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Romanian Maize — Distorted Prices and Producer Efficiency

ABSTRACT

This study tackles the decomposition of efficiency with respect to agricultural production in
transition economies by using a case study on small scale maize farmers in Romania. The underlying
modelling assumption is that farmers in transition countries still face heavily distorted price systems.
To capture such distortions a stochastic shadow cost frontier model is formulated to investigate the
systematic input specific allocative inefficiency. We further adjust the underlying cost frontier by
incorporating shadow price corrections and subsequently reveal evidence on farm specific technical
inefficiency. Different models are estimated due to the imposition of curvature correctness. The
empirical results confirm the underlying hypothesis of enduring price distortions.
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1 - INTRODUCTION

Profound structural changes are still taking place in the process of transition from a
command to a market oriented economy in most Eastern European countries and New
Independent States (NIS). As a consequence, farmers in these countries still face heavily
distorted price systems. As Barrett (1997) notes, given that such farm specific failures in
input and output markets are a fundamental characteristic of low-income agriculture, the
relevant measurement of efficiency might differ from one farm to another, with crucial
variables, such as shadow prices, unobservable for to the researcher. This is especially true
for the agricultural sector in Romania where the structural reforms have been concentrated
on the privatization of land and the downsizing of agricultural enterprises leading to the
emergence of numerous small farms (Lerman 1999, OECD 2000). These farmers — socalled
individual farmers — are currently the most important actors with respect to land and output
markets (OECD 2000, Leonte 2002). However, they are still constrained with respect to an
insufficient factor endowment and the lack of developed input and output markets (Rizov et
al 2001). As a result, most technology intensive crops have been substituted by the
cultivation of more traditional crops and the importance of subsistence farming has increased
(Tesliuc 2000).

The production of maize, as one of the main traditional crops in Romania, increased in its
importance, which is also related to its relatively simple way of production and storage
(Tesliuc 2000). Hence, this crop currently plays a central role in agricultural production
being cultivated on a relatively large area and providing a relatively large proportion of
output (NIS 2004). According to Gorton et al (2003), maize shows a comparative advantage
in Romania. Given the importance of maize production for agricultural transition and rural
development, this research aims to assess the relative efficiency of small-scale maize
production and tries to determine different factors for the inefficiency of maize. In the

background of the restructuring of Romanian agriculture, the individual farmers’ decisions



are often made with respect to shadow prices, as the prices the decision maker actually has to
pay, rather than those observed as prevailing market prices (see Toda 1976, Atkinson and
Halvorsen 1980, Kumbhakar and Bhattacharyya 1992 and Wang et al. 1996). The following
study therefore uses such shadow prices to model and analyze the relative efficiency of
small-scale Romanian maize producers. With respect to policy relevant empirical based
productivity studies, Gorton and Davidova realized in 2004 that “(...) there is a lack of
evidence on the Baltic States and Romania.” This deficiency still exists with respect to
Romanian agricultural production.

After briefly outlining the case of small-scale maize production in Romania, the applied
model is described as a combination of the shadow price approach, to reveal systematic
allocative efficiency, and the error components approach, to obtain producer specific
technical efficiency estimates. The estimated models are tested and corrected for theoretical
consistency and further bias corrected bootstrapping techniques are applied to investigate the
statistical robustness of the most consistent model. Finally the relative efficiency scores and

possible factors for their variance over the sample are discussed.

2 — THE CASE STUDY — SMALL-SCALE MAIZE PRODUCTION IN ROMANIA

The majority of the restructuring measures in the Romanian agricultural sector since 1989
were concentrated on the privatization of land aimed at changing collective agriculture to
individual agriculture, as well as on the downsizing of the farms (Lerman 1999, Cartwright
2001, Rizov et al 2001). The future owners could choose among the following options:
individual farming, joining a family based association, joining a formal association and
pursuing a mixed strategy (Sabates-Wheeler 2001). The majority of farmers chose individual
farming and thus, in 2002, 4.7 million individual farms cultivated 62% of the arable land
with an average size of 1.6 hectares per farm (NIS 2004). However, by reestablishing the
situation before collectivization, the privatization hence led to the fragmentation of the

agricultural land and consequently the new individual farmers were constrained in their



business development by the fragmented structure and small size of the land holdings
(Macours/Swinnen 2000, Rizov et al 2001). Initially, the farms could not be adjusted to their
efficient size because the restituted land was banned from selling till the year 1998 and a
simplification of the complex law on leasing was only conducted in the same year. Due to
this structure, the renting of agricultural land was not attractive to those farmers as obtaining
a large piece of land implied substantial transaction costs as a consequence of the need to
coordinate with several different land owners (Trzeciak-Duval 1976, Mathijs/Swinnen 1998,
Tesliuc 2000).

Furthermore, the new individual producers lacked the necessary know-how to cultivate
their land. They had no cash to invest and rarely had access to credit or agricultural
equipment. Up and downstream sectors had not been restructured to suit the needs of the
small farmers, which led to high transactions costs by using the different input and output
markets. However, Rizov et al (2001) found that these input constraints differ with respect to
regional location pointing to the importance of pre-reform tradition with individual farming
or collective farming. Such transaction costs and the lack of capital reinforced the decline in
the use of inputs like fertilizer and certified seed (Kenneth 2003, OECD 2000, Tesliuc 2000).
By responding to these difficulties, producers diversified their production, substituted
commercial with non-commercial crops, technical crops by traditional crops and increased
subsistence production (see Sarris et al. 1999). The latter finally further promoted the
stagnation in the development of input and output markets and led to a kind of vicious circle.
The increase in maize cultivation in Romania during this period is basically linked to these
developments in the agricultural sector. Maize production is one of the traditional
agricultural activities and the area devoted to maize production increased from about 26%
(1990) to about 36% (2003) of the arable land (NIS 2004). The cultivation of maize shows the
relative advantage of low input intensity: no certified and commercially distributed seed is
needed; the crop can be simply harvested by hand and easily stored without the need for

sophisticated facilities. Maize can be consumed in the household as well as in the process of



animal production. The latter leads finally to relatively less dependence on the purchase of
additional fodder (Tesliuc 2000).

Although the economic reforms in Romanian agriculture have reduced direct state control
over production decisions, various interferences in the input and output markets still distort
farmers’ production decisions (Rizov et al. 2001). Despite the focus of some studies on the
economic efficiency of individual farms in transitional countries (see e.g. Mathijs/Swinnen
2001, Hughes 1998, Piesse/Thirtle 2000, Lerman 2000, Mathijs/Swinnen 2000, Christoiu
2001, and Swinnen/Vranken 2005, for an excellent compilation see Gorton/Davidova 2004)
none consider the effects of distorted input and output price relations with respect to the
relative efficiency of agricultural production in Romania. The following analysis aims at
filling this gap by attempting to decompose farm efficiency in transition countries with

respect to such market distortions, as well as farm specific factors.

3 — THE ANALYTICAL CHALLENGE - DECOMPOSING INEFFICIENCY

As Barrett already noted a decade ago: “Policy-induced price distortions are problematic if
they induce peasants to allocate resources in a socially suboptimal manner, and market-
oriented correctives are fully effective only if producers reallocate factors rationally.”
(Barrett 1997, p. 221). The underlying assumption of this study is that such policy-induced
distortions are still the case for transitional agriculture hampering the production decisions
of small scale farmers, like the Romanian maize farmers in the chosen empirical case. While
the quantitative decomposition of overall economic efficiency into its technical and
allocative related components is more or less easily reached by using the dual approach of
cost or profit function based modelling, a further decomposition of allocative inefficiency
still remains an analytical challenge. This is basically related to the definition of an
appropriate concept of allocative efficiency taking into account the farmer’s objectives and
the constraints and prices faced by the farm enterprise, as well as the decomposition of the

allocative efficiency into its components. To tackle this challenge, the economic concept of



shadow prices is applied here. According to the common concept of shadow prices: when
determining the optimal input vector, farms compare the benefits of using an additional unit
of each input to its cost, the purchase (or ‘observed’) price. Depending on whether a
production function approach or a cost function approach is taken, these marginal benefits —
referred to as the shadow price of the input — can be measured either in terms of the input’s
value marginal product, or as the reductions in expenditures on other inputs that can be
achieved by using one additional unit of the input (while keeping output constant). In the
absence of market distortions, the optimal amount of input use is intuitive: use an input up to
the point where the shadow price and the purchase price are equivalent. If market
distortions are present, farms are unable to equate their shadow price to the undistorted
input price. For this analysis, the shadow price of an input is defined as the potential
reduction in expenditures on other variable inputs that can be achieved by using an
additional unit of the input under consideration while maintaining the level of output.
However, the observed prices used in the analysis are prices reported by the farmers. Due to
the vast literature on shadow prices (for an overview see e.g. Khumbhakar/Lovell 2000), non-
observable shadow price ratios have to be considered as the relevant ones for producer
decisions in distorted markets. The divergence between the analysed (i.e. estimated) shadow
prices and the observed market prices can be interpreted as the sum of allocative inefficiency
due to the prevalence of various market constraints, as well as optimization failure by the
farm management. Different approaches to model this divergence can be found in the
literature: The usual method consists of additively translating observed prices to create
shadow prices (see Kumbhakar/Lovell 2000). Alternatively, shadow prices can be modeled by
multiplicatively scaling observed prices into shadow ones (Lau/Yotopoulos 1971). We follow
the latter approach here and define the relationship between the normalized shadow prices

for the variable and fixed inputs w*, f * and the normalized market prices w, f as

w¥* =6w, S* =67 [1]



where 6,0, are (non-negative) price efficiency parameters and i,/ are indices for variable

and fixed inputs respectively. If no market restrictions and optimization errors are the case

then 6,6, equal unity, if market distortions and/or management failure restrict optimizing

behaviour then #>0A68 #1. Consequently, a Romanian maize farmer can be regarded as
allocatively efficient with respect to observed market prices only if observed market prices
reflect the farmer’s opportunity cost with respect to inputs. It has to be considered, however,

that the price efficiency parameters 6,6, may still reflect both effects of market distortions

as well as farm specific optimization failures. As we have only observed prices for the
variable inputs labor and fertilizer, we treat the remaining inputs, land and organic fertilizer,
as quasi-fixed, thus including the relevant quantity in the shadow cost function instead of its
price (see also e.g. Morrison 1988 and Morrison/Schwartz 1996). It has to be kept in mind
that by modelling allocative efficiency, as outlined above, a further decomposition is not
reached. However, an approximative decomposition is attempted by the following modelling

efforts.

