
txtxrtxf 1           (1) 

with 

[ ]maxmin;~ rrr ; maxmin0 rr ≤<          (2) 

Figures 1 visualises the stochastics; the displayed curves between the two limiting curves are 

all similar probable.  

 

FIGURE 1 ABOUT HERE 

 

The natural growth ( )( )txf  lessened by the harvest ( ) ( )( )txeh ,⋅  gives the net growth:  
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( ) ( )( ) ( )thtxftx −=&           (3) 

with 

( ) ( )( ) ( ) ( )txteqtxeh ⋅⋅=⋅ ,           (4) 

The functional form is known from the Gordon-Schaefer model (1954). Within the harvest 

function e  denotes the adduced effort and q  is an efficiency parameter. Thus, the harvest is 

proportional to effort and stock size ( )tx . Now, it is intuitive, that an effort rule like 0≡e  will 

leave the evolution of the resource stock a priori viable, since the stochastic in the natural 

growth does not foreclose the approximation to the carrying capacity. But as Aubin (2002) 

cites Monod who cites Democritus “Everything that exists in the universe is due to change 

and necessity” (Democritus , 460–370 BC). And the necessity is introduced in the Béne-

Doyen-Gabay model through economic requirements which will forbid a choice of 0≡e . But 

before these requirements are introduced too, we look at effort rules, since they link the 

economic perspectives of renewable resource management to the evolution of the state. 

 

Two simple effort rules in the stochastic setting 

Within our stochastic setting there will exist effort rules – other than 0≡e  – which guarantee 

for the conservation of the resource – as long as the initial values ( )00,ex  are “adequate”. To 

clarify the issue, assume 100;1;5.0;20 maxmin0 ==== Lrrx L  as in figure 1. Under these 

assumptions, the intrinsic growth of the first period will be a random variable uniform 

distributed on the interval [ ]16,8 . The natural growth in the second period is a random variable 

depending on the realization of the random natural growth in the first period and on the effort 

role chosen. In case ( )( ) ( )( ) qLtxrtxe //1min −⋅=  we have ( ) ( )( ) ( ) =⋅⋅= txtxeqth  ( ) ( )( ) ( )( )txfLtxtxr ≤−⋅⋅ /1min  

i.e. harvest will never exceed natural growth and therefore the resource stock will increase. 

The following figure 2 displays some random trajectories for the first 30 periods. Even within 
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this rather limited time horizon we see an increase of the resource stock up to the carrying 

capacity with high probability, and for all the 5 trajectories displayed in figure 2. 

 

FIGURE 2 ABOUT HERE 

 

The arrival at the carrying capacity in the long-run can not astonish, due to the overcautious 

decision never to harvest more than the natural growth in the worst case. 

 

With a rigid effort rule like ( ) qLxre //1 0min −⋅=  effort is state-independent, solely determined by 

initial conditions. Here we are on the safe side, too. Figure 3 presents some trajectories of the 

resource stock for the same initial conditions as before, but the rigid effort rule.  

 

FIGURE 3 ABOUT HERE 

 

With the rigid rule from figure 3, the stock has to increase in the first periods. Figure 3 

displays strictly increasing trajectories till the limit value of 80 is reached. Thereafter - i.e. as 

soon as stock size arrives at 80 ( 080 xL −= ) - negative net growth becomes possible due to the 

fact that the natural growth might be lower for a stock of size over 80 than the rigid harvest, 

which emanates from the rigid effort. 

 

Changing the initial stock to a smaller value ( 200 0 << x ) keeps the harvest at a lower level for 

the rigid rule and therefore generates a higher and less volatile figure of trajectories. 

On the other hand for the overcautious effort rule and a smaller initial stock, on average it will 

take more time to approximate to the carrying capacity. The lower the initial stock, the greater 

the difference between L  and 0x . 
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Now, changing the initial stock to a higher value ( 5020 0 << x ) does not really “endanger” the 

stock for neither rule. For the first, flexible rule an excess of harvest compared to natural 

growth was impossible. And for the second, rigid rule, even starting with 500 =x  and therefore 

with the highest harvest possible does not mean that one will eradicate the resource. A secure 

degradation is only given for stock sizes below 14.65 ( ( )Lr /65.14165.145.12 max −⋅⋅=  and 

( )Lr /501505.12 min −⋅⋅= ; see the most left arrow in figure 4). And degradation will impend for a 

stock size of about 21 ( ( )Lravg /211215.12 −⋅⋅≈ ; i.e. at stock size 21 the probability of a positive 

and of a negative net growth are both equal; i.e. they are 0.5; see the commensurate brackets 

in figure 4). Yet, starting at 00 50=x , the probability of a negative net growth is diminishing. 

