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Abstract 
 

This paper explores the time series properties of cattle and 

feed prices to determine the effect shocks may have on 

price evolution.  Two different unit roots tests are applied 

to the data and compared and the issue of fractional 

integration is discussed. A Geweke Porter-Hudak test finds 

that at least of three of the four price series are fractionally 

integrated.  VAR models are estimated using level data and 

fractionally differenced data and impulse responses 

compared across various degrees of fractional differencing.  
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                                 Introduction 

Domestic prices of agricultural goods are increasingly exposed to shocks as 

international agricultural markets have become more integrated.  If commodity 

prices are nonstationary these disruptions can have a permanent impact on prices.  

Less widely appreciated is the potential for shocks to influence commodity prices 

for extended periods of time and yet, not have a permanent effect on prices.     

 

Typically economists have classified data series into two categories: those which 

are stationary, where the impact of shock dies out in a predictable way over time 

and those that are nonstationary, where the impact of a shock can have an 

permanent effect on the evolution of the data series.  Over the past 20 years a 

significant amount of effort has been devoted to determining whether 

macroeconomic data, stock prices, or commodity prices are fractionally integrated 

(Cromwell, Labys, and Kouassi (2000), Geweke and Porter-Hudak (1983), Lo 

(1991), Hassler (1991).  Empirical methods have been developed (Geweke and 

Porter-Hudak (1983), Lo (1991)) to determine if time series data is fractionally 

integrated and, generally, these methods have been applied to macro-economic 

data, stock prices, and prices of nonagricultural commodities. 

 

One effect of this research has been the creation of a third category for classifying 

time series data--a category where a data series is fractionally integrated and has a 

long but not permanent memory of past events.  When a price series is 

fractionally integrated, a shock may influence prices for long period of time and 
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often in unpredictable ways.  Yet unlike a data series which is integrated to an 

integer order (i.e. I(1)) eventually the impact of the shock dies out.  By revealing 

that some stock and commodity price series are fractionally integrated and follow 

a stationary long memory process these studies raise the importance of 

investigating whether agricultural prices display such behavior (Cromwell, Labys, 

and Kouassi  (2000),  Lo (1991), Jin and Frechette (2004), Hassler (1991).  This is 

particularly important given the increased potential for disruptive shocks to 

influence agricultural prices, as markets become more global in scope. 

 

Livestock and feed markets provide an example of markets that are particularly 

subject to disruptive shocks.  In the spring of 2000 bovine spongiform 

encephalopathy, BSE, (also known as mad cow diease) was discovered beyond 

England spreading to several countries around the globe.   In May of 2003 a case 

of BSE was detected in Canada leading many countries to restrict Canadian 

imports of beef.  Both countries have subsequently discovered additional isolated 

cases of the disease.  Outside the beef sector the Russian currency crisis in August 

1998 and rapid imposition of new restrictions on imports of U.S. chicken meat led 

to a sharp fall in the wholesale price of certain cuts of U.S. chicken.   

 

This paper examines the potential for shocks to have long run effects on weekly 

prices of four commodities: corn, soymeal, fed cattle, and feeder calves.  Several 

methods are applied to explore the time series properties of these prices.  In 

particular prices are examined to determine the order of integration, both integer 

(Kwiatkowski, et al. (1992) Nelson and Plosser (1982) and fractional, (Geweke 

 4 
 



and Porter-Hudak (1983)) and relate this finding to the impact that shocks may 

have on each of these price series.  Following this, a series of Vector Autogressive 

(VAR) Models, each using various levels of fractionally differenced data, are 

estimated and used to evaluate the effects of data differencing.  Impulse response 

functions are calculated from each of these differenced models and compared.  It 

is found that using traditional unit root tests to determine the order of differencing 

prior to estimating a VAR could lead to over differencing the data and produce 

oscillating impulse response functions.  In contrast, when 3 out of 4 price series 

are differenced using a more fractional order of integration, impulse response 

functions are more stable and reveal (preserve) a longer memory of shocks.    

 
 

Testing for the Order of Integration 

Typically, there is a lack of distinction between a data series that has a long 

memory and a data series that either has a permanent memory or a short memory 

of an event.  A series that has unit roots (integrated to order 1 or I(1)) has 

infinite memory so that shocks have a permanent impact on the series.  On the 

other hand, a series that is I (0) is stationary and the impact of a shock or 

innovation will decay geometrically over time.  Two major methods used to test 

the integer order of integration of any particular data series are the widely used 

Dickey Fuller (DF) test and the less popular KPSS (Kwiatkowski, Phillips, 

Schmidt, and Shin) test.  Ideally both tests should agree.  Disagreement between 

these two tests is a sign that the data could be fractionally integrated (Jin and 

Frechette (2004)).  
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Jin and Frechette (2004) discuss the four outcomes, summarized in table 1, of 

using both the KPSS and DF tests to determine if a data series is nonstationary.  

Given these arguments, then the common practice of using only one method to 

test for unit roots should be questioned.  If a test outcome leads to first 

differencing a time series that is fractionally integrated then it can be doubly 

damaging.  Critical information may be thrown away and differencing may not 

produce a stationary series (or even create an explosive oscillating series).  In 

contrast, models estimated with fractional differenced data would contain more 

information than had the data been first differenced, yet adhere to the 

stationarity requirement, which is critical to hypothesis testing. 