4 — THE MODEL — A COMBINATION OF SHADOW PRICES AND ERROR COMPONENTS

We start our modeling efforts by formulating a simple single-output translog cost function
and its associated cost-minimizing input cost share equations (see e.g. Atkinson/Halvorsen
1980, Kumbhakar 1989, Wang et al., 1996, Kumbhakar/Bhattacharyya, 1992). Incorporating
shadow prices according to [1] and following the input-oriented approach with respect to
technical efficiency, observed expenditure (C) and observed input cost shares (S) can be

expressed in terms of normalized shadow cost and normalized shadow input cost shares as
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respectively, where symmetry and homogeneity of degree +1 in input prices are imposed

through the parameter restrictions [, =f,, i #k, Z B =1 Z B, =0, k=12 Z B,,=0

i=1

and where y = maize output; the variable inputs’ prices w = labor, fertilizer; the quasi-fixed
inputs f = land, organic fertilizer; and the variables e = herbicide used, insecticides used, seed
applied, subsidies received, extension services used, agricultural training received, slope of
the land cultivated, relative amount of precipitation, soil moisture, vegetation vigor/density,
and livestock units. Classical error terms are appended, one input cost share equation is
deleted, and the remaining system of /input equations is estimated. y includes the relative
technical inefficiency, with respect to a group of farmers, defined along different
characteristics n and denoted by D for dummy variable and # gives the systematic allocative
inefficiency for the respective input.

Rizov et al (2001) point to the importance of human capital matters for the productive
development of individual farming in transition countries and especially in Romania.
Accordingly, farmers’ education and farming experience do affect the development of larger

production units and the initiation of cross farm cooperation. However, the small sample size



leads to an aggregation across all forms of labor used on the farm by imposing the strong
assumption that all labor is equally productive, regardless of certain characteristics and
irrespective of whether it is hired or family labor. By simultaneously modelling the shadow
price for labor as a function of gender and age of the household head, the level of education,
the relative amount of hired labor, the amount of working hours spent outside agriculture as
well as the size of the household, we are at least able to control for some of these differences
and examine whether they have any influence on the shadow price fluctuation. Hence, we

model the parameter for the shadow price of labor 6,,, as follows:

6,

lab

= (Dlingender + (olia ln Xage + ¢17e ln Xedu + ¢lih 1n th + goliuut 1n Xaut + ¢lihh ln Xhh [4]

where D

gender

is a binary variable for the gender of the household head, X, as the age of the
household head in years, X, as the years of education of the household head, X, is the
ratio for hired to family labor, X, as the amount of labor spent outside agriculture, and X,

as the number of household members.

Sherlund et al. (2002) impressively document how smallholder agricultural production
depends heavily on environmental production conditions that are largely exogenously
determined. By neglecting the influence of such production conditions, an omitted variables
bias is likely to occur. Following their findings it can be expected that beside others the
shadow price of land is affected by the quality of the land, the prevailing climatic conditions,
as well as the geological characteristics of the landscape. By simultaneously modelling the
shadow price for land as a function of relative precipitation, soil moisture, and the vigor and
density of the vegetation in the area, we are at least able to control for some of these
influences and examine whether they have any significant impact on the shadow price

fluctuation in the period observed. The shadow price parameter for land 6, , is modelled
according to the equality in [5]:

eland = 771andfp ln Xprecip + nlandi.v ln Xmil + nlandiv ln X

vege



where X

ecip 18 @ variable for the relative precipitation, X, as the soil moisture in the area

and X asavegetation index.

vege

Different recent contributions point to the crucial importance of considering the consistency
of the estimated frontier with basic microeconomic requirements as monotonicity with
respect to inputs as well as concavity of the function (see e.g. Ryan/Wales 1998 and Sauer
2006). Monotonicity of the estimated cost function — i.e. positive first derivatives with
respect to all input prices - holds as all variable inputs W and quasi-fixed inputs F are positive
for all observations in the sample. The necessary and sufficient condition for a specific
curvature consists of the definiteness of the bordered Hessian matrix as the Jacobian of the

derivatives 0C /0w, with respect to wiand 0C/0f, with respect to fi: if V2C(y,w,f) is negative

definite, C is concave, where V? denotes the matrix of second order partial derivatives with
respect to the shadow translog cost model defined by [2]. The Hessian matrix is negative
definite at every unconstrained local maximum. Hence, the underlying function is concave
and an interior extreme point will be a global maximum. The condition of concavity is
related to the fact that this property implies a quasi-concave production function and
consequently a convex input requirement set (see in detail e.g. Chambers 1988). Hence, a
point on the isoquant is tested, i.e. the properties of the corresponding production function
are evaluated subject to the condition that the amount of production remains constant. With
respect to the translog shadow cost function, model curvature depends on the specific
variable input price and quasi-fixed input bundle, as the corresponding Hessian H for our 4

input case shows:
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for r =i, 1 and s = k, m. Given a point x°, what is necessary and sufficient for curvature
correctness is that at this point v’Hv < 0 and v’s = 0 where v denotes the direction of change.
For some input bundles concavity may be satisfied but for others not and hence what can be
expected is that the condition of negative definiteness of the Hessian is met only locally or
with respect to a range of input bundles. The respective Hessian is negative definite if the
determinants of all of its principal submatrices are negative in sign (i.e. Dj < 0 where D is the
determinant of the leading principal minors and j = 1, 2, ..., n). Hence, with respect to our
translog shadow cost model, it has to be checked a posteriori for every input bundle that
monotonicity and concavity hold. If these theoretical criteria are jointly fulfilled the
obtained estimates are consistent with microeconomic theory and consequently can serve as
empirical evidence for possible policy measures.

Concavity can be imposed on our translog shadow cost model at a reference point (usually at
the sample mean) following Jorgenson/Fraumeni (1981) and Ryan/Wales (1998). By this
procedure the bordered Hessian in [6] is replaced by the negative product of a lower
triangular matrix A times its transpose A’. Imposing curvature at the sample mean is then
attained by setting

B(5),, =~(AAY, +a(8), , +(5),a(d), 9]
wherer=1i,1 and s =k, m and As = 1 if r = s and 0 otherwise and (AA’)ss as the rs-th element

of AA’ with A as a lower triangular matrix:

11
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As our point of approximation is the sample mean, all data points are divided by their mean
transferring the approximation point to an (n + 1)-dimensional vector of ones. At this point
the elements of H do not depend on the specific input price bundle. The estimation model of

the normalized translog shadow cost frontier is then reformulated as follows:
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However, the elements of A are nonlinear functions of the decomposed matrix in [10], and
consequently the resulting normalized translog model becomes nonlinear in parameters.
Hence, linear estimation algorithms are ruled out even if the original function is linear in
parameters. By this “local” procedure a satisfaction of consistency at most, or even all, data
points in the sample can be reached. The transformation in [11] moves the observations
towards the approximation point and thus increases the likelihood of getting theoretically
consistent results at least for a range of observations (see Ryan/Wales 2000). However, by
imposing global consistency on the translog functional form Diewert and Wales (1987) note

that the parameter matrix is restricted leading to seriously biased elasticity estimates. Hence,

12



the translog function would lose its flexibility. By a second analytical step we finally (a
posteriori) check the theoretical consistency of our estimated model by verifying that the

Hessian is negative semi-definite (i.e. functional concavity).

Tackling the general presumption of homogeneous prices, the estimated shadow price
parameters nevertheless contain both input specific allocative inefficiency, due to market
distortions, as well as input specific allocative inefficiency resulting from farm specific factors
besides residual stochastic influences. Barrett (1997) points to the methodological
shortcomings of most efficiency estimations in a developing context due to an unsatisfactory
discussion of the problems involved in neglecting the decomposition of peasant (in)efficiency
resulting from binding market constraints causing peasant decision-makers’ shadow prices to
deviate from market prices, or resulting from allocative inefficiency, or both. In order to
address such a decomposition of the allocative inefficiency estimates found, the input specific

economic loss (—/SE,) or gain (+ISE,) is computed based on the estimated shadow price

deviations according to [12]:

+ISE, = +|ISC, - ISC",

=i‘w,.*q[—w'[*qi| [12]
where ISGCi and ISC’i denote the input specific costs and shadow costs respectively for the use
of input i. These input specific economic losses (or gains) are then simultaneously regressed
on different farm specific explanatory variables by applying a multiple equations model
following [13]:

ln]SElab = ZKlabiuDu + Za)labiv lan + glab

u

In ISEfert = Z Kfert_uD + Z a)fert_v In Xv + gfert
u v

and _u

ln ISEland = ZKZ Du + Za)landiv ln Xv + gland [13]

11'1 ] SE orgfert = z Korgfert_u D u + Z worgfert_v ln X v + gorgfert
u 4

where u is an index for the following variables: D, , D,,,., and D

insect

are binary variables

eed

for the use (or not) of commercial seed, herbicides and insecticides respectively. D,

13



indicates whether the farm received subsidies, D

coop

is a binary variable for cooperation with

other farms, D

ender 18 @ binary variable for the gender of the household head, D,, indicates

whether the farm made use of extension services offered, D, shows if agricultural training
has been received in the study period, D, describes if the farm owned a car, thus indicating

the degree of mobility and linkage to other relevant input and output markets, D, ,, D,

iasi ’ mehedinti 2

D

braila

D,

vrancea

D,

ialomita

D

oltenia ’

D,

bihor

D

mures

D

arad ’

D,

hargita °

D

valcea

and D, are county

dummies! indicating the relevance of location specific factors. vis an index for: X . asthe

precip

relative rainfall in the area, X, as the soil moisture in the area, X, as the total size of the

farm, X, , as the amount of machinery used in maize cultivation as a proxy for the state of

technology, X, as a ratio for hired to family labor, X, as the age of the household head in

years, X

out

as the amount of labour spent outside agriculture, X, indicating the vegetation

vege

index in the area, X, , showing whether the farm is also engaged in livestock production,

ivest

X,.u as a proxy for the buildings used on the farm (i.e. input and output storage facilities,

garages etc.), X

wope indicates the relative slope of the agricultural land used for maize

production, X,

. Teflects the average distance between the farm’s plots, and X, indicates
the level of the farmer’s education. A simultaneous equation approach seems adequate as the
relative price ratios are assumed to be affected by the same farm specific factors as well as
stochastic residuals at the same point in time. Consequently, the variations in the

unexplained error term are somehow linked over the different single regressions. A Breusch-

Pagan test is applied to test for the significance of this underlying modelling hypothesis.