Thus, the development will induce an increase in the stock. A stock size above 50 will allow 

for a negative net growth, but the negative growth will not be large enough in size to jump on 

the increasing segment of the growth curves, where a stochastic decline of the stock would 

become possible (see Appendix). Figure 4 demonstrates the relation between the values: 

 

FIGURE 4 ABOUT HERE 

 

There is one other rule, we tested: the average rule (avg rule). Its structure is the same as for 

the overcautious rule, i.e. it utilizes the current stock. But instead of the minimum growth rate 

it employs the average growth rate. 

 

The economic perspective 

Now, does the rigid effort rule raise risks higher than what we feel up to except? And how do 

we evaluate the risk? So far, economic issues are neglected and therefore what was interpreted 

as the “necessity” in the citation of Democritus. To introduce the economic perspective, go 

back to Béne, Doyen, and Gabay, and assume that the sales price (p) for the resource as well 
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as the unit costs for effort (c) are both fix, and in addition to the variable costs, fix costs C 

exist; thus the period-profit is given by the following expression: 

( ) ( ) ( )( ) ( ) CtectxqptetxR −⋅−⋅⋅=,(          (5) 

The “margin” – relating to the effort - is a function of the actual stock size.  

To be in line with Béne, Doyen, and Gabay, ask for non-negative profits in all periods as long 

as possible without putting the resource at risk. Depending on the parameter constellation, 

effort rules generating viability exist in the deterministic setting of Béne, Doyen, and Gabay. 

As long as the intrinsic growth rate is not to low everlasting viability can be implemented; i.e. 

identify effort–stock–combinations generating non-negative profits and at the same time no-

degrading the resource stock: 

( ) ( ) ( )( ) ( ) ( )( )ctxqp
CeCtectxqptetxR

−⋅⋅
=⇔=−⋅−⋅⋅= 0,(       (6) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )







 −⋅=⇔=⋅⋅−






 −⋅⋅=−=
L
tx

q
retxeq

L
txtxrexhtxftx 101,&      (7) 

( )( )
( )








 +
⋅

−

















⋅

+±







⋅

+=⇔






 −⋅=
−⋅⋅

C
r
qc

qp
L

qp
cL

qp
cLx

L
tx

q
r

ctxqp
C

2

2;1 2
1

2
11    (8) 

The radicant below the root is positive as long as: 

( )2
2

40
2
1

cLqp
LqpCqrC

r
qc

qp
L

qp
cL

−⋅⋅

⋅⋅⋅
⋅>⇔>







 +
⋅

−

















⋅

+      (9) 

 

Figure 5 demonstrates the situation: each effort-stock combination above the ( ) 0, =exR -curve 

has non-negative profits and all combinations above the ( ) 0, =exx& -curve give a decline in the 

stock size7. For a very small initial 0x  no effort rule exists ensuring a viable evolution right 

from the beginning. The abolishment of the economic perspective – suspension from harvest 

and therefore no revenue through resource use in the first periods – is the only opportunity.  

For a sufficiently high initial 0x  effort rules exist ensuring a viable evolution. For example, 

for some “medium” [ ]+−∈ xxx ,0 , rigid rules like ( ) qLxre //1 0−⋅=  or [ ] ( ){ }0,:, ≥∩∈= −+ exReeeee o  
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keep the evolution viable. The difference between these two rigid rules lies in the profit path. 

The first rule keeps the profits constant, while the second one will induce an initial decrease in 

the profits during the first periods, in case we choose e  above the ( ) 0, =exx& -curve, and an 

initial increase of the profits, in case we choose e  from the area bounded by the ( ) 0, =exx& -

curve and the ( ) 0, =exR -curve.  

For [ ]Lxx ,0 +∈  the rule [ ]−+∈= eeee ,  will always generate an initial decrease in profits, as the 

harvest will decrease with the decrease of the stock, and therefore revenue will decrease 

leaving the cost side unaffected.  

It is intuitive clear, more viable rules that the two rigid rules discussed exist for [ ]Lxx ,0 −∈ . But 

leaving the deterministic setting, they differ in their probability of viable evolutions. 

