
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 

Avoiding biases from data-dependent specification 
search: an 

application to a tillage choice model 
 
 
 
 
 
 

Authors 
Sanchita Sengupta, Lyubov A. Kurkalova, and Catherine L. 

Kling1

 
 
 
 

Selected Paper prepared for presentation at the American Agricultural Economics 
Association Annual Meeting, Long Beach, California, July 23-26, 2006 

 
 
 
 
 
 
 
 
 
 
 

Copyright 2006 by Sanchita Sengupta, Lyubov Kurkalova and Catherine Kling. All right 
reserved. Readers may make verbatim copies of this document for non-commerical 
purposes by any means, provided that this copyright notice appears on all such copies 

                                                 
1 Sengupta is graduate assistant, Center for Agricultural and Rural Development at Iowa State University, 
Kurkalova is Assistant Professor at the Department of Agribusiness Economics, Southern Illinois 
University, and Kling is Professor of Economics and Head, Resource and Environmental Policy Division of 
the Center for Agricultural and Rural Development at Iowa State University. 



Avoiding biases from data-dependent
specification search: an application to a tillage

choice model∗

Sanchita Sengupta, Lyubov A. Kurkalova, and Catherine L. Kling†

March 17, 2006

Abstract

The study evaluates the gains of avoiding data-dependent specifica-
tion search on an estimation sample in an application to discrete choice
models. We incorporate data splitting, the process by which the total
available sample is randomly split in two or more sub-samples with the
first (specification) sub-sample used for specification search, and the
second (estimation) sub-sample used for obtaining “clean’ estimates
using the model chosen on the specification sub-sample according to
a set criterion. We estimate 14 binary Logit models of the adoption
of conservation tillage corresponding to the major sub-watersheds of
the Upper Mississippi River Basin. For each of the sub-watershed
models, we use the specification sub-sample to choose the explana-
tory variables that lead to the highest number of correct predictions
provided that estimated coefficients are in conformity with economic
theory. To evaluate the gains of avoiding specification search on the
estimation sub-sample, we follow Gong (1986)[8] and calculate the ex-
pected excess error, which is a measure of excess optimism concerning

∗Draft, please do not site without the authors’ permission
†Sengupta is graduate assistant, Center for Agricultural and Rural Development at

Iowa State University, Kurkalova is Assistant Professor at the Department of Agribusiness
Economics, Southern Illinois University, and Kling is Professor of Economics and Head,
Resource and Environmental Policy Division of the Center for Agricultural and Rural
Development at Iowa State University.
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model fit on the specification sample. We find that the excess opti-
mism varies with the sub-watersheds and has a tendency to be larger
for the sub-watersheds with smaller samples.

1 Introduction

Estimation of econometric model parameters customarily assumes that the
model structure is known. However, economic theory oftentimes provides
only a partial guidance on the model structure, leaving the choice of the
model’s functional form and/or the set of explanatory variables to the re-
searchers. This model uncertainty then leads to specification search by which
explanatory variables are selected into the model to provide the best model
specification according to preset criteria. However, if the same sample is
used for both selecting the model and for fitting the model and making infer-
ences, too narrow prediction intervals and biases in parameter estimates can
ensue (Chatfield, 1995). In consequence, coefficient estimates and standard
errors following pretesting cannot be used for valid inference (Veall 1992[14],
Potscher 1991 [13]). Although the presence of non-trivial biases that result
from data-dependent specification search is widely recognized by statisticians
(Chatfield (1995) [1], Leamer (1983) [10]), it is rarely taken into account in
applied econometrics. Some exceptions to this practice are Creel and Loomis
(1990)[2] and Herriges et.al.(2005)[6], who take into consideration the bias
in inferences that arise due to specification search.