As the included regressors represent potential factors for farm specific allocative inefficiency,
the explained share of the variation in the dependent variables of [13] can be (at least)

considered as an approximation to the real share of allocative inefficiency due to farm

! To avoid the threat of perfect collinearity between the m regional dummies only (m-7) of them are
incorporated as is common econometric practice.

14



specific variation ( A/E

wm 1)- Consequently, the remaining part of unexplained variation in
the dependent variables are, by definition, regarded as allocative inefficiency stemming from

market constraints ( AIE

market _i

) as well as residual stochastic influences (& ). Equation [14]

describes this decomposition attempt:

AIE, = AIE,,, ,+ AIE

market _i
:(K*l. D, +a, VInXV)+gl. [14]
= (K'*iiuDu + a)*iiv hl Xv) + AIEmarketii + gz
with i = labor, fertilizer, land, and organic fertilizer, the estimated parameter values

*

k', ,,@, ,. By this modelling procedure we try to attempt the decomposition of allocative

i u W
inefficiency on the farm level into its market related and farm related components. Needless
to say, because of neglected explanatory variables in [13], as a consequence of lacking data,
the problem of omitted variables bias has to be kept in mind when interpreting the
decomposition results. According to this serious specification problem, the discussion of the
estimation results based on [12] to [14] is based on the relative share of the explained sum of
variation leaving aside the individual inefficiency factors’ coefficients. However, another
specification problem noted by Kumbhakar/Lovell (2000) with respect to the inconsistency
of the two-step estimation of the effects of inefficiency explaining factors is avoided here. By
simultaneously modelling shadow prices, following [2] to [5] in the first estimation step of
the chosen econometric procedure, the estimated variances of the shadow price parameters
in [11] are conditional on the variances of most of the explanatory factors chosen in the

multiple equations model in [13] and hence consistently estimated.

By a third estimation step the behavioural (shadow price) cost function in its constrained and
unconstrained version (eq. [2] and [11]) is ‘adjusted’ by the estimated shadow price
parameters ¢ and hence corrected for systematic allocative inefficiency by using these
shadow prices as direct arguments in the cost function. An adjusted cost frontier is then
modeled by simply adding the error components

& =v +u, [15]

1

15



and applying stochastic frontier techniques to obtain the shadow-cost frontier and finally
estimates of relative cost efficiency on the farm level (see e.g. Coelli et al.,, 1998 and

Khumbhakar/Lovell 2000). As the price efficiency parameters 6,6, reflect both allocative

effects of market distortions as well as optimization errors, the relative inefficiency measured
by the adjusted cost frontier consists solely of technical inefficiency (systematic and/or farm
specific).

The stochastic frontier decomposes the error term into a two-sided random error that
captures the inefficiency component and the effects of factors outside the control of the
farmer. The theoretical foundation of such a model was first proposed by Aigner et al. (1977)
and Meeusen and van den Broeck (1977). The two-sided random error is assumed to be
identically and independently distributed with zero mean and constant variance and is
independent of the one-sided error. The distribution of the inefficiency component of the
error is assumed to be asymmetrical. Following Battesse and Coelli (1995), the maximum

likelihood estimation for equation 1 is obtained from the following log-likelihood function:

gNs )| 1 &,
IF(O_HH 202;3, [16]

where L is the log-likelihood function, /V is the number of observations and F () is the

N
lnL:—Eln Q —Eln0'2+21n
2 2 2

J=1

standard normal distribution function. o is the overall standard deviation equal to the sum
of the standard deviations of the two error terms and ¢ is the proportion of the overall error
term that is explained by the one-sided error. Assuming the half-normal distribution of the

one-sided error term, the relative efficiency score defined at the mean is given as:

E[exp(-u,)]= 2[exp(—50’%ﬂ[1—1¢(a¢§)} [17]

The measurement of farm level efficiency requires the estimation of the non-negative one-
sided error that also depends on the assumptions regarding the distribution of the two and
one-sided error terms. Based on Battesse and Coelli (1988), the best predictor of the relative

efficiency of farmer 7is given as:
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where o, =,/6(1-5)c” . The likelihood function is expressed in terms of the variance

parameters i.e. 6> =0.+0. andd=0_./c". By following a single-equation cost frontier

approach on this estimation stage we are able to avoid the ‘Greene’-problem with respect to

the consistent specification of the individual error components (see Kumbhakar/Lovell

2000).2

Systematic allocative input-specific efficiency measures, as well as group-wise technical
efficiency measures, are obtained by the translog shadow cost model. Measures of technical
efficiency on the farm level result from the error components model and finally farm-specific
radial cost efficiency measures are obtained by simple calculation. As we are also interested
in the effects of imposing theoretical consistency on the translog cost frontier, we investigate

the relative effect of such correction by using the simple index formula

(eﬁfim _efficon)

_ *100 [19]
eff"

To test for the robustness of our estimates by the adjusted shadow cost model (based on [2]
and [11]) we further apply a simple stochastic resampling procedure based on bootstrapping
techniques (see e.g. Efron 1979 or Efron/Tibshirani 1993). This seems to be necessary as our

cross-sectional data sample consists of a (rather) limited number of observations. If we
suppose that ‘i’n is an estimator of the parameter vector vy  including all parameters
obtained by estimating [19] based on our original sample of 64 Romanian maize farmers

X =(x,,..,x,), then we are able to approximate the statistical properties of ¥, by studying a

2 This procedure takes care of the econometric estimation problem with respect to the frontier models.
However, this comes at the cost of a residual inconsistency between the specified shadow cost models and the
frontier models.
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sample of 1000 bootstrap estimators ¥, (c), ,c=1,...,C . These are obtained by resampling our

64 observations — with replacement — from X and recomputing ‘i’n by using each generated

sample. Finally the sampling characteristics of our vector of parameters is obtained from

¥ = [lil(,)m,...,li' [20]

(1000)m:|

As is extensively discussed by Horowitz (2001) or Efron/Tibshirani (1993), the bias of the

bootstrap as an estimator of ¥,, B, =%, —W¥ , is itself a feasible estimator of the bias of the

[
asymptotic estimator of the true population parameter v, .> This holds also for the standard
deviation of the bootstrapped empirical distribution providing a natural estimator of the
standard error for each initial parameter estimate. By using a bias corrected boostrap we aim

to reduce the likely small sample bias in the frontier initial estimates.

5 — DATA AND ESTIMATION

Data is used on 64 maize farmers based on a survey among agricultural households in 15
Romanian villages in 2003 (see Balint/Wobst 2006). The sample villages were chosen by a
multistage representative random sampling procedure focused on seven regions defined by
historical borders, landscape structure and distance to relevant input and output markets.
The overall survey focused on data for 2002 with regard to various outputs, inputs and other
household characteristics. The validity of the survey results were cross checked by
discussions with local agricultural experts. The most frequently produced crop was maize,
cultivated by about 92% of the households, whilst less than a quarter of all households
cultivated technically more demanding crops such as sunflower, soya or sugar beet. The
average farm in the sample shows a total acreage of about 3.70 ha and uses about 957 man

days of total labor per year. The share of maize in total production was about 56% for the

? Hence the bias-corrected estimator of |, can be computed by iy — B,=2—-
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average farm and the sample year (see also EC 2002 and FAO 2000). Table 1 gives the

summary statistics on the sample data:

(TABLE 1: DESCRIPTIVE STATISTICS)

The total costs of maize production are used as the dependent variable for the cost function
estimations. They vary quite significantly over the sample of small-scale farmers (a mean of
about 286 Euro p.a. but a maximum of about 3,627 Euro p.a.). The total output of maize
produced, the price of maize and the prices for the variable inputs labor and fertilizer as well
as the quantities of the fixed variables land and organic fertilizers are applied as explanatory
variables. The prices in the survey are therefore real observed prices and as such can deviate
from officially reported prices. Land can be considered as quasi-fixed as due to the
aforementioned inflexibilities in the land market it can not be expected to be adjusted in a
short-term perspective by the individual farmer. Organic fertilizer can be considered as
quasi-fixed as small-scale Romanian farmers can not be expected to flexibly adjust the size of
their livestock production as a response to crop input needs. Further binary variables for the
use of herbicides, insecticides, commercial seeds, received subsidies, extension services used
and finally agricultural training and advice received are applied. The variable livestock
accounts for the livestock units on the individual farm, other variables reflect the age of the
household head, the education of the household head (in years of schooling), whether
additional income was generated outside the agricultural business measured in man days, the
size of the household linked to the farm, the average distance of the respective farm’s plots
from the farmyard and the total farm size in hectares. Other binary variables are included to
approximate the cost and efficiency effect of the gender of the farmer, whether the farm
participated in any kind of (formal and/or informal) institutionalised cross farm cooperation
and the degree of mobilisation proxied by the car dummy variable. The machinery variable
attempts to capture the relative value of the machinery used for the farm’s operations by

giving a subjective valuation of the farm’s motor pool (i.e. own truck, tractor, plough,
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combine, carriage, harvester etc.), the same applies for the variable buildings reflecting the
farm’s relative endowment of storage facilities, barns, stalls, estate buildings etc.