 

Fractional Integration 

While the properties of data which are integrated to integer orders has been 

widely established and applied, the literature which has emerged around the 

issue of fractional integration is less widely known or used.  Cromwell, Labys, 

and Kouassi (2000), Jin and Frechette (2004), for example, describe the 

behavior of a time series for different levels of fractional integration, which, 

depending on the level of fractional integration, can display properties of similar 

associated with both I(0) and I(1) series.  To introduce the concept, write the 

difference operator as: (1-B)d  where B is the backshift operator (BX=Xt-1   and 

B2X= Xt-2 )  
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Setting d=1 differences the series and, if the series is I(1), produces a stationary 

series.  What the fractional integration literature emphasizes is that a series can 

be integrated of order I(d) where d need not be of integer value.  Time series 

data with different fractional values of  "d " can behave in very different ways 

(Cromwell , Labys, and Kouassi, 2000).  For example, for a time series where  

0 <d<.5, the series remains stationary, has a short memory, can be inverted (into 

a moving average form).  For a series with d<.5 the autocorrelation function will 

smoothly decline.   In contrast if .5<d<1 the series has a long but not infinite 

memory (autocovariances may be high at unusually long lags) has an undefined 

variance and is nonstationary.  A level of d=.5 represents a critical boundary.  

Here the series can still be inverted (into moving average form) but the series 

lies on the boundary of stationarity and nonstationarity.  Cromwell notes that a 

data series that is integrated of the order d=.5, may follow complex cyclical 

paths that appear to be random.  In other words a data series where d=.5 displays 

what can be viewed as chaotic behavior. 

 

Hosking (1981) made the concept of fractional differencing operational by 

utilizing a binomial expansion of the difference operator.  Jin and Frechette 

(2004) provide an example of Hosking’s binomial expansion which can be 

written as:  
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Perhaps the best way to view the above operator is treat it as a data filter.  

Ideally if the data is filtered using the correct level of d, the filtered series should 

be stationary or I(0).  

 

Testing Weekly Price Data 

Weekly USDA wholesale prices of corn, soymeal, fed cattle, and feeder cattle 

were tested, in turn, for each price, in 3 different ways to determine the order of 

fractional integration.  Weekly prices of the four commodities were calculated 

from USDA series of daily wholesale prices from January 1998 to August 2004.  

Central Illinois price were used to represent corn and soymeal.  Fed cattle prices 

were represented by Nebraska choice Steers 1100 to 1300 lb category, while 

feeder calves were represented by Oklahoma City Feeder steers 750-800 lb 

category.  Prices reported with such a high frequency data should be ideal for 

analysis.   However there are enough holidays or other occasions when the 

market is closed to insure that there is a significant number of missing daily 

observations.  By averaging up to weekly observations it was possible to reduce 

the number of missing observations to a reasonable level.   
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In creating weekly averages careful notice was taken in locating daily 

observations to the first and last week of the year.  This was a particular problem 

for cattle prices which are often not reported over parts of the Christmas season.  

However at the weekly level some cattle price observations were not available. 

This was particularly true for feeder steer prices which had about 10 missing 

observations (out of 347).  All but two missing observations were filled in by 

taking an average of the price from the previous week and the following week.  

The relationship between feeder calf and fed cattle prices were used to fill in the 

missing fed cattle observations for the two sequential weeks that the prices were 

missing. 

 
 
Method: 1-Standard Unit Root (UR) Tests 
 
As noted a correctly filtered series should be stationary.  Suppose a data series 

were filtered through the fractional difference operator for varying levels of d and 

both Augmented Dickey Fuller (ADF) Unit Root and KPSS tests applied to the 

different representations of  "d' filtered data.  Once filtered by the correct level of 

d both tests should indicate that the filtered series is I(0).  This exercise would not 

be precise because neither the KPSS and ADF test are meant, (nor might be 

refined enough) to determine a fractional order of integration.  For example, either 

test could incorrectly lead to the inference that a stationary series (where 0<d<.5) 

is I(0).  However, such an exercise could provide insights concerning permissible 

levels of fractional differencing.    
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Testing Level Price Data 

Following the example of Jin and Frechette (2004) (who test a time series of 

variances) both the Augmented Dickey Fuller (ADF) test and the KPSS tests were 

applied to a time series data on the prices of each of our four commodities: corn, 

soybean meal, feeder calves, and fed cattle.  Table 2 evaluates the four time series 

in light of each of the four outcomes.  The top two rows of table 2 summarize 

these tests when applied to the data in its original form.  Using critical values joint 

DF and KPSS tests established by Keblowski and Welfe (2004) at a .05 level of 

confidence, each of the four data series falls into outcome 4; stationarity cannot be 

rejected by the KPSS tests nor can unit roots be rejected by the Augmented 

Dickey Fuller Test.    

 

On the other hand, using a .1 level of confidence, and Keblowski’s and Welfe’s 

critical values, feeder calf prices fall under outcome 1 and can be considered 

non-stationary.  For corn prices the ADF tests reject nonstationarity and the 

KPSS test rejects stationarity.   Using a .1 level of confidence, soymeal prices 

fall into category 4 of table 1.  That is, the null hypothesis cannot be rejected in 

either the KPSS test (which has a stationary null hypothesis) nor the ADF test 

(which has a nonstationary null.hypothesis).  When testing fed cattle prices the 

ADF tests does not reject unit roots while the KPSS tests cannot reject 

stationarity.  For feeder calves nonstationarity is rejected by the KPPS test and 

the ADF test cannot reject nonstationary.   These differences in outcome, 
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between tests as well as differences in outcome at different confidence levels, 

warrant further investigation of the time series properties of each series.1   

    

Fractionally Filtered Data 

Here fractional filtering methods are combined with joint Dickey Fuller and 

KPSS test to choose the lowest level of fractional differencing which insures 

stationary data.  Corn, soybeans, fed cattle, and feeder calf prices were filtered 

using varying values of d, varying in increments of .1 ranging from .1 to 1.5.  