Admittedly, model uncertainty is difficult to quantify. The commonly pro-
posed remedial approaches include the Bayesian Model Averaging Approach,
collection of more data, and data splitting (see, e.g., Chatfield(1995)[1]). This
study focuses on data splitting, the process by which the total available sam-
ple is randomly split in two or more sub-samples with the first (specification)
sub-sample used for specification search, and the second (estimation) sub-
sample used for obtaining “clean” estimates using the model chosen on the
specification sub-sample according to a set criterion. The other sub-samples
(if any) are then used to further evaluate model fit. Since data sets avail-
able to researchers are almost never of the size permitting such procedure,
this approach is rarely used in the applied work and the studies reporting
specification search biases are similarly scarce. Our analysis aims at filling
this gap by evaluating the excess optimism concerning model fit attributable
to data-specification search on the estimation sample in an application to
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discrete choice models.
In this paper we perform systematic data analysis and investigate the

effects of data-dependent specification search for a data set that originally
contains some 37,000 data points. We incorporate data splitting to estimate
several binary logit models of the adoption of conservation tillage correspond-
ing to major sub-watersheds of the Upper Mississippi River Basin, and es-
timate the excess optimism concerning model fit that is attributable to the
data-specification search, using the approach developed by Gong (1986).

The rest of the paper is organized as follows. In section 2, we discuss why
model uncertainty could be a problem and the different ways that have been
used to deal with this problem. Section 3 presents an empirical application
to the estimation of discrete choice models of conservation tillage adoption,
and section 4 concludes.

2 Model uncertainty

Pretesting or preliminary testing of the data to determine the type of model
that is likely to be applicable, is a potential problem in statistics. Pre-
testing could entail a coefficient restriction, testing for heteroscedasticity or
serial correlation or as in our case, searching for the model with the largest
number of correct predictions. Zhang(1992)[17] provide asymptotic results
for inference after selecting a linear regression model based on final error
prediction criterion. He finds the asymptotic variance to be satisfactory but
asymptotic confidence regions to be too small. The problem is aggravated
for small samples. But large sample with excessive data mining is also likely
to lead to invalid inference. The Optimism Principle defined by Picard and
Cook (1984)[12], that model fitting necessarily gives optimistic results, is a
manifestation of model uncertainty.

There are two schools of thought on the approach to dealing with model
uncertainty, Bayesian and frequentist. Bayesian Model Averaging requires
taking the weighted average of candidate models. The weights used are the
Bayesian posterior probabilities and since they depend on the specification
of prior probabilities, they are difficult to compute especially where there is
no true model. Further, if the population form is uncertain, computing the
Bayes factor could be another problem. We employ a frequentist approach
in this study.

In the spirit of scientific inference which ’involves collecting many sets of
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data and establishing a relationship which generalizes to different conditions’
(Chatfield, 1995), the ideal frequentist approach to solving model uncertainty
is to use an existing data set for model selection through testing and then
collect new data to estimate the selected model. However, collecting more
data is expensive in most economic studies. A viable alternative to collection
of new data to perform out-of-sample inference is data splitting.

2.1 Data splitting and model selection

According to Faraway(1998)[7], if a large data set is available, the best way
to perform out-of-sample analysis is by a three-way random data split. The
first set (specification set) should be used for selection of model, the second
(estimation set) for estimation of the parameters and for point prediction
and the third (validation set) for assessing the variability of the predictions.
However, Faraway (1998) has noted that ’the purpose of data splitting is to
obtain better estimates of the variability of predictions, and the price one
pays is that the actual variability of the predictions will tend to be higher’ as
the size of the estimation sample is smaller than that of the original sample.

An important step in model selection is the selection of a criteria. There
is no universally acceptable model selection criteria in the discrete choice
models, but two common approaches are to select models with largest value
of pseudo R2 and the largest number of correct predictions (Veall and Zim-
mermann, 1996 [15]). The goodness-of-fit statistic that is used in this study
for specification search is the ”percent correctly predicted”. Specifically, we
assume that a choice is correctly predicted if the predicted probability of the
choice is greater or equal to 0.5. The threshold of 0.5 is not suitable for ev-
ery discrete choice model (see, e.g., a discussion in Norwood et al., 2004[11]),
but it works in our situation, since, as it will be clear from the application
below, the cost of misclassifying one alternative is not very different from the
cost of misclassifying the other alternative. In this paper, we first split the
data set applying the algorithm suggested by Faraway (1998) and choose the
best fitting model based mostly on the goodness-of-fit criterion. We then use
bootstrap methods to assess the benefits of avoiding specification search on
the estimation sample.
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2.2 Bootstrap methods for estimating excess optimism