The average slope of the the farm’s cultivated plots is reflected by the variable slope. With
respect to other environmental conditions of maize production, the relative amount of
precipitation (measured in percentage of the seasonal average normal rainfall per region) as
well as the relative moisture of the soil in the region (measured in percentage water present
in the soil) are indicators of the immediate store of infiltrating rainfall before it either
evapotranspires or contributes to groundwater recharge. Further, a vegetation index (the
normalized difference vegetation index NDVTI as the most commonly used index for satellite
imagery) is used as a proxy for the likelihood of the occurrence of pests and weeds in the
respective farm environment. The data on these environmental variables were obtained from
the Foreign Agricultural Service of the USDA (see USDA 2004). The relative change in the
share of individual farming in the respective county is reflected by the proxy variable change
in individual farming. The latter covers the percentage increase in the share of total
agricultural land used in individual farms by county in the period 1985 to 2002. Finally, the
variable county reflects the regional location of the farm: Farms in the survey were located
in 15 different Romanian counties. All monetary variables are in Euro.

The estimation procedure is as follows: Firstly the translog cost system given by [2], [3], [4]
and [5] is estimated using the cost function, the cost shares si derived from the non-distorted
translog cost function InC, and the parameter equations to obtain estimates for the allocative
efficiency parameters & with respect to the individual inputs as well as group-wise technical
efficiency effects y . The estimates of the former are subsequently substituted in [2] and after
adding the error components given by [15] in a second step the adjusted translog cost frontier
is estimated by applying the usual decomposition formula given in [16] and [17] to obtain
estimates of producer-specific technical efficiency. As we ‘corrected’ the cost frontier for
allocative inefficiency the resulting efficiency estimates « are solely technical ones. Finally,

producer and input specific estimates of cost efficiency are obtained by simple calculation
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using the estimates for ¢ and u. This two-stage model is estimated using a non-linear
iterative seemingly unrelated regression (ITSURE) technique with symmetry and
homogeneity conditions imposed. As Greene (2000) notes, the Oberhofer-Kmenta (1974)
conditions are met for the SURE model, so efficient maximum likelihood estimates can be
obtained by iterating the basic feasible generalized least square (FGLS) procedure. The model
is then estimated again (model II) by imposing curvature correctness (i.e. functional
concavity) on the cost function in [11] by basically following the Hessian decomposition
shown by [9]. In this way we go beyond similar modelling efforts (see Atkinson/Halvorsen
1980, Kumbhakar 1989, Kumbhakar/Bhattacharyya 1992, Wang et al. 1996, Barrett et al.
2005) and also incorporate considerations of the consistency of the estimated frontier with
basic microeconomic principles (i.e. cost minimisation). The estimation results of the
unconstrained and the constrained models are compared with respect to the relative
differences in the individual efficiency scores.

Finally, a third estimation model is added to attempt a further decomposition of allocative
inefficiency in farm specific as well as market specific (including stochastics) components by
estimating the input related multiple equations system in [13] again by applying a non-linear
iterative seemingly unrelated regression (ITSURE) technique. However, we statistically test
for the underlying assumption of correlated disturbances by using a Bresuch-Pagan test for

heteroscedasticity.

6 — RESULTS AND DISCUSSION

All estimated cost systems, cost frontiers as well as multiple equation systems show a
relatively good overall fit with respect to the usual statistical criteria. The Breusch-Pagan test
statistics reject the null hypothesis of homoscedastic error terms and hence confirms the
underlying assumption of heteroscedastic error terms for the multiple equations models.
However, in the unconstrained model I, only about 16% of all observations adhere to

functional concavity contrasting to 70% in the constrained model II (see appendix). A trade-
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off between the statistical significance and the theoretical consistency of the estimated
function, as documented by earlier studies (see e.g. Sauer 2006), is not confirmed by the
results here. The estimated shadow price parameters show a high significance over all

models.

Allocative Efficiency

Table 2 summarizes the estimation results with respect to systematic input-specific allocative
efficiency whereas table 3 shows the estimation results with respect to the decomposition of
such input-specific allocative inefficiency into its farm-specific and market as well as

stochastic related components.

(TABLE 2: SYSTEMATIC INPUT-SPECIFIC ALLOCATIVE EFFICIENCY)

(TABLE 3: APPROXIMATED RELATIVE SHARES OF INPUT SPECIFIC ALLOCATIVE INEFFICIENCY)

The systematic allocative efficiencies with respect to the inputs labour, land, and organic
fertilizer were found to be moderately lower with respect to the constrained model II. In the
case of fertilizer no significant difference between the two model specifications was found.
However, in both models the variable input labour shows the highest efficiency (about 74%
and 52% respectively) over all inputs. On the other hand, the lowest allocative efficiency was
found for fertilizer in the unconstrained model (about 47%) and for the quasi-fixed input
organic fertilizer in the constrained model (about 36%). The farm specific component of
allocative inefficiency was found to account for more than 50% of the total allocative
inefficiency in the unconstrained model (model I) with respect to all variable and quasi-fixed
inputs. Beside the quasi-fixed input land the same holds for the constrained model
specification (model II). Table 4 summarizes the effects of different potentially allocative

inefficiency explaining factors with respect to labour and land.

(TABLE 4: ALLOCATIVE EFFICIENCY EFFECTS)
The two models are consistent with respect to the negative efficiency effect of the male
gender of the household head and the size of the household, and on the other hand the

positive efficiency effect of the education of the farmer, the share of hired labour and the fact
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that household members generate additional income outside agriculture. However, the
models disagree with respect to the influence of the farmer’s age on the allocative efficiency
of labour. The relative amount of precipitation in the farming period was shown to have a
negative effect on the allocative efficiency of the quasi-fixed input land for both models
estimated. Nevertheless, no consistent effects could be found for the average soil moisture as
well as the vegetation index in the region. The statistical significance of the incorporated
control variables confirmed earlier findings of the importance of moral hazard and adverse
selection mechanisms in rural labour markets (e.g. Barrett et al. 2005), as well as the
importance of environmental and climatic variables for the shadow price of land (Sherlund
et al. 2002).

In general it can be concluded that price distortions still prevail in the investigated
agricultural input markets for labour, fertilizer, land and inorganic fertilizer. Hence, the
underlying modelling assumption that maize producers optimize their production decisions
with respect to unobservable shadow price ratios holds for the sample. This indicates that
modelling cost minimization based on observable market prices may be inappropriate, and
thus, a model incorporating market distortions is more suitable in an agricultural transition
context. The estimated parameter values for the shadow prices for fertilizer (2.142 and 2.111
respectively) and land (1.234 and 1.944 respectively) are for both model specifications greater
than one, indicating that the small scale farmers in the sample optimize the use of these
inputs with respect to higher shadow prices. These findings correspond to the results of
previous studies investigating price distortions in transitional economies and concluding in a
considerable gap between agricultural input market prices and farm input prices (see e.g.
Khumbhakar/Bhattacharyya 1992 or Wang et al. 1996). As a consequence of distorted market
mechanisms, the relative scarcity of chemical fertilizer, as well as land, is much higher than
indicated by observed prices and hence the opportunity costs of chemical fertilizer and land
are significantly higher than market price based costs would suggest. The estimated shadow

parameter for the quasi-fixed input land shows that the farms’ resource endowment crucially
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influences its relative allocative performance. The results of the approximated decomposition
of input specific allocative inefficiency revealed that market related factors (as well as
residual random effects) still play a significant role with respect to the divergent shadow
prices of commercial fertilizer and land (see table 3). Policy consequences could imply
additional measures to promote the supply of these inputs and to eliminate the shortage
premium paid by the farmers. A higher degree of market liberalization with respect to
fertilizer and land would maize production profit enable to move towards the efficient
frontier. With respect to the transition goal of well functioning efficient local land markets,
the evidence found in this study sheds further empirical light on earlier findings by
confirming that land markets are not yet sufficiently developed and continue to constrain
potential individual farmers in initiating and developing profitable farm enterprises (see
Brooks/Meurs 1994, Rizov et al 2001).

The estimated values for the shadow prices of labour (0.741 and 0.539 respectively) and
organic fertilizer (0.516 and 0.359 respectively) indicate, on the other hand, that ‘prices’
actually paid by the farmers for these inputs are far less than the observed market prices.
Different factors could account for such a price gap with respect to labour: As the price for
hired labour rises farmers tend to substitute family for hired labour. Due to a lack of data,
labour is used here as an aggregated measure consisting of hired and family labour, hence, an
increasing amount of family labour could lead to a decrease in the average individual shadow
price at the farm level for the variable input labour. However, the latter should not be
interpreted as a causality since shadow prices are by definition endogenous to household self-
provision of labour services to the farm. Nevertheless, intrahousehold mechanisms to lower
search and transaction costs by responding with effective labour allocation could be the main
reason for the estimated lower unobservable wages and allocative inefficiency with respect
to the use of labour (Barrett et al. 2005). Hence this empirical evidence confirms the results
found e.g. by Barrett et al 2005 most recently with respect to developing countries. Referring

finally to the approximated decomposition of input specific allocative inefficiency, it can be
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again assumed that market related factors (as well as residual random effects) still play a
significant role with respect to the divergent shadow prices of labour and organic fertilizer

(see table 3).

Technical and Cost Efficiency

Based on the estimated allocative efficiency parameters from the first step, a maximum-
likelihood estimate of the corrected cost frontier is obtained and a technical efficiency index
is derived for both models. Table 5 summarizes the estimation results with respect to
producer-specific overall technical and producer- and input-specific cost efficiency.