Both the Dickey Fuller test and the KPSS test were applied to each of the 

filtered series.  When filtered with the correct difference operator both tests 

should indicate the data is stationary (outcome 2).  This could be viewed as a 

way of ruling out possible levels of factional integration.2   That is, permissible 

levels of d should be those values that when filtered, produce a series where the 

Dickey Fuller test rejects non-stationarity and the KPSS test cannot reject 

stationary. 

 

 The lower rows of table 2 report both KPPS and DF tests results for various 

levels of fractionally filtered data.  Using Keblowki’s and Welfe’s (2004) 

critical values for  testing data jointly with the KPPS and DF tests, a fractional 

difference filter of .3 produced a stationary corn prices series.  Soybeans prices 

required first differencing, fed cattle a difference filter of .5 and feeder calves a 

difference filter of .6 to produce a stationary series.  This suggests that corn 

prices follow a short memory mean reverting process, soybean prices have 
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permanent memory of shocks, fed cattle prices follow a long memory but 

stationary process, and feeder cattle prices follow a long memory process which 

is nonstationary.  A .5 filter insures that the price of fed cattle is stationary.   

 

Method 2: The  GPH test. 

The Geweke and Porter-Hudak (GPH) test (Geweke and Porter-Hudak. (1983), 

Hassler (1991)) is the most commonly applied method to determine the order of 

fractional integration of a data series.  This test uses estimates of the 

periodogram (Box and Jenkins (1976), pp.36,  Hamilton (1992), pp. 158) which 

can be calculated for any data series.  Specifically GPH show that if logged 

estimates of the periodogram, at every frequency are regressed on 

  the negative of the estimated regression 

coefficient provides a reliable estimate of the level of fractional integration of 

the series.  

24*sin ( / 2) [0, ]j whereλ λ ∈ Π

 

After regressing the variable on harmonic variables representing various 

frequencies, the periodogram for the data series can be constructed from the 

estimated coefficients of the different sine and cosine variables (Hamilton 

(1992) pp. 160).3   In the GPH test the periodogram then is regressed on the 

squared sine variable.  The negative of the coefficient from this regression 

provides the estimate of the order of fractional integration.  Higher frequencies 

of the periodogram should be removed from this regression.  GPH suggest 
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including, in the regression, frequencies from the lowest up until T τ where T 

equals the number of observations in the data and recommended setting τ=.5.4

 

Table 3 reports both GPH based estimates of the level of fractional integration 

and the estimated 95% confidence intervals at various levels of τ.  Using the 

lower frequencies up to the recommended level of τ  to perform the GPH 

regression,  the estimated fractional integration of each price series is corn: 0.81 

soymeal: 1.25, fed cattle: 0.59 feeder cattle: 0.53.  For three prices, (soymeal, 

fed cattle, and feeder cattle)  this is not far from that obtained by applying 

combined KPSS and DF tests to d filtered data (corn: .3, soymeal: 1, fed cattle: 

.5, feeder cattle: .7)  However corn prices are nonstationary (.81) by the GPH 

test but stationary (.3) by the combined filtering tests.  

 

Table 2 also reports estimated levels of fractional integration when higher 

frequencies are included.  Setting τ=.7, .9 reveal that the data is close to having 

unit roots.  Including all frequencies (a practice not recommend by GPH) 

produces the estimate order of fractional integration of corn: .37, soymeal: .36, 

fed cattle: .17, feeder cattle: .37.            

 

These GPH tests (based on the preferred level of τ=.5) reveal that three of the 

price series are nonstationary and that the prices of feeder calves (at a level of 

integration of .53) while stationary, lie close to the boundary between being 

stationary and being nonstationary.  In fact, estimates for feeder calves d are not 
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far from those associated with chaotic behavior (d=.5).   The top row in table 2 

indicates that using standard DF tests (when applied to unfiltered data) suggests 

that at least 3 of the price series should be first differenced to achieve 

stationarity.  Yet, table 3 indicates may it be possible to produce a stationary 

series with a lower order of differencing  

 

Method 3: Vector Autoregression & Comparing Impulse Responses 

This section follows a more direct approach toward determining how prices may 

respond to shocks. The price response to shocks is simulated using models 

estimated with various levels of fractionally differenced data.  Various VAR  

models were estimated, with data which were fractionally differenced to various 

degrees and impulse response functions calculated and compared.   The goal is 

to find the smallest degree of differencing which produces stable (and 

reasonable) response to price shocks.   Impulses were also generated from a 

model estimated in levels.  

 

Specification 

Rather than estimate a full blown VAR, a recursive triangular structure was 

imposed on the exogenous variable matrix (Sims, 1980).  Correlation 

coefficients, conditional correlation coefficients, and Fisher Z's statistics, were 

calculated as an aid in determining the specification of the recursive VAR (see 

Bessler, 2004).5  This showed  that corn prices were not caused directly by lags 

of soybean, feeder calf, or fed cattle prices and vice versa.6  A corn price 
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equation was estimated as a stand alone equation.  Unconditional correlations 

did not reveal such clear results for the other three variables but were consistent 

with a recursive (triangular) VAR structure consisting of a top equation with fed 

cattle prices regressed on lags of fed cattle prices, a middle equation consisting 

of feeder cattle prices regressed on its own lags and fed cattle prices, and a 

bottom soybean price equation regressed on its own lags and fed and feeder calf 

prices.  Therefore the following system was specified:   
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The three equation model (soybeans, feeder calves, fed cattle) models were 

specified with 9 lags.7 The corn price equation estimated with 12 lags.  The 

models were estimated by SUR while the corn model was estimated by OLS.  