 

FIGURE 5 ABOUT HERE 

 

In our stochastic setting, the location of the ( ) 0, =exx& -curve from figure 5 is not fix any longer. 

The sustainable effort becomes random: 

( ) ( ) ( ) ( ) ( )







 −⋅=⇔=⋅⋅−






 −⋅⋅=
L
tx

q
retxeq

L
txtxrtx 1

~
01~&       (10) 

It rotates around its intersection with the axis of abscissae8. See figure 6 for demonstration: 

 

FIGURE 6 ABOUT HERE 

 

The overcautious effort rule ( )( ) ( )( ) qLtxrtxe //1min −⋅=  as well as the rigid rule ( ) qLxre //1 0min −⋅=  

both generate a random revenue flow. Therefore, there is no longer a guarantee that they can 

keep the evolution viable for an arbitrary initial stock 0x . 
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For the overcautious rule, the effort path is a random process, as it takes into account the 

actual stock size ( )tx , which is random itself9. But since it generates a stock evolution towards 

the carrying capacity, the final revenue will diminish. Therefore no 0x  exists, thus that 

positive fix costs can be covered forever. See figure 7 for demonstration in case of initial 

positive profits1011: 

 

FIGURE 7 ABOUT HERE 

 

Next, the rigid rule generates a random revenue flow, too, although the effort stays the same 

all the time. But the harvest as a product of effort, stock size and efficiency parameter, is 

random. From the previous argumentation, we know that the stock fluctuates in the long run. 

Therefore, there might exist a region for 0x  without losses during the dynamic process. The 

region will be influenced negative by the cost parameters, as a matter of course12. See figure 8 

for demonstration: 

 

FIGURE 8 ABOUT HERE 

 

Summing up, the overcautious rule does not induce a viable evolution. But the rigid effort rule 

( ) qLxre //1 0min −⋅=  might be part of a viable evolution, depending on the initial stock 0x  in 

relation to the cost parameters c and C. The distribution of minimum profits fits for the 

corresponding analysis. And furthermore, we are able to evaluate the system beyond the first 

50 periods. The cut after period 50 is arbitrary. It is a simplification of the capture basin 

aspect, as we force our system to conserve the stock of period 50 with the sustainable 

management rule: ( ) ( ) 50;//1 >−⋅= tqLxrte t . In order to keep things easy, world is deterministic 

thereafter. With these simplifications the probability of an initial stock reaching a defined 
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target is tractable (given a certain management rule). Though it is less than to identify the 

capture basin, it is a step in direction to capture basins.  

 

The Excel spreadsheet 

Figures 9a-c display parts of the Excel spreadsheet. In cells A4:A15 are parameter names and 

B4:B15 contain the corresponding values; B4:B15 got their names from the cells in the A-

column. In our simulation runs we chose a parameter value r of 1, in order to have as same 

stochastic setting as we discussed under Chapter 2.  

A22:A71 display the period numbers; the next column (B22:B71) calculates the evolution of 

the resource stock with the formula B22;0)*D22*q-C22+B220;>B22*D22*q-C22+WENN(B22=  for 

the second period. The evolution of the stock will follow the time-discrete version of formula 

(3) as long as it stays non-negative; negative values are excluded; C22:C71 contain the natural 

growth due to formula (1) as random variables. The random element of the natural growth 

bases on the random growth rate which is even distributed on [ ]random_up;random_low  (see 

formula (2)). The corresponding expression is r*))random_low-(random_up*F22+w(random_lo . Due 

to our parameter choice it generates a random variable with an even distribution on [ ]1;5.0 . 

Multiplication with the expression ( ) ( )( )Ltxtx −⋅ 1  completes the formula for natural growth 

B22/l)-(1*B22*r*))random_low-(random_up*F22+w(random_lo=  of the first period.  

Column D contains the effort rule. The rigid rule is x_0/l)/q-(1*random_low=  in the first period, 

respectively 0)B23;$D$22;*D22*q>WENN(B23=  in the second period. I.e. be pessimistic in the 

first period and make sure that harvest will not exceed natural growth, and as long as possible 

do not change effort. Only in case harvest would exceed the actual stock, suspend resource 

usage for the actual period. As soon as possible, start usage again at the level of period 1. 
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Alternatively, B22/l)/q-(1*random_low=  characterises the overcautious rule in the first period and 

( ) )B23/l)/q;0-(1*random_lowB23;B23/l)/q-(1*random_lowq>WENN(B23= ⋅⋅  in the second period. I.e. as 

long as possible chose effort such that harvest represents the natural growth of the current 

period in the worst case. If this is not possible due to resource degradation, suspend effort. 