(TABLE 5: PRODUCER-SPECIFIC TECHNICAL AND COST EFFICIENCY,)

Table 6 contains the frequency distributions for the producer-specific technical efficiencies.
The corresponding kernel densities for both models are illustrated in the appendix by figure

Aland A2.
(TABLE 6: FREQUENCY DISTRIBUTION — PRODUCER-SPECIFIC TECHNICAL EFFICIENCY)

The mean of the estimated technical efficiency is about 81% (model I) and about 82% (model
IT) whereas the least technically efficient farm shows a value of approximately 17% (model I)
and approximately 42% (model II). This implies that on average up to 19% of the profit is lost
due to technical inefficiency, which is rather moderate compared to the revealed levels of
allocative inefficiency. The frequency distributions of the individual farm’s technical
efficiency indices show that there is a moderate variation among the farms in the sample: For
both models, the majority of farmers show a relative technical efficiency of more than 80%
(see also figure Al and A2). Based on the estimated systematic input-specific allocative
efficiency, as well as the estimated producer-specific technical efficiency, finally producer-
and input-specific cost efficiency levels are computed (see table 5). With the exception of
fertilizer, the cost efficiency levels are moderately higher for the unconstrained model
(model I) compared to those for the constrained model (model II). For model I, maize
farmers used the variable inputs land and labour most efficiently and the variable input

fertilizer least efficiently, with respect to costs. The same was found for model II with respect
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to the most efficient used inputs but here the quasi-fixed input organic fertilizer showed to
be least efficiently applied. Therefore, these cost efficiency results reveal more or less the
same evidence for the different model specifications.

Both estimation stages delivered evidence with regard to the technical efficiency effects of
different production settings, institutional as well as policy related factors - either with
respect to groups of producers defined along such factors (shadow cost estimation stage) or
with respect to individual producers (error components estimation stage). The derived farm-
specific efficiency index facilitates the decomposition of the efficiency performance at the
individual maize farm level and allows for the identification of the factors that influence

farmers’ technical efficiencies. Table 7 and 8 summarize the different effects found.

(TABLE 7- GROUP-WISE TECHNICAL EFFICIENCY EFFECTS)

(TABLE 8: PRODUCER-SPECIFIC TECHNICAL EFFICIENCY EFFECTS)

The results for the shadow frontier show that the use of herbicides, the use of insecticides
and the application of commercial seeds are positively correlated with the technical
efficiency of the maize producing farms for both models. However, the producer-specific
error components frontier confirmed these positive effects only for the use of insecticides.
The slope of the land was found to positively influence the technical efficiency of small-scale
maize production, which could be due to a more effective use of inputs in geographically
unfavourable areas. As generally expected, the relative moisture of the soil was found to have
a positive effect on production efficiency. However, with respect to the efficiency influence
of relative precipitation in the area, a generally expected positive effect was found only for
the group-wise estimations. The producer-specific estimations revealed both a significant
negative effect of the relative amount of rainfall in the maize production period. In line with
the group-wise positive efficiency effects of herbicide, use is the negative efficiency effect of
the vegetation index (i.e. vegetation vigour and density) in the respective geographical area.

Mixed technical efficiency effects were found for the farmers’ education, agricultural
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training received as well as the use of extension services: whereas the group-wise shadow
frontier resulted in more or less insignificant negative efficiency effects, revealed the
producer-specific frontiers significant positive efficiency effects. So overall, a positive effect
of knowledge accumulation on the individual farm level can be concluded on significant
statistical grounds. Maize farmers also engaged in livestock production were found to be less
technically efficient than those without livestock production. The efficiency effect of
subsidies was found to be mixed over all model specifications. Statistical significance can
only be reported for the negative efficiency effect revealed by the group-wise model I and
the producer-specific model I. The average distance between the plots cultivated per farm
was found to have a significant negative effect on producer-specific technical efficiency: the
related transaction costs (i.e. transport of seed, chemicals, fertilizer and machinery) obviously
increase at a crucial rate as distance rises. The negative efficiency effect of machinery (i.e.
tractor, plough, weeding and seeding facilities) applied could be due to the small-scale of the
operations (at average about 1.9 ha out of 5.7 ha were used for maize production in the
sample) and the fact that the production of maize in Romania requires very basic technology,
as well as storage facilities (see FAO 2000). The empirical evidence found on the positive
effect on technical efficiency by the share of hired labour in model I, confirms those found
for the farms’ allocative efficiency. However, a negative effect has to be reported for model
II. The same holds for the technical efficiency effects by the fact that additional income was
available for the farm created outside of agricultural operations: the positive efficiency effect
was confirmed for model II, a negative one was found for model I. The various results for
human capital suggest an important positive influence on the different kinds of individual
farming efficiency which are in line with past findings on Romanian farming (see e.g. Rizov
et al. 2001). Education, experience and training do significantly affect the successful
development of individual farming. Mixed efficiency effects were finally found for the
farmer’s participation in cross farm cooperation with respect to input purchases and/or

product marketing: whereas model I revealed a significant negative effect on the farms’
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technical efficiency, the opposite effect was revealed by model II. Hence, this mixed
evidence only partly follows the results found by Mathijs/Swinnen (2001) and Sabates-
Wheeler (2001, 2002) both concluding substantial production advantages by small
‘partnerships’ rather than individual farming for lower levels of resource endowment.

The error component frontiers finally showed a significant positive efficiency effect by the
share of total agricultural land used in individual farms on county level. The higher the
change in the share of individual farming in the period 1985 to 2002 for the respective
county, the more technically efficient the small scale farms in the sample proved to be.
Interpreting the relative change in the share of individual farms on county level as a proxy
for the commercial orientation of the institutional environment the farmers face, as well as
the commercial orientation of the farmers themselves, one can conclude in substantial
economic benefits by an ongoing agricultural commercialisation (see also Balint/Wobst 2006
and Dawidson 2005). By investigating a larger period of individual farm development, this
extends, and in a way contradicts, the findings of Rizov et al. (2001) concluding in less
constrained variable input markets for farmers in regions where collective farms dominated
and where there has been no pre-reform tradition of individual farming. The significant
positive effects of the relative positive change in the share of individual farming on technical
efficiency suggest that the negative effects of such pre-reform structural patterns
documented by earlier studies have been partly compensated for by ongoing institutionally

backed-up privatisation and commercialisation in different Romanian counties.

Model Consistency

The reported efficiency results of the unconstrained, as well as constrained model,
specification point to the relevance of theoretical consistency of the estimated frontier. As
outlined in section 4, model II differs from model I by applying a matrix decomposition
technique to impose concavity on the translog cost frontier to ensure functional regularity

and finally the adherence to the basic microeconomic principle of cost minimization (see

28



Sauer 2006). Table 9 delivers the relative differences in the efficiency scores for the

unconstrained and the constrained specification.
(TABLE 9: RELATIVE DIFFERENCE IN EFFICIENCY SCORES UNCONSTRAINED VS. CONSTRAINED SPECIFICATION)

The relative difference in the efficiency scores ranges from about 181% (producer- and
input-specific cost efficiency measure for land) to about 349.2% (producer- and input-
specific cost efficiency measure for fertilizer). Hence, this is empirical evidence for the
validity of our concerns about the appropriate functional form and its theoretical consistency
(see Sauer 2006). Figure 1 clearly illustrates these differences with respect to the measure of

technical efficiency.
(FIGURE 1: DIFFERENCES IN TECHNICAL EFFICIENCY BY IMPOSING CURVATURE CORRECTNESS)

Finally, the results of the applied bias corrected bootstrap procedure confirmed the estimates
for the theoretically consistent model (model II) on the estimation stage of the error-

components specification (see also table A5).

7 — SUMMARY

This study tackles the decomposition of efficiency with respect to agricultural production in
transition economies by using a case study on small-scale maize farmers in Romania. A cost
function framework is applied combining the stochastic frontier approach of shadow prices
as well as the mainstream error components model. Assumed market distortions, as well as
farm optimization failure, are addressed by adopting the concept of a shadow cost frontier,
which delivers insights into systematic input specific allocative efficiency. After correcting
for shadow prices, we subsequently reveal evidence for farm specific technical efficiency and
develop an efficiency index for the sample of Romanian maize producers in 2002. Different
policy relevant factors are investigated with respect to their impact on technical efficiency
on a group, as well as the individual farm level. By regressing economic loss/gain (based on
the estimated shadow prices) on different farm related factors, we finally attempt to further

decompose such allocative efficiency in farm related, as well as market and stochastic related
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components. By referring to the ongoing discussion on functional consistency of the
stochastic frontier with respect to microeconomic theory, we formulated two basic model
specifications — one without and one with functional concavity imposed - and estimated the
individual cost systems and multiple equation systems by means of iterated seemingly
unrelated regression techniques (ITSURE).

The empirical results suggest that after 15 years of economic transition, price distortions still
prevail in the agricultural input markets. Consequently, a model incorporating such market
distortions seems to be more suitable in an agricultural transition context than one
exclusively based on observed variable input price ratios. The estimated shadow parameters
for the quasi-fixed inputs revealed that the farms’ resource endowment — i.e. land
endowment as well as livestock size — crucially influences its relative allocative performance.
A relatively high technical efficiency on farm level with a moderate variation over the
sample but relatively moderate scores on systematic allocative efficiency were found.
However, the inefficiency effects aspect of the error components estimations only partly
confirm the empirical results found for the group-wise technical efficiency based on the
shadow frontier model. The revealed relative difference in the efficiency scores of up to
349% on the individual farm level, as a consequence of the imposition of curvature
correctness, confirmed the relevance of theoretically consistent modelling with respect to
the stochastic measurement of efficiency. Hence the empirical applications document the
need for a posteriori checking of the regularity of the estimated frontiers by the researcher
and, if necessary, the a priori imposition of the theoretical requirements on the estimation
models (see Sauer 2006). Besides various specific policy implications with respect to different
farm specific sources of allocative and technical inefficiency, the major policy message by
this analysis refers to a prevailing need for eliminating market structures and processes
which distort the functioning of price signals and cause severe allocative inefficiency. This

finally describes the line for future research in the field.
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TABLE 1: DESCRIPTIVE STATISTICS