 

Impulse Response Function 

Impulse response functions measure the response of each of the endogenous 

variables across time to the impact of a shock (or innovation) to any variable 

represented in a VAR model.8  Impulse responses represent an autoregressive 

(AR) process converted in moving average form.  However, a general practice is 
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to preserve the AR structure, shock the system one variable at a time, and 

iteratively map  out the response.  For a multi-equation model, this procedure 

rests on the assumption that the VCV matrix of errors is diagonal.  Following 

standard practice, the data for the 3 equation model was estimated and a 

Cholesky decomposition of the estimated VCV matrix calculated.  Both the 

endogenous variable vector and exogenous variable vector were multiplied by 

the inverse of the cholesky matrix --at each observation--a GLS transformation 

of the data, sufficient to insure that the VCV matrix is diagonal (Bessler 2004).  

 

Shocks to the 3 Equation VAR  

Impulses generated from a shock to fed cattle prices were not reasonable for the 

model estimated in levels.  While the fed cattle price response to the fed cattle 

price shock peaked in 6 weeks and was 11% higher than the original shock the 

feeder calf price response peaked in 24 weeks and was more than 12 and a half 

times the size of the shock.  And the soy price response peaked in 43 week and 

was 173 times the size of the shock.  The response of soymeal prices to feeder 

calf prices shock was also unreasonable, peaking 21 weeks later as a size over 9 

times the size of the original shock.  Estimating the 3 equation VAR model with 

nonstationary level data clearly produced unreasonable impulse responses to a 

shock.  

 

On the other hand the impulse response for the stand alone corn price model was 

reasonable, producing a peak response 15% lower than the size of price shock, 3 
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weeks later.  Note these impulse responses are consistent with the joint KPSS 

and ADF tests which finds the corn prices are stationary only after being 

fractional differenced at d=.3. 

 

Having generated impulse responses from a VAR model estimated using data in 

levels the procedure of fractionally differencing data, estimating a VAR model, 

transforming the data to insure a diagonal VCV matrix, re-estimating the VAR 

model, and generating impulse responses was applied several times over. Data  

was, in turn, fractionally differenced by d=.1, d=.2, d=.3, d=.5, d=.8, and by d 

set equal to the first set of GPH estimates (when τ=.5) of .8 for corn, 1.25 for 

soymeal, .5 for feeder calves, and .6 for fed cattle. 

 

Table 5 presents impulse responses for models estimated with fractionally 

differenced data with d set equal to the GPH estimated levels and for d =.5.  

Table 6 presents key information about impulse responses for the 3 variable 

VAR model estimated with various degrees of fractionally differenced data. 

When data is differenced according to that suggested by the standard GPH test 

(τ= .5) the peak fed cattle price response to a fed cattle price shock is after 4 

weeks and is about a quarter the size of the original shock. The peak feeder 

cattle price (about 1/3 the size of the shock) and soy price response (a negative 

response about 1/3 greater is absolute value than the original shock) is within a 

week.  While all responses are stable, an oscillating soy price response suggests 

that setting d=1.25 is too high when differencing soymeal prices.   

 17 
 



 

A more reasonable response can be viewed when all data are fractionally 

differenced to equal degrees.  For example, when data are fractionally 

differenced at d=.5 and the model estimated and shocked, the peak fed cattle 

price response is 6 weeks later and about a third larger than the size of the 

original shock.  The peak feeder cattle price response is about nine weeks later 

and is negative and is slightly more than half the size of the shock in absolute 

value.  The soymeal price response about double the size of the original shock 

and occurs 12 weeks later.  Table 6 also reveals that setting d=.5 produces a 

reasonable and stable response when feeder cattle prices or soymeal prices are 

shocked.   When a model is estimated using data that is differenced with d=.8 

shocks produce stable impulse responses which decline rather quickly.  

However the impulse response of soymeal prices tends to oscillate which is 

indicative of over differencing of the data.  

 

Stable impulse responses to price shocks also can be generated when the degree 

of fractional differencing is reduced to .2 and even .1 prior to estimation of 

model parameters.  While this preserves more information, table 6 shows that 

impulse response to price shocks simply are not reasonable when generated 

from such models.  For example, soymeal prices rise (or fall) by more than 10 

times the size of the shock and considerably large impulse responses extend out 

almost two years.  In general, from this exercise it appears that, prior to 

estimating the 3 equation VAR model, differencing of a degree less than .5 may 
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not be reasonable. However, differencing of a degree greater than .5 seems to 

throw away information which need not be thrown away.9

 

 

 

A Corn Price Equation  

The corn equation was estimated alone with 12 lags and impulses generated for 

a corn price shock.  Similar to the exercise preformed for the 3 equation VAR 

model, corn prices were repeatedly differenced using various levels of d, the 

model repeatedly estimated using various levels of differenced data, and  

impulse responses to a price shock repeatedly generated.  In contrast to the 3 

equation VAR model, in the single equation corn price model, every level of 

differencing, including setting d=0, produced a reasonable impulse response to a 

corn price shock.  However shocking the model estimated with data difference 

by d=.8 produced a damped oscillating response suggestive of over differencing.  

These results from the corn price model should be viewed in light of the various 

tests for the level of integration. Among the four tested prices corn prices 

produced most inconsistent results across test methods.  Using a .1 level of 

confidence an ADF test alone suggests corn prices are stationary.  Joint GPH 

and ADF test suggest that corn prices should be fractionally differenced with 

d=.3 while the GPH test suggest that corn prices should be fractional 

differencing with d=.8.  Two test results indicate suggest a stationary series 
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(d=0, .3).  In any case it is not surprising that low levels of differencing 

produced stable impulses from a corn price shock.  