The latter regulation is never relevant as we demonstrated in chapter 2.  

 

Finally, we look at an effort rule focusing on the expected average natural growth of the 

corresponding period. The regulation is given by )/2)random_low-(random_up+w(random_lo=  

B22/l)/q-(1**r  in the first period and by >WENN(B23= ( )⋅⋅ )/2)random_low-(random_up+w(random_loq  

( ) B23;B23/l)/q-(1**r ⋅ )/2)/random_low-(random_up+w(random_lo )B23/l)/q;0-(1**r in the second period. 

 

Further, column E calculates the profit corresponding to formula (5), and column F the 

random variables. 

 

FIGURE 9a-c ABOUT HERE 

 

Figures 10a-b present the last 10 periods and the long-run-steady state - accessible after 

period 50.  

 

FIGURE 10a-b ABOUT HERE 

 

To simulate a run with random growth rate, press button F9 on the keyboard. To generate a 

Makro simulating a series of simulation runs, just use the Makro recorder: start a simulation 

and copy the main results of the current run; stop the recorder session, edit the Makro and 

insert the program segment in a loop like “for i = 1 to X ---- .. next i”. Finally, adjust the 

relevant pieces of the program according to the requirements and the loop design.  
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The following chapter presents some results for simulation-series length of 30. 

 

The Results 

Data Analysis 

Concerning the rigid rule the simulation results are: 

Due to the increase of the stock during the first periods, the minimum stock of the relevant 

time horizon of 50 periods is identical to the initial stock. Further, as the effort path is 

determined by the initial stock, and harvest grows as the stock grows by time, the minimum 

profit is the profit of the first period. Therefore, the simulation results concerning minimum 

stock and minimum profit match our argumentation, and the rigid rule might result in a viable 

evolution, or not. Higher fix costs endanger the viability; as already expressed in formula (9). 

An illustration is dispensable. 

 

In contrast, the steady state stock and the steady state profit are non-degenerated random 

variables and an approximation of their distribution is given through the data generated with 

an Excel Makro. See the following two figures for the result: 

 

FIGURE 11 ABOUT HERE 

 

FIGURE 12 ABOUT HERE 

 

For the overcautious rule the simulation results are what were expected: 
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The initial resource stock is neither relevant for the steady state stock nor for the steady state 

profit: the stock will increase near the carrying capacity level and economic losses occur due 

to uncovered fix costs. The rule is not adequate for viable evolutions. 

An illustration of these results is dispensable.  

 

The last rule analysed was the average rule: 

It focuses on the expected average growth within a period. The average rule (avg rule) allows 

for a resource decrease right form the beginning; therefore, the distribution of the minimum 

stock size and the minimum profits become relevant. Figures 13 and 14 display the 

distribution:  

 

FIGURE 13 ABOUT HERE 

 

FIGURE 14 ABOUT HERE 

 

As expected, for small initial stocks, there are periods of usage suspension. Accordingly, 

losses occur.  

Further as expected, the higher the initial stock, the higher the average of minimum stock 

generated in the simulation runs. Intuitively clear, the upper bound of the minimum stock is 

identical to the initial stock. 

More of interest, even for an initial stock of 50, the stock size in the next 50 years can 

decrease to nearly zero, and losses occur. In two of 30 simulations (with 500 =x ) periods of 

usage suspension occur – i.e. the evolution displayed a bounce on the boundary of the 

viability kernel.  

There is another important result form figure 14: the rule induces a serious danger of 

economic losses for high initial stocks. These losses are no consequence of usage suspension 
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– minimum stock size stays clearly positive. They result from the low natural growth near the 

carrying capacity. For high initial resource stocks the average rule is therefore inadequate as it 

induces probably not a viable evolution.  

 

FIGURE 15 ABOUT HERE 

 

FIGUR 16 ABOUT HERE 

 

Figure 15 displays the distribution of the steady state stock and figure 16 of the steady state 

profit. As already seen from the distribution of the minimums in the first 50 periods, as long 

as the initial stock is less than half of the carrying capacity, there exists danger of resource 

degradation at the end.  