'VARIABLE MEAN STDERR MIN MAX
TOTAL COSTS (IN EURO) 285.728 641.857 11.01 3,626.525
OUTPUT MAIZE (IN KG) 4,696.313 8,510.552 56 42,000
PRICE OF MAIZE (IN EURO/KG) 0.103 0.017 0.056 0.130
QUANTITY OF LABOUR (IN MANDAYS) 563.125 314.864 15 1,506.286
PRICE OF LABOUR (IN EURO/MANDAYS) 0.699 1.259 0.0138 6.399
QUANTITY OF FERTILIZER (IN KG) 18.198 37.083 1.176 264.706
PRICE OF FERTILIZER (IN EURO/KG) 0.187 0.052 0.004 0.320
QUANTITY OF LAND (IN HA) 1.909 3.921 0.08 30
QUANTITY OF ORG. FERTILIZER (IN KG/HA) 3,527.145 7,202.45 0 34,188
HERBICIDES USED (BINARY: 1: YES, 0: NO) 0.594 0.495 0 1
INSECTICIDES USED (BINARY: 1: YES, 0: NO) 0.937 0.244 0 1
COMMERCIAL SEED USED (BINARY: 1: YES, 0: NO) 0.406 0.495 0 1
SUBSIDIES RECEIVED (BINARY: 1: YES, 0: NO) 0.297 0.460 0 1
EXTENSION SERVICES USED (BINARY: 1: YES, 0: NO) 0.50 0.504 0 1
TRAINING USED (BINARY: 1: YES, 0: NO) 0.187 0.393 0 1
PRECIPITATION (IN % OF AVERAGE) 147.266 33.664 125 200
SOIL MOISTURE (IN %) 54.098 5.679 46.083 62.333
VEGETATION INDEX (NDVI * 100%) 78.706 25.329 39.333 97.5
LIVESTOCK (IN LV UNITS) 5.869 5.644 0 35
GENDER (BINARY: 1: MALE, 0: FEMALE) 0.812 0.393 0 1

AGE OF HOUSEHOLD HEAD (IN YEARS) 61.516 11.611 36 86
EDUCATION OF HOUSEHOLD HEAD (IN YEARS) 8.469 3.187 4 16
RATIO HIRED/FAMILY LABOUR 0.154 0.334 0 2.078
ADDITIONAL INCOME / 11.466 17.713 0 825
WORK OUTSIDE OF HH (IN MANDAYS)

HOUSEHOLD SIZE (IN PERSONS PER HH) 2.859 1.344 1 6
SLOPE AVERAGE (1-PLAIN, 2-HILL, 3-MOUNTAIN) 1.891 0.715 1 3
CROSS FARM COOPERATION (BINARY: 1: YES, 0: NO)  0.484 0.504 0 1
MACHINERY (IN RELATIVE SCALE) 0.630 0.777 0 2.7
BUILDINGS (IN RELATIVE SCALE) 2.765 0.831 0 4
PLOTS’ DISTANCE (IN KM) 1.636 1.649 0 9
TOTAL FARM SIZE (IN HA) 5.732 5.856 0.5 30
CAR (BINARY: 1: YES, 0: NO) 0.375 0.488 0 1
CHANGE IN INDIVIDUAL FARMING 72.103 12.165 45.85 92.73
PER COUNTY 1985 - 2002 (% INCREASE)

COUNTY (1: CLUIJ, 2: BIHOR, 3: MURES, 11.031 3.677 1 15

4: CONSTANTA, 5: IALOMITA, 6: OLTENIA, 7: ALBA,
8: IASI, 9: VRANCEA, 10: VASLUIL, 11: BRAILA,

12: ARAD, 13: HARGHITA, 14: MEHEDINTI,

15: VALCEA)

1: all variables are based on the Agricultural Household Survey 2003 part of the PASAD project (Balint/Wobst 2006); the variables
Precipitation, Soil Moisture and Vegetation Index are based on USDA (2004); the variable Share of Individual Farming is based on own
calculations by using Romanian Statistical Institute (1986, 1996, 2004).
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TABLE 2: SYSTEMATIC INPUT-SPECIFIC ALLOCATIVE EFFICIENCY

MODELI MODEL II
EFFICIENCY! MEAN  STD. ERR.? MEAN  STD. ERR.
AE LABOR 0.741 9.659E-05*  0.516 0.001*
AEFE FERTILIZER 0.467 2.68E-04*** 0.474 0.002**
AELAND 0.810 1.76E-04*** 0.514 0.001*
AE ORGANIC FERTILIZER  0.539 0.002*** 0.359 0.013*

1: allocative efficiency estimates are parameter based: no min and max values are available

2:*,** ™" significance at the 10, 5, and 1% level

TABLE 3: APPROXIMATED RELATIVE SHARE OF INPUT SPECIFIC ALLOCATIVE INEFFICIENCY

Input Labour Fertilizer Land Organic Fertilizer
Model I 1I I 1I I II I 1I
Mean (in %)
Farm Specific 50.7* 57.9* 55.0™ 56.6™* 62.3"* 499" 64.6"™ 56.3"*
Rest (Market & Random) 49.3* 42.1* 449" 43.4* 37.7* 50.0  35.4* 43.7*
Maximum (in %)
Farm Specific 99.5 93.9 97.8 89.9 93.4 98.4 87.6 89.3
Rest (Market & Random) 93.8 88.8 88.9 89.1 87.5 97.5 80.8 72.9
Minimum (in %)
Farm Specific 6.20 11.2 11.0 10.8 12.5 2.50 19.2 27.1
Rest (Market & Random) 0.50 6.10 2.20 10.1 6.60 1.60 12.4 10.6
1: *,**** significance at the 10, 5, and 1% level
TABLE 4: ALLOCATIVE EFFICIENCY EFFECTS

MODEL I MODEL I1
FACTOR MEAN STD. ERR.! MEAN STD. ERR.
AE LABOUR
GENDER OF HOUSEHOLD HEAD -0.011 2.68E-04"*  -0.075 0.002***
AGE OF HOUSEHOLD HEAD -0.025 1.76E-04**  0.063 0.001***
EDUCATION OF HOUSEHOLD HEAD 0.161 0.002** 0.133 0.013*
SHARE OF HIRED LABOUR 0.146 0.016™* 0.152 0.121
ADDITIONAL INCOME OUTSIDE AGRICULTURE ~ 0.035 2.33E-04**  0.013 0.002*
SIZE OF HOUSEHOLD -0.168 0.002*** -0.235 0.012%*
AE LAND
PRECIPITATION -0.095 0.039* -0.178 0.298
SOIL MOISTURE -0.031 6.95E-04"*  0.633 0.005***
VEGETATION INDEX 0.046 0.005* -0.282 0.034**
1: %,*,** significance at the 10, 5, and 1% level
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TABLE 5: PRODUCER-SPECIFIC TECHNICAL AND COST EFFICIENCY

MODELI MODELII
EFFICIENCY MEAN STD.ERR.! MIN MAX MEAN STD. ERR. MIN MAX
TE 0.815 0.211™ 0.168 0999 0.823  0.162*** 0.423 0.999
CE LABOUR 0.604 0.157* 0.124 0.741 0.425  0.083"* 0.218 0.516
CE FERTILIZER 0.380 0.099* 0.078 0.467 0.390  0.077** 0.201 0.474
CE LAND 0.660 0.171** 0.136 0.810 0.424  0.083" 0.218 0.514
CE ORGANIC FERTILIZER  0.439 0.114" 0.091 0539 0.296  0.058"* 0.152 0.359

1: % ** significance at the 10, 5, and 1% level

TABLE 6: FREQUENCY DISTRIBUTION — PRODUCER-SPECIFIC TECHNICAL EFFICIENCY

EFFICIENCY PERCENTAGE

CUMULATIVE FREQUENCY ~CUMULATIVE PERCENTAGE

INDEX

MODELI MODELII MODELI MODEL IT MODEL I MODEL II
0.1-0.2 1.56 - 1 - 1.56 -
0.2-0.3 1.56 - 2 - 3.12 -
0.3-0.4 1.56 - 3 - 4.69 -
0.4-0.5 3.12 1.56 5 1 7.81 1.56
0.5-0.6 12.50 9.37 13 7 20.31 10.94
0.6-0.7 3.12 10.94 15 14 23.44 21.87
0.7-0.8 15.62 26.56 25 31 39.06 48.44
0.8-0.9 10.94 14.06 32 40 50 62.50
09-1.0 50.00 37.50 64 64 100 100
Mean 0.815 0.824
Std.Err.! 0.211* 0.162***
Min 0.168 0.423
Max 0.999 0.998
1: *,** " significance at the 10, 5, and 1% level

37




TABLE 7: GROUP-WISE TECHNICAL EFFICIENCY EFFECTS

MODELI MODELII
FACTOR MEAN STD.ERR.! MEAN  STD.ERR.
TE DIFFERENCE HERBICIDE +1.93E-04 0.011 +0.332  0.084*
TE DIFFERENCE INSECTICIDE +0.055 0.014* +0.113  0.105
TE DIFFERENCE SEED +0.032 0.009*** +0.050 0.069
TE DIFFERENCE SLOPE +0.013 0.008* +0.031 0.058
TE DIFFERENCE SUBSIDIES -0.052 0.009*** +0.073  0.068
TE DIFFERENCE EXTENSION -4.77E-04 0.010 -0.096  0.077
TE DIFFERENCE TRAINING -0.053 0.013* -0.097  0.098
TE DIFFERENCE PRECIPITATION  +0.001 0.007 +0.001  0.053*
TE DIFFERENCE SOIL -0.002 0.006 +0.007  0.048
TE DIFFERENCE VEGETATION +0.001 8.61E-04* -0.015 0.006
TE DIFFERENCE LIVESTOCK -0.008 9.33E-04** -0.004  0.007
1: *,**** significance at the 10, 5, and 1% level

TABLE 8: PRODUCER-SPECIFIC TECHNICAL EFFICIENCY EFFECTS

FACTOR MODELI! MODEL II

MEAN STD. ERR.! MEAN STD. ERR.
HERBICIDE -7.44 1.297* -4.609 0.836**
INSECTICIDE +24.290 5.042™* +25.501 2.546™*
SEED -6.414 1.719* -1.003 0.654*
EXTENSION +7.282 2.119* +4.083 0.741*
TRAINING +13.861 2.224** +19.706 2.062**
PRECIPITATION -0.272 0.062*** -0.104 0.031**
SOIL +1.024 0.281** +0.037 0.127
VEGETATION -0.213 0.047** -0.272 0.032**
EDUCATION +0.474 0.129* +0.126 0.115
HIRED LABOUR +2.458 1.593* -2.359 1.633*
SUBSIDIES -1.801 1.071* +0.519 0.617
ADDITIONAL INCOME -0.076 0.025** +0.133 0.024**
COOPERATION -2.228 0.821* +8.137 1.581*
MACHINERY -3.713 0.878* -1.282 0.456™*
DISTANCE -1.311 0.257** -1.306 0.224**
INDIVIDUAL FARMING ~ +0.182 0.029** +0.141 0.034**