To estimate the excess optimism concerning model fit that is attributable to
the data-dependent specification search, we employ bootstrap (resampling)
techniques originally developed to correct for the optimism when data split-
ting is not an option (Efron (1982)[3], Efron and Gong (1983)[4], and Efron
and Tibshirani (1993)[5]). As Efron and Gong (1983) point out, although
theoretical basis for these methods is limited, the techniques can be success-
fully used in practice. The methods are based on the assumption that the
original data set represents the underlying population and random draws
from the original sample are draws from the same population.

The estimation of the excess optimism is based on the following obser-
vation (Efron,1982). Since the criteria for selecting the binary choice model
with the best fit is the largest number of correct predictions, the prediction
error or the apparent error is the number of incorrect predictions. Thus,
the model selection bias can be manifested in the optimistic value of this
apparent error. We follow Gong (1986) who proposed bootstrap methods to
estimate the expected excess error.

3 Application

Agriculture in the Midwest has been targeted for conservation practices by
various federal and state incentive-based programs. To better estimate the
costs of current and intended programs and to better target conservation pro-
gram expenditures there is an imperative need to understand the farm-level
costs of conservation practices adoption for large, diverse areas. This study
estimates these costs for one of the most effective conservation practices, con-
servation tillage (CT), for the entire Upper Mississippi River Basin (UMRB),
an area which encompasses parts of Iowa, Illinois, Missouri, Wisconsin and
Minnesota. The methodology we apply builds upon the work of Kurkalova
et al. (2006)[9] who estimate the costs of CT adoption for the state of Iowa.

3.1 Study region and data

The study region, the Upper Mississippi River basin (UMRB) is defined as
U.S. Geological Survey hydrologic region 07 (http://water.usgs.gov). UMRB
covers 492,000 square kilometers in parts of Iowa, Illinois, Missouri, Wiscon-
sin and Minnesota. The entire basin is divided into sub-watersheds or 4-digit
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Figure 1: 4 digit Hydrologic Units in the Upper Mississippi River Basin

hydrologic units (HUC) that indicate the hydrologic region (first two digits)
and hydrologic subregion (second two digits). There is substantial hetero-
geneity across the UMRB in terms of land use. As it can be seen from Figure
1, the percentage area that is under cropland ranges from a minimum of 9.9%
in HUC 7030 to 68% to HUC 7020. Incidentally, the major parts of both
of these HUCs are in Minnesota. To reflect this heterogeneity, we estimate
several CT adoption models corresponding to the sub-watersheds.

The data comes primarily from the Natural Resource Inventory (NRI)
(Nusser and Goebel, 1997, USDA/NRCS, 1994). The NRI is a scientifi-
cally based, longitudinal panel survey of soil, water, and related resources,
designed to assess conditions and trends every five years. The 1997 NRI pro-
vides results that are nationally consistent for all nonfederal lands for four
points in time 1982, 1987, 1992, and 1997. However, conservation tillage
information is provided only in 1992 and hence only the 1992 data set is
used for this study. The NRI data set for the UMRB region consists of a
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total of 103,849 observations. Table 1 shows the distribution of these points
across the 4-digit HUCs and under corn, soybean production and conserva-
tion tillage. Most of the UMRB area is under corn production. In consent
with climatic conditions, the northern HUCs have fewer soybean acres than
the southern HUCs and tillage adoption is higher in the south than in the
north. The NRI data set further provides information on geo-physical prop-
erties of the land, i.e. soil characteristics, slope, erodibility, and the like. The
complete data set is formed by adding constructed net returns, climatic data
and farm characteristics as in Kurkalova et al. (2006).