 

 

 

Conclusion 

As international agricultural markets expand, the prices of agricultural products 

are increasingly exposed to shocks.  Livestock markets, in particular, have been 

forced to absorb sudden new information related to outbreaks of disease.  It is 

likely that these shocks to livestock markets will continue to occur in the future.  

Therefore it is important to obtain a better understanding of how both livestock 

prices and feed prices respond to such shocks, in the short run, in the 

intermediate run, and in the long run. 

 

This paper analyzed the properties of the prices of corn, soymeal, fed cattle, and 

feeder calf prices with the intent of obtaining a better understanding of how a 

shock may influence these prices in the ensuing periods.  Techniques which are 

typically used for analyzing macro-economic variables or stock prices were 

applied to the prices of these agricultural commodities.  Of particular interest 

was the ability of each these 4 agricultural prices to retain the memory of a 

shock which can remain for an extended period of time but remain stationary.  

Both Dickey Fuller and KPSS tests were used to test if these prices were 

stationary (or non-stationary).  Contradictions between these tests, an indicator 
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that a series may be fractionally integrated, led to further exploration of the 

properties of each the series.  

 

Two approaches were used to determine if any of these four prices were 

fractionally integrated.  First, each price series was repeatedly filtered through 

various fractional difference operators and both KPSS and ADF tests applied to 

filtered data.  Second, the Geweke and Porter-Hudak test (GPH) was applied to 

each of these price series to estimate the degree of fractional integration of each 

price series.  These combined tests demonstrated that prices for 2 commodities 

(fed cattle, feeder cattle) are fractionally integrated with the degree of 

integration, close to the boundary between stationary and nonstationary 

behavior.  For corn prices one test indicated the data were stationary while the 

other did not. 

 

A Vector Autoregression model was estimated for these prices and subsequent 

impulse responses calculated.  Impulses responses for soymeal, (feeder calf) 

prices shock to feed (feeder calf) were usually large and extended for long 

periods indicating that data required differencing.  VAR models were estimated 

with fractionally differenced data, using various levels of fractional differencing, 

prices were shocked, and impulse responses generated.  Impulse responses from 

VAR models estimated with fractional differenced data showed a tendency to 

dissipate.  However for models estimated with low levels of fractional 

differenced data (.1, .2) impulse responses were unreasonably large and 
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extended for any unreasonable period of time.  Fractionally differencing to 

slightly higher level (.5) produced reasonable impulse responses.  In some 

instances, fractionally differencing to even a higher level, (.8) produced 

oscillating impulses indicating over differencing.   These results indicated the 

ideal level of differences lies between 0 and 1, a level that for 3 of the 4 prices is 

consistent with the results obtained in the fractional integration tests. 

 

Since the degree of fractional differencing used in this paper preserves more 

information than first differencing, yet insures that data is stationary, impulse 

responses using fractionally differenced data should be a better indicator of the 

response of prices to a shock.  Therefore, it is not surprising that the impulses 

generated from the parameters of a fractionally differenced VAR seem to be 

most reasonable.  
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Footnotes 

1)  Accounting for serial correlation (equation 10 of  Kwiatkowski et al., 1992) 

produced different test results than reported in table 2.  However the alternative 

version of the test was highly sensitive to arbitrary choice of lags and the chosen 

parameters of the weighting function.  This variance in outcome, even within the 

KPSS test only serves to illustrate the need to pursue testing other means of 

testing the order of integration. 

 

2) While this may not be the most precise method for determining the level of 

fractional integration (d), it is consistent with traditional methods of evaluating a 

data series. 

 

3) An alternative method for calculating the periodogram using autocovariances 

(Hamilton) can produce occasionally negative periodogram estimates and often 

requires  weighting or smoothing schemes (Hassler, 1991) to insure that the 

periodogram is everywhere positive. 

 

4) Many computer programs set the default level of τ=.5. 

 

5) Fisher Z statistics were based on data in levels, while each of the VAR models 

were estimated using some form of differenced data 
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6) Corn prices appear to contemporaneously correlated with feeder calf price. In a 

VAR model, consisting of lags on corn prices, lag feeder calf prices would be 

redundant. 

 

7) Box-Pierce Q tests for white noise residuals indicated that a nine lag length was 

sufficient for each equation in the 3 equation VAR model but the corn price 

equation required 12 lags. 

 

8) With the recursive structure above, not every shock will affect every variable. 

 

9)  This is particularly interesting since a series which fractionally integrated to a 

degree where d=.5, lies on the boundary between stationary and nonstationarity. 
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Appendix  

Fractional cointegration 

Suppose that the degree of fractional integration of two time series is the same or 

similar.  This leads to the possibility that the two series may be cointegrated or even 

fractionally cointegrated (Dittman, 2001).  Two series that are fractionally 

cointegrated may depart for an extended period from their cointegrating relationship 

but will eventually return to that relationship.  A simple method to determine if two 

series are fractional cointegrated, similar in spirit to standard bivariate cointegration 

tests, is to regress one series on the other and apply fractional integration tests to the 

errors.  Candidate series should have similar level of fractional integration.  If the 

degree of fractional integration of the errors is different, the series can be said to be 

fractionally cointegrated.  The Table A1 reveals that when using a level of τ=.5 to 

apply the GPH test, that fed cattle and feeder cattle appear to be fractionally 

cointegrated. This implies that both series therefore may take quite long trips away 

from, but eventually return to, their cointegrating relationship.    
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Table 1:  Four Outcomes of Joint Dickey Fuller and KPSS test. 
_________________________________________________________________________

  DF KPSS  
 Null=NS Null=Stat  

_________________________________________________________________________
Case 1   Not reject Reject  I(1)   
     
Case 2 Reject Not Reject  I(0)     
      