1: % ** significance at the 10, 5, and 1% level
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TABLE 9: RELATIVE DIFFERENCE IN EFFICIENCY SCORES -
UNCONSTRAINED VS. CONSTRAINED SPECIFICATION

MEASURE MEAN (%) STDERR! MIN MAX

TECHNICAL EFFICIENCY 11.45 12.14 -45.79 342.55
CosT EFFICIENCY LABOUR -22.38 8.15"* -62.24 208.21
CE FERTILIZER 13.12 60.42 -44.98 349.16
CE LAND -29.23 16.06** -65.58 181.02
CE ORGANIC FERTILIZER -25.66 13.63* -63.84 195.20

1: %" significance at the 10, 5, and 1% level
2: '+’ means underestimation of real efficiency, ‘- overestimation of real efficiency

FIGURE 1: DIFFERENCES IN TECHNICAL EFFICIENCY BY IMPOSING CURVATURE CORRECTNESS
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TABLE Al: PARAMETER ESTIMATES SHADOW COST FRONTIER — MODEL I

COST FUNCTION
PARAMETER ESTIMATE  STERR PARAMETER  ESTIMATE STERR
a, 2.660 0.015** X subs 0.013 0.008*
A, -0.013 0.007* Kont -0.052 0.009***
A s 1.013 0.006*** K irain -4.771E-04  0.963
7, 0.027 0.007*** Ksiope -0.052 0.013
Lipian -0.072 0.010" X precip 0.001 0.007
@ ferifert -0.073 0.011* Koot -0.002 0.006
Vs -2.374 0.014** K vege 0.001 8.607E-04*
Basgers 0.145 0.009+** Kiivest -0.007 9.331E-04"*
,By,ab -0.043 0.011** Db gender -0.010 2.682E-04***
B o 0.043 0.012"* Puab age -0.025 1.765E-04"
Orund 0.436 0.006"** Puab eau 0.161 0.002***
oref 0.019 0.006"** Prab_ hire 0.146 0.016*
O undiand 1.387 0.006** Prab hiour 0.035 2.331E-04"
50rgf0,gf 0.002 0.014 Duab hhsize -0.168 0.002***
O andoref -0.156 0.001*** Mand preciy ~ ~0-095 0.039*
Oruiand -0.867 0.001*** Diand_soit -0.031 6.951E-04"
O abors 0.004 4.084E-05""  Miund vege 0.046 4.623E-04"
O forttand 4.420 0.004* 0, 0.741 9.659E-05"*
o fertoref 0.042 4,085E-05*** Hfm 2.142 2.682E-04**
5y,an J -0.505 0.002*** G 1.234 1.765E-04***
orgf -0.013 0.001* 0, 0.539 0.002***
Kiors 1.934E-04 0011
Xinsecr 0.055 0.014**
X seed 0.033 0.009**
ADJR? 0.485
F-VALUE 582.189
p>[F| 9.069E-68
CONCAVITY (%) 15.63

* ¥, significance at 10,5, and 1 % -level
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LABOR SHARE

PARAMETER  ESTIMATE STERR PARAMETER  ESTIMATE STERR
A, 1.643 0.053" Prab gonder -0.010 2.682E-04"
A fos 0.772 0.048"* Puab_age -0.025 1.765E-04"**
Bagers 0.160 0.070"** Puaby e 0.161 0.002"**
B 0.175 0.075"* Drab_hire 0.146 0.016"*

B jon 0.027 0.093 Praty whour 0.035 2.331E-04**
Orund 5.206 0.048"* Dua hsize -0.168 0.002"*

O prey 1.017 0.047"** Thana _precip -0.095 0.039*

O andorgy 2915 0.009"** Niand _soi -0.031 6.951E-04*"
Orusiand 0.979 0.030"* Miand vege 0.046 4.623E-04*
O laborgs 0.042 0.000***

6 tand 1.000 0.017**

O ferttand 0.458 0.030"**

O fertorgs 0.024 0.106"*

O ores 0.879 0.053

0. 0.741 0.054**

0 o 2.142 0.048"

Oy 1.234 0.006"**

0, 0.539 0.007*

ADJR? 0.848

F-VALUE 1516.944

p>|F| 4.145E-76

* ¥, significance at 10,5, and 1 % -level
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TABLE A2: PARAMETER ESTIMATES ERROR COMPONENTS FRONTIER — MODEL I

PARAMETER ESTIMATE STERR PARAMETER ESTIMATE STERR

a, 1.672 0.001** O prer 0.164 4.21E-04*
A -0.1283 443E-04" O, -0.347 2.78E-04*
. 0.0667 0.0022+** O profores 0.018 4.91E-06"
7, 0.2751 0.001** O andorgf 0.014 2.97E-05**
Uyran -0.0879 2.07E-04"*  Opprumd 0.005 3.85E-06**
O foriior 0.196 0.229 Olaborgs -0.016 4.81E-06™
Y 0.134 467E-06" O frtana -0.159 0.298
Bajer -0.047 0.001** O ertorst -0.058 9.18E-04*
B -0.058 7.22E-06" Oy -0.121 8.80E-05**
B jon 0.785 0.002** O ore 0.036 6.91E-06"
Orund 0.189 1.01E-04"

Ino?, -30.261 5.613*

Ino?,

5, 21.745 9.952* Avege 0.212 0.047*+*
Kners 7.444 1.297% Kot -0.474 0.128"
Kinseer -24.290 5.042+ Ziire -2.458 1.592*

X oed 6.414 1719 K oubs 1.800 1.071*
Ko -7.282 2.119* ions 0.076 0.025**
Xain -13.861 2.224* Xeoop 2.228 0.820%

X precip 0.272 0.062* Z 3713 0.878"
Kool -1.024 0.280"" Zis 1.310 0.257*"
Kifen -0.182 0.029*

o, 2.68E-07 7.53e-07**

WALDCHI?(20)  1721.18

LL 160.833

P>CHI? 0.000

H R,
>

: significance at 10,5, and 1 % -level
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TABLE A3: PARAMETER ESTIMATES SHADOW COST FRONTIER — MODEL I1

COST FUNCTION
PARAMETER ESTIMATE = STERR PARAMETER  ESTIMATE  STERR
a, 1.849 0.109*** X subs 0.031 0.058
Uy 0.189 0.053** Kot 0.073 0.068
. 0.811 0.048"** Lorain -0.096 0.077
7, -2.080 0.053" Ksiope -0.097 0.098
A prab 0.146 0.077** X precip 0.001 0.053
Q forifor -0.003 0.080 Koo 0.007 0.048
Y 2.041 0.104* X vege -0.015 0.006**
Blajers -0.143 0.070* Kiivest -0.004 0.007
B 0.079 0.076 Drab_gender -0.075 0.002"*
B o -0.079 0.094 Piab age 0.063 0.001%
Orund 0.562 0.048** Db edu 0.133 0.013**
O pre 0.265 0.047" Puat hire 0.152 0.121
Odiand -6.726 0.048** Diab whout 0.013 0.002**
50rgf0,gf 0.040 0.106 Drab hsize -0.235 0.012"
O andorgy 0.606 0.009* Mana _precip 0178 0.298
Orubiand -0.260 0.003* Diand_soit 0.633 0.005***
5,ab0,gf -0.049 0.000*** Tiand vege -0.282 0.034**
O forttana -0.869 0.030" 0, 0516 0.001%
o fortorgf -0.074 0.000*** Hfm 2111 0.002*
5y,an J 2.161 0.017** Oy 1.944 0.001**
5}@@/ -0.003 0.002 Hnrgf 0.359 0.013"
o 0.332 0.084" hy, 0.010 0.070*
Xinsect 0.113 0.105 h, -0.154 0.003**
X seed 0.050 0.069 h, 0.001 0.000**
h, -0.007 0.077** hy, -0.413 0.030**
h, -0.157 0.080 hy, 0.141 0.000***
h, -6.972 0.048** hyy 0.755 0.009***
hy, -0.155 0.106
ADJR? 0.703
F-VALUE 330.448
p>|F| 4.084E-59
CoNcAvITY (%)  70.31

*,x**: significance at 10,5, and 1 % -level
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LABOR SHARE

PARAMETER  ESTIMATE STERR PARAMETER  ESTIMATE  STERR
A, 2.264 0.061* Prab gonder -0.075 0.002"
A fos 0.026 0.056 Puab_age 0.063 0.001**
Bagers -2.781 0.081% Puaby e 0.133 0.013*
B -0.942 0.087** Drab_hire 0.152 0.121
B jon 0.188 0.108" Praty whour 0.013 0.002*
Orund 1.442 0.055"** Dua hisize -0.235 0.012%
O prey 0.533 0.055" Mhana _ precip -0.178 0.298

O andorgy 1.277 0.011** Miand _soil 0.633 0.005"**
O rubiand 3.820 0.035** Miand vege -0.282 0.034*
O laborgs 0.575 0.000***

6 tand 1.000 0.020"*

O ferttand 4,601 0.035"

O fertorgs 0.083 0.122

O ores 0.160 427E-04™

0. 0.516 0.061**

0 o 2.111 0.056™"

Oy 1.944 0.007***

0, 0.359 0.008"

ADJR? 0.571

F-VALUE 1.025

p>|F| 0.444

* R R,
P

: significance at 10,5, and 1 % -level
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TABLE A4: PARAMETER ESTIMATES ERROR COMPONENTS FRONTIER — MODEL IT

* ¥, significance at 10,5, and 1 % -level
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PARAMETER ESTIMATE STERR PARAMETER  ESTIMATE STERR

a, 1.418 0.002+* O prer 0.004 0.003

A, -0.012 8.35E-04"* O, 1iund -0.061 7.64E-04*
A fory -0.152 0011 O profores -0.230 0.003"**