 

Decision support opportunity 

Resource management has to put weights on their targets concerning the viability of an 

evolution. Additional to the distribution of minimum stock size or the steady state stock size 

the management might have other targets. Further an evaluation of distributions is necessary. 

One example is to search for stochastic dominance of distributions.  

The data generated allow for an approximation of density functions and cumulated 

distribution functions. Figure 17 presents a comparison between the rigid rule and the average 

rule for 500 =x . Content is the steady state stock. As expected, the rigid rule is preferable here.  

The distribution is almost stochastic dominant in the first degree: the distribution curve of the 

rigid rule stays nearly strict below the distribution curve of the average rule for 500 =x . But 

other initial values demonstrate a different picture. And other content does, too. Further, other 

criteria (e.g. µ-σ- criterion) exist to evaluate distributes.  
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Furthermore it is fundamental to analyse more rules, e.g. the rule presented in Béne, Doyen, 

and Gabay, which takes into account additional economic boundaries due to slow capacity 

adjustments. 

Last but not least, the effect of various parameter values determining the stochastics (the 

upper and the lower bound of the growth rate) should be included in the decision.  

Conclusion 

The implementation of the simplified Béne-Doyen-Gabay model presented an example of 

how to introduce viability concepts to students without mathematical background. Viability 

theory is applicable to many problems related to the management of renewable resources. 

Special advantage consists in the simple manner stochastic dynamics can be included in the 

analysis as stochastic aspects are a fundamental aspect for most renewable resources. 

Simulation runs then generate the distribution of relevant outcomes. As it keeps the necessary 

time effort low, it allows to “play” with various control rules. The user obtains experience 

with the design of controls and gains useful time to deal with decision concepts. 
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Appendix 

Define ∆  as the difference between an tx  and 50, the stock size with the highest natural re-

growth – given any growth curve possible. As we concentrate on 0>∆ , the proposition is, that 

the stock size cannot jump below 50. I.e. the jump width cannot exceed ∆  in case of a jump to 

the left. Since the harvest is 12.5 (the minimum natural growth at stock size 50) and the 

natural growth is at minimum given through ( ) ( )( )100501505.0 ∆+−⋅∆+⋅ , the corresponding jump 

width is ( ) ( )( )100501505.05.12 ∆+−⋅∆+⋅−  and the constraint to be proven is: 

( ) ∆<






 ∆+
−⋅∆+⋅−

100
501505.05.12          (*) 

I.e. we concentrate on the worst case possible in the comedown of the resource (LHS of (*)) 

and ask whether the worst case still means that we do not loose more than we are afar from 

50. With other words (*) expresses we would stay right from 50 even in the worst case. 

(*) can be converted in the following equivalent conditions: 

( )

( )

50
1

100
5.0

5.125.0
100

5.0
2

5.12

50502
100

5.0
2

5.12

50
100

5.0
2

255.12

2

22

2

<∆

<∆⋅

∆<+∆⋅+∆⋅+
∆

−−

∆<+∆⋅⋅+∆⋅+
∆

−−

∆<∆+⋅+
∆

−−

 q.e.d.. 



 20

References 
Aubin, J.-P. A Concise Introduction to Viability Theory, Optimal Control and Robotics (2003) 

(http://www.crea.polytechnique.fr/personnels/fiches/aubin/CACH000.pdf). 

Aubin, J.-P. An Introduction to Viability Theory and Management of Renewable Resources 

(2002) (http://ecolu-info.unige.ch/~nccrwp4/Ppt-Aubin.pdf). 

Aubin, J.-P. Viability Theory (1990) 

(http://www.crea.polytechnique.fr/personnels/fiches/aubin/WViabTheory.pdf). 

Béne, C., Doyen, L., Gabay, D. A. “Viability Analysis for a Bio-Economic Model” 

Ecological Economics 36 (2001): 385 – 396. 

Buongiorno, J., Gilles, J.K. Decision Methods for Forest Resource Management, Academic 

Press, Elsevier Science, 2003. 

Caplan, A. “Seeing is believing: Simulating Resource Extraction Problems with GAMS IDE 

and Microsoft Excel in an Intermediate-level Natural Resource Economics Course”, Eco-

nomic Research Institute Study Paper, 2004. 

Chiang, A. Elements of Dynamic Optimization, Waveland Press, Inc., Prospect Heights, 

Illinois, 1992. 

Conrad, J.M. Resource Economics, Cambridge University Press, New York, 1999. 