Case 3 Reject Reject Prob 

Fractional 
  

     
Case 4  Not Reject Not Reject Not 

Informative 
  

 
____________________________________________ 
1/Ns=nonstationary,  S=stationary or I(0) 
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Table 2: Joint Unit Root Tests, KPSS and ADF 
_________________________________________________________________________________
KPSS TEST1,2 : Stationary Null                                                               ADF TEST: Nonstationary Null     
         

 Corn Soy Fed 
Cattle 

Feeder 
Cattle 

Crn Soy Fed 
Cattle

Fdr
Cat

Corn Soy Fed 
Cattle 

Feeder 
Cattle 

Level 
Data  

0.353  0.256  0.338  0.380  C4 
C3 

C4 
C4 

C4 
C4 

C4 
C4 

-3.08 -2.15 -2.26 -1.07 

_________________________________________________________________________________________________
Fractional Differenced Data   
Order of  fractional differencing 
 

 Table 1 Categories  

D=.1 0.348  0.255  0.335  0.374  C4 C4 C4 C4 -3.05 -2.14  -2.30 -1.10 

D=.2 0.340  0.250  0.330  0.368  C4 C4 C4 C4 -3.09 -2.20  -2.44 -1.18 

D=.3 0.326  0.241  0.321  0.362  C2 C4 C4 C4 -3.22* -2.36  -2.57 -1.38 

D=.4 0.306  0.227  0.306  0.358  C2 C4 C4 C4 -3.45* -2.40  -2.82 -1.70 

D=.5 0.281  0.208  0.286  0.357  C2 C4 C2 C4 -3.78* -2.51  -3.16* -2.17 

D=.6 0.255  0.188  0.264  0.363  C2 C4 C2 C4 -4.18* -2.55  -3.57* -2.77 

D=.7 0.232  0.171  0.246  0.374  C2 C4 C2 C2 -4.57* -2.47  -3.97* -3.45* 

D=.8 0.213  0.159  0.233  0.389  C2 C4 C2 C2 -4.87* -2.23  -4.28* -4.14* 

D=.9 0.197  0.151  0.225  0.402  C2 C4 C2 C2 -5.99* -1.85  -4.44* -4.74* 

D=1 0.185 0.146 0.221 0.411 C2 C2 C2 C2 -6.07* -5.15* -5.82* -5.16* 

D=1.1 0.176  0.142  0.218  0.416  C2 C2 C2 C2 -6.06* -5.17* -5.58* -5.40* 

D=1.2 0.168  0.139  0.216  0.419  C2 C2 C2 C2 -4.89* -5.20* -5.41* -5.54* 

D=1.3 0.162  0.136  0.214  0.420* C2 C2 C2 C2 -5.54* -5.34* -5.14* -5.69* 

D=1.4 0.157  0.134  0.213  0.420* C2 C2 C2 C2 -5.84* -5.66* -5.14* -5.90* 

D=1.5 0.153  0.133  0.212  0.420* C2 C2 C2 C2 -6.25* -6.16* -5.32* -6.22* 

________________________________________________________________________ 
1/ KPPS (Kwiatkowski, Phillips, Schmidt & Shin Test with a stationary null hypothesis ADF (Augmented 
Dickey Fuller) test with a nonstationary null hypothesis. 
  
2/ Equation (6, pg 161) of KPSS. Augmented KPSS tests were also applied but were not robust across lag 
lengths and weight choices (see Kwiakowski et al. (1992) eq. 10, pg 164). Critical values are for joint DF 
and KPSS tests at the .05 were used (Keblowki and Welfe, 2004). Note these critical values are different 
than those used for either for the DF test alone and the KPSS test alone.  
 
3/ C categories (table 1) refer to relative performance of both tests.  For example, C4: joint tests contradict 
and the order of integration cannot be determined. C2: joint tests imply that the data is stationary. In 
categorizing level data two sets of C’s, .are listed. The top representing 05 confidence levels and the 2nd 
line of C’s representing categories at a .1 (lower) level . 
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Table 3: Estimated Level of Fractional Integration of Price Data   
______________________________________________________________________ 

Gwenke, Porter, Hudak Test1,2 

 
τ =.5 3      
  
  LB4  Estimate  UB 
P-Corn    0.38  0.81  1.26                
P-Soymeal  0.844   1.25  1.65      
P-Fed Cattle 0.30  0.59  0.88        
Feeder Cattle 022  0.53  0.84  
 
τ =.7 
    LB  Estimate  UB 
P-Corn    0.83  1.03  1.23          
P-Soymeal  0.816  1.00  1.185   
P-Fed Cattle 1.02  1.23  1.43     
Feeder Cattle  0.80  0.98  1.16  
 
τ =.9 

LB  Estimate  UB 
P-Corn    0.82  0.95  1.08           
P-Soymeal  0.86  1.0  1.13   
P-Fed Cattle 0.8  1.01  1.14 
Feeder Cattle 0.94  1.08  1.22 
 
All Fr3 

  LB  Estimate  UB 
P-Corn    0.254  0.37  0.49              
P-Soymeal  0.22  .36  0.49 
P-Fed Cattle 0.01  0.16  0.30 
Feeder Cattle 0.23  0.37  0.50 
 
 
Alternative Method  (Table 2) 
P-Corn    0.30 
P-Soymeal   1.00 
P-Fed Cattle   0.50 
Feeder Cattle   0.70 
                           
1)GPH: Geweke Porter-Hudak test for fractional integration. The periodogram of data is regressed on 
estimates of 4 sin squared variable (see text) and the estimated fractional integration equals the negative of 
the coefficient on this variable. 
 
2) Periodogram estimates of each series were calculated from coefficients on each frequency (see 
Hamilton, pp. 160).  
 