The economic theory provides a guidance only on which groups of vari-
ables ought to be present in the set of explanatory variables (such as the crop
grown, soil and landscape characteristics of cropland, farmer characteristics,
and climatic variables), and for the sake of brevity, we refer interested read-
ers to Kurkalova et al. (2006) for the details on the rationale for each of the
groups of the variables. Table 2 provides variable descriptions and summary
statistics for the combined data set.

3.2 Adoption models

The models that are similar to that of Kurkalova et al. (2006) are derived
under the assumption that a farmer adopts conservation tillage if the ex-
pected annual net returns from this farming practice, π1, exceed those from
the alternative, conventional tillage, π0, plus a premium, P , associated with
uncertainty. Then, assuming that π1 − P is a linear function of a set of ob-
served explanatory variables x and that the observations on π0 are available,
the model is given by

Pr[Y = 1] = Pr[π1 ≥ π0 + P + σε] = Pr

[
ε ≤ β′x

σ
− π0

σ

]
, (1)

where ε is a logistic error and the observed dependent variable Y takes on
the value of 1 of CT is adopted and zero otherwise. The parameters of
interest are the linear function parameters β together with σ, the error term
multiplier.

The specific models for each of the sub-watersheds are the variants of the
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basic specification, where

β′x = β0 + β0,cIc + β0,sIs

+β1SLOPE + β2PM + β3AWC

+β4EI + β5OM + β6PH

+β7TMAX + β8TMIN + β9PRECIP

+β10TENANT + β11OFFARM + β12AGE

+β13MALE + β14CODE

+PRSTD(β15 + β16π0 + β17TENANT

+β18OFFARM + β19AGE + β20MALE

+β21CODE)

In addition to the specification described above, we also consider a spec-
ification that describes the probability of adopting conservation tillage as a
function of the difference in the net returns between conventional and con-
servation tillage. In this case, instead of viewing the returns to conventional
tillage as being known and that to conservation tillage being unknown, it is
assumed that the average returns to both tillage methods are known. In this
case, the model can be written as

Pr[Y = 1] = Pr[π1 ≥ π0 + P + σε] = Pr

[
ε ≤ β′x

σ
− π0−1

σ

]
, (2)

where π0−1denotes the difference in net returns to conventional and conser-
vation tillage. In this specification, β′x represents the negative of the risk
premium, rather than the difference between the expected net returns from
conservation tillage and the risk premium. We refer to models (1) and (2) as
net returns (NR) and difference (D) models, respectively.

3.3 Results: specification search

To conduct specification search, we split each HUC’s sample randomly in
4 sub-samples, and use the first, specification, sub-sample for specification
search. In this search, we choose the specification that leads to the highest
number of correct predictions, provided that the estimate of 1/σ, which is
the negative of the estimated coefficient of π0 in the NR model and is the
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negative of the estimated coefficient of π0−1 in the D model, is positive as
required by the theory. This way, we find the best model structure, and then
obtain specification-search-bias-free estimates for the chosen models on the
second (estimation) sub-sample. We chose the best-fitting models by varying
the following model specifications:

1. Area: for each HUC, we choose the contiguous area containing the
HUC,

2. Variable: choice among different soil and farmer characteristics vari-
ables,

3. Model : choice between the NR and D models.

Table 3 provides parameter estimates and their standard errors after spec-
ification search. (on the estimation sample). Table 4 provides the percent-
ages of correct predictions for the following four combinations of parameter
estimates and data sets:

1. Specification sample and parameter

2. Estimation sample and parameter

3. Specification parameter and estimation sample

4. Estimation parameter and validation sample

3.4 Computing excess optimism

To estimate the excess optimism concerning model fit that is attributable to
the data-specification search, we follow Gong (1986). Specifically, we consider
the observed sample, Z1 = (y1,X1) , ...,ZN = (yN ,XN) as being independent
and identically distributed from an unknown distribution F . Here matrix X

is defined as X =

(
x
−π0

)
for the NR model, and as X =

(
x

−π0−1

)
for

the D model. Let matrix β be defined as β =

(
β/σ
1/σ

)
The prediction rule

η = η (β,X) associated with the model is the rule that allows predicting the
value y0 of the CT adoption indicator for any new set of observed explanatory
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variables X0. Let e0 = β′X0. The prediction rule η is given by the following:
y0 = 1, if exp (e0) / (1 + exp (e0)) > 0.5, and y0 = 0 otherwise.