Fernández-Cara, E., Zuazua, E. Control Theory: History, Mathematical Achievements and 

Perspectives, Bol. Sic. Esp. Mat. Apl. n°0, 1 -63. 

Gerking, S., Morgan, W., Kunce, M., Lacey, M. Mineral Tax Incentives, Mineral Production 

and the Wyoming Economy (2002) (w3.uwyo.edu/~mkunce/StateReport.pdf). 

Gordon, H. “The economic theory of a common property resource: The fishery” Journal of 

Political Economy 62 (1954):, 124 – 142. 

Intriligator, M. Mathematical Optimization and Economic Theory, Prentice-Hall, Inc., 

Englewood Cliffs, N.J., 1971. 



 21

Kamien, M., Schwartz, N. Dynamic Optimization, The Calculus of Variations and Optimal 

Control in Economics and Management, North Holland, New York, Oxford, 1981. 

Kirschke, D., Jelitschka, K. Angewandte Mikroökonomie und Wirtschaftspolitik mit Excel, 

Verlag Vahlen, München, (2002). 

Meadows, D. H., Meadows, D. I., Randers, J., Behrens, W.W. III The Limits to Growth -A 

Report to The Club of Rome, New York: University Books, 1972. 

Meadows, D. H., Meadows, D. I., Randers Beyond the Limits: Confronting Global Collapse, 

Envisioning a Sustainable Future, Post Mills, Vt., 1992. 

Moxnes, E. “Not only the Tragedy of the Commons: Misperceptions of Feedback and Policies 

for Sustainable Development” System Dynamics Review, 16(4) (2000): 325 – 348. 

Pala, Ö., Vennix, J. “Effect of System Dynamics Education on System Thinking Inventory 

Task Performance”, System Dynamics Review, 21(2) (2005): 147 – 172. 

Ragsdale, C. Spreadsheet Modeling and Decision Analysis, South-Western College 

Publishing, Cincinnati, 2001. 

Salemi, M., Siegfried, J. “The State of Economic Education”, American Economic Review, 

89(2) (1999): 355 – 361. 

Schaefer, M. “Some aspects of the dynamics of populations important to the management of 

the commercial marine fisheries” Inter-American Tropical Tuna Commission Bulletin (2) 

(1954): 27 – 56. 

Wacker, H., Blank, J. Ressourcenökonomie, Bd. 1: Regenerative natürliche Ressourcen, 

Oldenbourg Verlag, München, 1998. 

Walstad, W., Allgoodm S. “What do College Seniors Know about Economics?” American 

Economic Review, 89(2) (1999): 351 – 354. 

World Commission on Environment and Development (ed.) Our common future, Report of 

the World Commission on Environment and Development under the chair of Gro Harlem 

Brundtland (1987) 



 22

(http://www.are.admin.ch/imperia/md/content/are/nachhaltigeentwicklung/brundtland_bericht

.pdf?PHPSESSID=f7c51924a6c2ff8fb3f9a9c87771d9b7). 

 



 23

Figures 1. Range of Growth Curves 
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Source: own illustration; parameters: 100;1;5.0 maxmin === Lrr  
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Figure 2. 5 Trajectories given x0 = 20 and e(x(t)) =rminÿ(1-x(t)/L)/q 
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Figure 3. 5 Trajectories given x0 = 20 and e =rmin*(1-x0/L)/q 
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Figure 4. Growth Curves and the Rigid Rule for 00 50=x  
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Figure 5. Dynamics 

 
Source: simplification of Fig 2 from Béne, Doyen, and Gabay  
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Figure 6. the ( ) 0, =exx& -Curves for 5.0min =r  and 1max =r  
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Figure 7. Evolution for the Overcautious Rule ( )( ) ( )( ) qLtxrtxe //1min −⋅=  

 
Source: adaptation of Fig 2 from Béne, Doyen, and Gabay  
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Figure 8. Evolution for the Rigid Rule ( ) qLxre //1 0min −⋅=  

 
Source: adaptation of Fig 2 from Béne, Doyen, and Gabay  
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Figure 9a-c. View of Parameter Area, the first 10 Periods 

 

 

 
Source: own work 
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Figure 10a-b. View of the last 10 Periods with the Additional Steady State Calculation 

 

 
Source: own work 
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Figure 11. Distribution of Steady State Stock for rmin = 0.5 and rmax = 1 and Various Initial 

Stocks x0 – the Rigid Rule 
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Source: own computation 