3) α refers to the number of frequencies used in the GHP test. The number is= tα .where t is the number of 
observations.  GHP found setting α =.5 produced reliable estimates of d and recommended sticking to low 
frequencies when d estimates were sensitive to α .(Geweke Porter-Hudak,(1983), pp 226-231).  
 
4) LB represents the lower bound of the 90% confidence interval, UB represents the Upper Bound.  
 
5) All Fr: all frequencies used. This last estimate illustrates sensitivity of GPH test to frequencies included.  
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Table 4: Impulse Responses of VAR Model Estimated with Fractional Differenced Data,   d=.5 

 
 

Fed Cattle Shock 
 

Feeder Calf Shock  
 

Soymeal Shock 
 Shock=1     Shock=1  Shock=1 
Price 
Response: Fed  Feeder  Soymeal  Feeder  Soymeal   Soymeal 
Weeks Out1        

1 0.146 -0.169 1.474  0.288 -1.433  0.306
2 0.234 -0.378 1.698  0.380 -0.826  0.085
3 0.262 -0.460 1.382  0.368 -0.927  0.161
4 0.325 -0.419 0.366  0.289 0.246  -0.141
5 0.305 -0.497 1.779  0.237 -0.057  -0.104
6 0.358 -0.521 1.459  0.294 -0.078  0.221
7 0.249 -0.484 1.496  0.178 -0.487  0.204
8 0.116 -0.591 1.006  0.240 -0.382  0.290
9 0.165 -0.632 1.381  0.200 -0.679  0.208

10 0.200 -0.592 1.622  0.180 -1.069  0.252
11 0.187 -0.575 1.351  0.171 -0.629  0.036
12 0.156 -0.593 1.924  0.163 -0.548  -0.005
13 0.132 -0.595 1.871  0.155 -0.299  -0.001
14 0.109 -0.575 1.834  0.131 -0.408  0.034
15 0.088 -0.584 1.443  0.136 -0.205  0.086
16 0.100 -0.569 1.672  0.118 -0.432  0.123
17 0.103 -0.541 1.689  0.113 -0.580  0.182
18 0.086 -0.526 1.619  0.105 -0.615  0.122
19 0.069 -0.515 1.753  0.097 -0.619  0.092
20 0.061 -0.500 1.826  0.091 -0.525  0.035
21 0.057 -0.479 1.836  0.084 -0.486  0.020
22 0.053 -0.463 1.691  0.080 -0.310  0.006
23 0.051 -0.443 1.762  0.072 -0.330  0.030
24 0.047 -0.422 1.693  0.068 -0.325  0.067
25 0.039 -0.405 1.633  0.063 -0.395  0.080
26 0.034 -0.389 1.598  0.059 -0.426  0.088
27 0.031 -0.371 1.631  0.055 -0.455  0.068
28 0.030 -0.352 1.631  0.051 -0.449  0.051
29 0.028 -0.335 1.595  0.048 -0.379  0.021
30 0.025 -0.319 1.607  0.044 -0.336  0.013
31 0.022 -0.303 1.559  0.041 -0.280  0.015
32 0.019 -0.287 1.506  0.038 -0.276  0.027
33 0.017 -0.273 1.440  0.036 -0.271  0.041
34 0.016 -0.258 1.418  0.033 -0.301  0.048
35 0.015 -0.244 1.383  0.031 -0.317  0.049
36 0.013 -0.231 1.357  0.029 -0.317  0.037
37 0.012 -0.218 1.342  0.027 -0.300  0.026
38 0.011 -0.206 1.316  0.025 -0.267  0.015
39 0.010 -0.195 1.281  0.023 -0.239  0.012
40 0.009 -0.184 1.232  0.022 -0.211  0.013
41 0.008 -0.173 1.194  0.020 -0.207  0.019
42 0.007 -0.163 1.148  0.019 -0.207  0.026
43 0.007 -0.154 1.111  0.017 -0.216  0.028
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Table 4 (cont.) 

 
Fed Cattle Shock 

  
Feeder Calf Shock  

 
Soymeal Shock 

 
 Shock=1     Shock=1   Shock=1
Price 
Response: Fed  Feeder  Soymeal  Feeder  Soymeal   Soymeal 

 
Wk     
44 0.006 -0.145 1.079  0.016 -0.218  0.026
45 0.005 -0.136 1.053  0.015 -0.214  0.021
46 0.005 -0.128 1.025  0.014 -0.201  0.015
47 0.004 -0.120 0.993  0.013 -0.181  0.010
48 0.004 -0.113 0.962  0.012 -0.165  0.009
49 0.004 -0.106 0.924  0.011 -0.151  0.010
50 0.003 -0.100 0.888  0.010 -0.147  0.013
51 0.003 -0.094 0.852  0.010 -0.146  0.016
52 0.003 -0.088 0.823  0.009 -0.148  0.016
53 0.002 -0.082 0.794  0.008 -0.147  0.015
54 0.002 -0.077 0.769  0.008 -0.141  0.012
55 0.002 -0.073 0.744  0.007 -0.132  0.009
56 0.002 -0.068 0.717  0.007 -0.121  0.007
57 0.002 -0.064 0.689  0.006 -0.111  0.006
58 0.001 -0.060 0.661  0.006 -0.104  0.007
59 0.001 -0.056 0.633  0.005 -0.101  0.008
60 0.001 -0.052 0.607  0.005 -0.100  0.009
61 0.001 -0.049 0.583  0.005 -0.099  0.009
62 0.001 -0.046 0.561  0.004 -0.096  0.008
63 0.001 -0.043 0.540  0.004 -0.092  0.007
64 0.001 -0.040 0.520  0.004 -0.086  0.005
65 0.001 -0.038 0.499  0.004 -0.079  0.004
66 0.001 -0.035 0.478  0.003 -0.074  0.004
67 0.001 -0.033 0.457  0.003 -0.070  0.005
68 0.001 -0.031 0.437  0.003 -0.067  0.005
69 0.000 -0.029 0.418  0.003 -0.066  0.006
70 0.000 -0.027 0.401  0.002 -0.065  0.005
71 0.000 -0.025 0.385  0.002 -0.062  0.005
72 0.000 -0.024 0.369  0.002 -0.059  0.004
73 0.000 -0.022 0.354  0.002 -0.055  0.003
74 0.000 -0.021 0.339  0.002 -0.051  0.003
75 0.000 -0.019 0.324  0.002 -0.048  0.003
76 0.000 -0.018 0.309  0.002 -0.046  0.003
77 0.000 -0.017 0.295  0.002 -0.044  0.003
78 0.000 -0.016 0.282  0.001 -0.043  0.003