Let Q (y0, η (β,X0)) be the criterion that scores the discrepancy between
the observed value y0 and its predicted value η = η (β,X0), which takes on
the value of one if the observed and the predicted values are different, and
zero otherwise. Let F̂ be the empirical distribution function that puts mass
1/N at each point Z1, ...,ZN . The true error of is defined to be the expected
error that the set of estimates makes on a new observation Z0 = (y0,X0) from

F , q = q
(
F̂ , F

)
= Ez0˜F Q (y0, η (β,X0)). The apparent error of η is defined

as q̂app = q
(
F̂ , F̂

)
= Ez0˜F̂ Q (y0, η (β,X0)) = 1

N

N∑
i=1

Q (yi, η (β,Xi)). Finally,

the difference R
(
F̂ , F

)
= q

(
F̂ , F

)
− q

(
F̂ , F̂

)
is the excess error, and the

expression r = EF̂˜F R
(
F̂ , F

)
is the expected excess error of the prediction

rule η = η (β,X). Here the expectation is taken over F̂ , which is obtained
from Z1, ...,ZN generated by F . If no data-dependent specification search
has been conducted, than the expected excess error is zero. However, if data-
dependent specification search has been performed, than the expected excess
error is positive and thus is a reasonable measure of the excess optimism
concerning model fit.

The bootstrapping procedure to compute the measure of optimism evolves
in the following steps:

1. Let N be the number of observations in the sample Z = {Z1, ...,ZN}.
Take N random draws with replacement from Z. These constitute one
bootstrap sample, Zb. Estimate the selected logit model on the sample
and obtain the bootstrap estimate β̂b.

2. Compute predicted probability with bootstrap estimates β̂b and boot-

strap sample explanatory variables Xb as Y ∗
bi =

exp(β̂bX
b
i )

(1+exp(β̂bX
b
i ))

for i =

1.....N.

3. Compute predicted probability with bootstrap estimates β̂b and the

original sample X as Y ∗
obi = exp(β̂bXi)

(1+exp(β̂bXi))
for i = 1.....N.

4. Apply the prediction rule η with the 0.5 threshold and obtain the
proportion of incorrect predictions for both predicted probabilities,
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qb0 = 1
N

N∑
i=1

Q(bo) and qb = 1
N

N∑
i=1

Q(b), where Qbo is estimated using

Y ∗
obi and Qb is estimated using Y ∗

bi.

5. Repeat 1, 2, 3 and 4 a large number B times.

6. Obtain the estimate of the expected excess error, which is the average of
the difference between two proportions taken over all bootstrap samples

as ω = 1
B

B∑
b=1

[qb0 − qb].

Table 5 reports the estimates of the average error and the distribution
of the measure of optimism ω over 1,000 bootstrap samples, for 3 different
watersheds, HUC 7080, HUC 7100, and HUC 7110 with 1,641, 856, and 412
observations in the specification data set, respectively. Somewhat surpris-
ingly, we get little difference in the model fit between the specification and
estimation samples. An average error of 0.33 for HUC 7080 means that 33%
of the time we get wrong predictions with the specification sample, while with
estimation sample we get wrong prediction 32% of the time. If we correct for
the optimism by adding the expected excess error estimates to the apparent
error rates we get the bias corrected estimates as 34% for the specification
sample and 33.5% for estimation sample.