 
 



 34

Figure 12. Distribution of Steady State Profit for rmin = 0.5 and rmax = 1 and Various Initial 

Stocks x0 – the Rigid Rule 
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Figure 13. Distribution of the Minimum Stock during the 50-Years-Horizon given rmin = 0.5 

and rmax = 1 and Various Initial Stocks x0 – the Avg Rule 
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Figure 14. Distribution of the Minimum Profit during the 50-Years-Horizon given rmin = 0.5 

and rmax = 1 and Various Initial Stocks x0 – the Avg Rule 
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Source: own computation 
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Figure 15. Distribution of Steady State Stock for rmin = 0.5 and rmax = 1 and Various Initial 

Stocks x0 - the Avg-Rule 
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Figure 16. Distribution of Steady State Profit for rmin = 0.5 and rmax = 1 and Various Initial 

Stocks x0 – the Avg Rule 
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FIGURE 17. Comparison of Rigid Rule and Avg Rule concerning the approximated Density 

and the approximated Distribution function of the Steady State Stock for rmin=0.5 and rmax=1 

given x0=50 
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1 Control theory is a comparatively young field within mathematics (For its history, see Fernández-Cara and 

Zuazua (0000)). In the fifties and sixties of the last century Calculus of Variation enhanced more and more; at 

the same time Bellman equations and the Maximum Principle of Pontryagin were introduced (Calculus of 

Variation, Bellmann equations, and the Maximum Principle, see Kamien and Schwartz  (1981), Intriligator 

(1971), Chiang (1992.).  

2 As stated in Aubin (2002) the purpose is to identify viable evolutions governed by nondeterministic dynamics. 

3 Walstad and Allgood (1999) found a shortfall in economic understanding in a sample of college seniors as well 

as in another sample of former students with Major Field Test in Business II. Salemi and Siegfried (1999) see a 

need to enlarge the methods and media used in lectures, e.g. to use technology, in order to improve long-run 

economic understanding. 

4 Examples for system dynamic tools are Dynamo, SIMPAS, DynSim, VenSim and PowerSim or Stella; 

concerning history and features of the software see Gilbert and Troitzsch (1999), chap. 3. These tools allow the 

definition of stocks and flows, to control feedback effects, and so on. They ease forecasting the development of 

variables linked through a system of differential equations. 

5 An example for a freeware game theory tool is gambit. 

6 The letter C will be employed in another context latter in the model. It is used here only to be in line with 

Aubin’s notation. 

7 For more details concerning the sustainable effort and the effort yield curve see Wacker and Blank. 

8 In case of good luck and a high intrinsic growth rate, effort is allowed to be higher than in case of bad luck and 

a low intrinsic growth rate, as a matter of course. The difference between the highest and the lowest effort is 

large in case of a small stock size due to the following reason: the derivative of effort as a function of the 

quantity to be harvested decreases with the square of x  in the denominator: 

2x
q

h
e

xq
hexeqh −=

∂
∂

⇒
⋅

=⇔⋅⋅=
         (11) 

The smaller x , the larger the reaction of the effort to changes in the required harvest quantity. 

9 And it gets multiplied by the product of ( )tx  and the efficiency parameter, in order to calculate the harvest. 

10 There is no guarantee that initial profits will be positive. Very high fix costs can induce a ( ) 0, =exR -curve 

strictly above the ( ) max0, rrexx ==& -curve. In this case the viability kernel is empty.    

11 Concerning changes in c  and C , the line of argumentation is: the tangent of the ( ) 0, =exR -curve is 

qpcx ⋅= / ; thus a higher c  shifts the tangent to the right; and C  shifts the ( ) 0, =exR -curve upwards. With 
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higher C  or c , the interval [ ]+− xx ~,~  is smaller, and therefore there are less 0x  inducing positive profits in the 

beginning. At the end, revenue will never cover the fix costs, as already stated. 

12 Again, there is no guarantee that initial profits will be positive. For example, assume the ( ) min0, rrexx ==& -

curve stays strictly below the ( ) 0, =exR -curve. Then, the rule ( ) qLxre //1 0min −⋅=  can never induce a viable 

evolution – independent from 0x  (profits will stay negative forever). Negative initial profits will appear even if 

the three curve relate to each other like in figure 8, but the 0x  lies left from the intersection of ( ) min0, rrexx ==&  

and ( ) 0, =exR . 