______________________________________________________________________________________ 
1/ Refers to the response of prices n weeks after the initial shock of 1.  
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Table 5: Impulse Response Peaks for Various d Differenced Models 
___________________________________________________________________ 
PFed=1 Shock      

 Price: 
Fed 
Cattle   

Feeder 
Cattle   Soymeal  

Candidate 
Or Not4

Difference 
Degree Wks Sz Wks Sz Wks Sz 

C d=GPH3 4 0.25 1 0.338 4 -1.38 
N d=.1 6 0.91 22 -7.28 48 -178.80 
N d=.2 5 0.66 20 -4.06 37 30.75 
N d=.3 6 0.58 17 -2.19 37 8.41 
C d=.5 6 0.36 9 -0.63 12 1.92 
C d=.8 1 -0.14 2 -0.18 1 1.26 

N 
Level 
model 6 1.11 24 -12.74 43 173 

        
Pfeedr =1 Shock     Psymeal=1 Shock 
          

  
Feeder 
Cattle   Soymeal  Soymeal  

  
 
Wks Sz Wks Sz Wks Sz 

C d=GPH 2 -0.23 4 1.44 4 -0.30
N d=.1 6 0.91 7 -7.23 48 -178.67
N d=.2 3 0.7 10 -3.35 39 30.60
C d=.3 3 0.57 1 -1.56 1 0.49
C d=.5 2 0.38 1 -1.43 1 0.30
C d=.8 2 0.21 1 -1.37 4 0.25

N 
Level 
Model 6 1.09 21 -9.42 1 0.88

____________________________________________________________________
 
1/ GPH levels of d: fed cattle=.6 feeder calves=.5 and soymeal =1.25 
 
2/ wks= number of wks when impulse response peaks. Sz, size of peak response, relative to original 
shock of 1. For example, when a model is estimated with fractionally differenced data of d=.5,  the 
maximum response of soymeal price is 1.92 to a fed cattle price shock, is 92% higher and occurs 12 
weeks after the shock.    
 
3/Soy price response oscillates the value follow several weeks of soy price rises 
 
4/ n= though stable, clearly does not provide reasonable answer, c=candidate differencing level 
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Table 6: Peak Impulses Corn Price Model 
 
Corn=1 Shock 
    
Price:   Corn  
Candidate 
Or Not  Wks  Sz 
C D=GPH 11 -0.18
C D=.1 3 0.72
C D=.2 3 0.6
C D=.3 3 0.507
C D=.5 3 0.36
C D=.8 11 -0.18
 D=0 3 0.85
_____________________________________ 
1/ Similar interpretation as table 5 
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Table A: Estimated Fractional Integration: Selected Errors 
      

 
 Frc 

coin: LB Estimate UB 
τ =.5   
cr/fed  ND 0.048 0.532 1.016
cr/fdr  ND 0.111 0.534 0.957
Fd/fdr  Yes -0.047 0.187 0.421
      
τ =.7      
cr/sy  Yes -0.234 0.374 0.608
cr/fd  Yes -0.194 0.440 0.634
cr/fr  Yes -0.207 0.510 0.717
sy/fd  Yes -0.216 0.380 0.596
sy/fr  Yes -0.224 0.426 0.649
Fd/fr  Yes -0.184 0.480 0.664
      
τ =..9      
cr/sy  Yes 0.156 0.296 0.436
cr/fr  Yes 0.336 0.471 0.606
cr/fd  Yes 0.239 0.384 0.529
sy/fd  Yes 0.342 0.498 0.654
sy/fr  Yes 0.218 0.376 0.534
fd/fr  Yes 0.043 0.189 0.335
      
All FR      
cr/sy  Yes 0.064 0.146 0.228
cr/fr  Yes 0.083 0.182 0.281
cr/fd  NO 0.206 0.300 0.394
sy/fd  ND 0.167 0.277 0.387
sy/fr  Yes 0.029 0.139 0.249
fd/fr  Yes -0.229 -0.124 -0.019
__________________________________________________________________ 
1/Errors of a regression between selected price. Errors chosen based on possibilities for cointegration as 
indicated in table 2. If level of fractional integration is the same between prices, but is different for these 
errors then the series are fractionally cointegrated to a degree equal to the difference in the degree of 
integration of the series and the errors.  
 
2/ NA: there was a significant difference in fractional integration of original series and tests do not apply. 
Yes: appears to be fractional cointegrated. N0: Despite similar levels of fractional integration, the two 
price series do not appear to have a fractionally cointegrated relationship. 
 
3/ Higher frequencies or the periodogram are not typically applied in the GPH test.  Elimination based on  
GPH’s τ  rule as discussed in text. All FR refers to a GPH test applied when using all frequencies of the 
periodogram.  
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