7, -0.213 478E-04"  Opuiiores 0.004 0.002**
Ay -0.061 7.64E-04"* O, 0.078 0.002+*

Q frifert 0.034 0.012" Olaborgs -0.003 7.56E-04*"
Vs 0.086 0.012" O ferttand -0.021 0.003"*
Bajer -0.136 0.008" O ertorst 0.004 0.003"
B -0.021 LOBE-04"* O 0 0.201 1.95E-04**
B jon 0.054 0.001** O ore 0.016 2.15E-04"
Orund 0.779 0.006"**

Ino?, -30.523 5.614*

Ino?,

5, 10.843 6.704* Avege 0.271 0.032+**
Kiord 4.609 0.836™ o -0.125 0.115
Kinsecr -25.501 2,546 e 2.359 1.632*
Yo 1.003 0.653* K ouss -0.519 0.617
Kot -4.083 0.741% Litont -0.133 0.024*

K ivain -19.706 2,062+ Keoop -8.137 1.581*+

X precip 0.104 0.031" Z 1.282 0.456"*
Kol -0.037 0.126 Lt 1.306 0.224*
Kifen -0.141 0.034*

o, 9.04E-09 2.95e-06"*

WALDCHI?(20)  1.554E+12

LL 93.803

P>CHI? 0.000




TABLE A5: BIAS CORRECTED BOOTSTRAP ESTIMATES ERROR COMPONENTS FRONTIER II

PARAMETER  ESTIMATE  STERR B1AS CORRECTED PARAMETER  ESTIMATE  STERR  BiAS CORRECTED
CONF. INTERVAL CONF. INTERVAL
(o 1.418 0.162*** [1.172, 1.641] 50rgf -0.231 0.291 [-0.677, 0.182]
Xap 00123 0.138 [-0.201, 0.169] Orndiand -0.419 0.301*  [-0.874,-0.389]
X -0.153 0.158 [-0.526, 0.221] 5argf0rgf -0.045 0.051 [-0.122, 0.028]
7, -0.213 0.268 [-0.599, 0.055] O andore -0.021 0561  [-0.343,0.356]
Ay -0.061 0.012*+  [-0.082, -0.057] Obiand 0.078 0.133 [-0.041, 0.388]
Q forifor 0.034 0.585 [-0.836, 0.645] Otuborgs -0.003 0024  [-0.049,0.021]
Vi 0.085 0.056* [-0.029, 0.198] O ferttand -0.021 0561  [-0.343,0.356]
ﬂ,abfm -0.136 0.199 [-0.503, -0.019] 5 fertorgf 0.004 0.137 [-0.022, 0.129]
B -0.022 0.067 [-0.123, 0.099] 6 tand -0.022 0067  [-0.123,0.099]
ﬂyfm 0.054 0.789 [-1.432, 0.806] §yargf 0.016 0.017 [0.001, 0.052]
Orund 0.779 0.337* [0.209, 1.208]
B, 10.843 21.531 [-12.509, 43.109] ,‘{vege 0.272 2.147 [-2.718,5.133]
Kiers 4.609 28237 [-20.027,69.081] Ko -0.126 2111  [-5.166,1.502]
Kinsect 25501  37.255  [-54.058,4.034] Kiire 2.359 7.691  [-13.049,12.569]
X oed 1.003 14.290 [-20.884, 25.346] X cubs -0.519 13.766  [-13.821,31.526]
KNoxt -4.083 14.984 [-23.347, 19.154] Kious -0.133 0.279 [-0.795, 0.529]
Kirain -19.706  17.506  [-48.646,2.675] X coop -8.137 15.833  [-32.614,2.728]
X precip 0.104 3.203 [-3.534, 7.924] X 1.282 23709  [-12.993,9.911]
Xooil -0.037 11.574 [-1.145,8.779] Xist 1.306 14.053  [-11.065, 8.124]

* R Rk,
P

: significance at 10,5, and 1 % -level; replications = 1000.
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TABLE A6: MULTIPLE EQUATION SYSTEM I — ALLOCATIVE INEFFICIENCY COMPONENTS

LABOR FERTILIZER LAND ORGANIC FERTILIZER

PARAMETER  ESTIMATE STERR EsTIMATE  STERR EsTIMATE  STERR ESTIMATE STERR
D precip 5.198 0.311* 0.014 0.003** - - 21.576 12.504*
Dy 2.134 0.438*** - - - - - -
(. 7.282 1.245 0.033 0.014= - - - -
@ e 1.259 0.593* - - - - - -
g, 3.639 1.308** 0.195 0.021  0.025 0.003** -99.752 68.336*
Dpita -13559  8.065" - - 0.029 0.013* - -
Oope -490.686  32.058** - - -0.820 0.053** - -
Wy - - 1.479 0.466  0.174 0.062*** - -
a,., - - 0.024 0.006™*  0.004 0.001** 20.441 18.669*
o - - 0.520 0.063**  0.064 0.009*** - -
Dy - - - - 0.037 0.002** - -
Doy - - - - - - -163.569 114.343*
Dach - - - - - - 2592.855 474544
Koot - - -0.464 0.199* 0.162 0.029*** - -
Kporni - - 0.371 0.268* 0.083 0.037** -1158.819  961.204*
Kinseot - - -1.502 0.335*  -0.216 0.051** - -
Kseed - - -0.167 0.174* - - - -
Ko 24.978 14.023* - - 0.069 0.023** - -
K, 27.545 18.457* -0.997 0262  0.131 0.039*** - -
K gender 44.157 18.329* 0.397 0.232* 0.062 0.033* -1472.555  845.427*
K., - - 0.849 0247 0.092 0.033** - -
K coop - - 0.375 0.203* 0.071 0.027* - -
Kpsi -704.298 43716  -1.459 0.3901** -1.325 0.089** - -
K nehedinti 527.482 36.178* - - 0.719 0.062*** 2572.538 1025.339**
Kyraita -489.698  38.369** - - -0.788 0.064*** - -

rancea -193.845 35401 - - -0.334 0.047*** - -
K ptomita -752.827  46.088**  -1.287 0.484™  -1.298 0.093** - -
K olienia - - 45.179 1.114* 4550 0.158"* - -
Kpinor - - -2.249 0.753**  0.338 0.102**+ - -
K e - - -1.794 0423 - - - -
K rad - - - - -0.113 0.048* 2847.12 1606.909*
Khargita - - - - - - 4999.618 1307.038**
Kaleea - - - - - - 2994.782 993.572**
Kaba - - - - - - -4165.854  2789.074
R? 0.935 0.988 0.989 0521
Chi? 906.09*** 5158.29** 5627.00*** 71.44*
BP-test 31.181**

X R REE,
P

: significance at 10,5, and 1 % -level;

inclusion of the most significant regressors.
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TABLE A7: MULTIPLE EQUATION SYSTEM II — ALLOCATIVE INEFFICIENCY COMPONENTS

LABOR FERTILIZER LanD ORGANIC FERTILIZER

PARAMETER  ESTIMATE STERR ESTIMATE  STERR ESTIMATE  STERR ESTIMATE STERR
N— 17.442 1.454** 0.612 0.019**  0.031 0.005*** - -
Dy 6.718 0.757** -0.221 0.008**  -0.0256 0.002*** - -
Dioost - - 0.079 0.021 - - - -
g, 7.745 2571 0.166 0.021  0.062 0.007*** -201.626 86.381**
Dpita - - - - 0.101 0.032*** 848.615 454.947*
Wy 93.434 43.533* -1.222 0477 -0.427 0.159* - -
a,., - - -0.023 0.008**  -0.008 0.003*** 72.657 32.953*
@Dyl 8.027 7.991* 0.491 0.069**  0.167 0.024*** - -
[ -32.082 3.705** -1.039 0.044=  -0.022 0.013** - -
Do 6.579 3.794* - - - - - -
D e - - - - - - 3297.106 721.437**
Ko, 57.727 24.048**  -0.411 0.215* -0.359 0.076* 1512.279 959.344*
K pori 35.983 33.429* - - 0.210 0.079*** - -

nsect - - -1.429 0410  -0.561 0.145** - -
Ko - - -0.204 0.171* - - 1025.666 790.525*
Ko 60.434 25.327**  -0.421 0.238* 0.105 0.079* - -
K, 75.513 33.465* -1.135 0.283* -0.312 0.104* 2173.314 1314.663*
K gender 70.301 28.605**  0.287 0.249* 0.135 0.084* -2515.855 1171.277*
K., - - 0.933 0.258**  0.195 0.089*** -1927.378 1308.391*
K eoop 38.435 22.619* 0.381 0.205* 0.174 0.068** -3013.971 986.614**
K -1268.307  91.181**  -45518 1.207*  -3.387 0.299*** - -
Kprita -72.659 41.720* - - 0.381 0.093*** - -
K,y ancea -1190.647  88.255"*  -44.146 1.166™*  -2.919 0.296*** -2273.914 1630.556*
K iptomita -1329.538  91.247**  -45.368 1221 -3.255 0.302*** - -
K, onia - - - - 11.778 0.422%** - -
Kyinor -973.875 95.606**  -35.128 1.116™  -1.623 0.301*** - -

mures -1080.585  82.746™*  -34.003 1.048"*  -2.459 0.261** - -
Khargita -93.876 43.439* - - 0.114 0.099* - -
K aicea -58.114 38.523* - - 0.307 0.093** - -
Kba - - -44.414 1.222%* - - -4287.545 3817.395*
R? 0.952 0.988 0.989 0.533
Chi? 1225.38** 5301.61*** 6006.41** 70.24**
BP-test 31.570"*

* 7 **: significance at 10,5, and 1 % -level;

inclusion of the most significant regressors.
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FIGURE A1: PRODUCER-SPECIFIC TECHNICAL EFFICIENCY I — KERNEL DENSITY

Producer-Specific TEI - Kernel Density Distribution
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FIGURE A2: PRODUCER-SPECIFIC TECHNICAL EFFICIENCY II — KERNEL DENSITY

Producer-Specific TEIl - Kernel Density Distribution
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