Excess error results from computing the difference between the average
number of incorrect predictions using the original sample and the bootstrap
estimates, and the average number of incorrect predictions using the boot-
strap samples and bootstrap estimates. The mean value of the optimism
measure is positive, indicating that the apparent error tends to underesti-
mate the prediction error. The magnitude of optimism is small, indicating
that bias in the point estimate from data mining is probably not serious in
our application, but it gets worse as the sample size gets smaller. The mean
value is higher for the estimation sample than that of the specification sam-
ple. This shows that the specification search leads to better fit and hence
a lower value of the optimism. Since the number of correct predictions is
higher for specification sample than for the estimation sample, the number
of incorrect predictions, conversely, should be lower for the specification sam-
ple resulting in lower values of the optimism parameter. Also, the values are
consistent with increasing sample size. As the sample size becomes smaller
the optimism parameter tends to be higher.
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3.5 An Extension

The model presented in this paper could be used to compute regional-average
subsidies that would provide the cost of adopting conservation tillage prac-
tices. Given, we have four estimates from the four data combinations, the
next step is to evaluate which combination is most suitable for this purpose.
This section proposes such an extension to the model.

The use of calibration techniques is a well known way to judge how good is
a probability estimate. Calibration is a test of whether an issued probability
agrees with its relative frequency, ex post. The mean probability score or
the Brier score is an alternative metric for evaluating probabilistic forecasts
which compares the probability of an outcome with the actual outcome.
One advantage of Brier score over calibration is that the Brier score can
be decomposed into components that index both calibration and resolution,
that is the ability of the forecaster to distinguish between events that occur
and the events that do not occur.

Let Y be the actual binary outcome of the event. In case of the tillage
model, Y takes on the value of 1 of CT is adopted and zero otherwise. Y ∗

is the probabilistic prediction of the event. Then the quadratic probability
score for a single observation or (forecast) is:

PS(p, d) = (Y − Y ∗)2 (3)

PS ranges between 0 and 1. A score of 0 means perfect prediction, while a
score of 1 is bad prediction. This measure is different from the square of the
correct predictions.

The mean probability score or Brier score (P̄S) is an average of the single
prediction version of the the probability score over N occasions, indexed by
i = 1 . . . N :

P̄S(Y ∗, Y ) =
1

N

N∑
i=1

(Yi − Y ∗
i )2 (4)

Yates’ Covariance Decomposition Calibration does not measure the
ability of the forecaster to sort or distinguish between events that actually
occur and events that do not occur. The Yates-partition of the Brier score
is able to provide information on such sorting. Yates (1982) noted that the
mean PS can be factored into its covariance decomposition:
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P̄S(Y ∗, Y ) = Bias2 + Scatter + var(Y ) + minvar(Y ∗)− 2Cov(Y, Y ∗) (5)

where, V ar(Y ) represents the variance of the outcome index, defined as:

V ar(Y ) = Ȳ (1− Ȳ ) (6)

where, Ȳ = 1/N
∑N

i=1 Yi. V ar(Y ) reflects the factors that are out of the
forecaster’s control. The remaining terms reflect factors that are under the
forecaster’s control. In order to obtain the lowest P̄S, the forecaster needs
to minimize minvar(Y ∗), Scatter and Bias2 and maximize 2Cov(Y, Y ∗).

Bias = Ȳ ∗ − Ȳ

Cov(Y, Y ∗) = Slope ∗ V ar(Y )

Slope = Ȳ ∗
1 − Ȳ ∗

0

where, Ȳ ∗
1 is the conditional mean probability of adopting and Ȳ ∗

0 is the
conditional mean probability of not adopting.

Scatter(Y ∗) =
1

N
[N1V ar(Y ∗

1 ) + N0V ar(Y ∗
0 )]

V ar(Y ∗
1 ) =

1

N1

N1∑
i=1

(Yi1 − Y ∗
1 )2

V ar(Y ∗
0 ) =

1

N0

N0∑
i=1

(Yi0 − Y ∗
0 )2

Bias quantifies whether the probability predictions are too low or too
high. It reflects the overall miscalibration of the forecast. Bias2 reflects the
calibration error regardless of the direction of the error.

Scatter is interpreted as an index of general excess variability contained
in the forecaster’s judgements. The scatter indexes the forecaster’s respon-
siveness to information not related to event’s occurrence.

The covariance measures the responsiveness of the forecaster to informa-
tion related to the event’s occurrence. The maximum value of Slope is 1
which occurs when the forecaster always reports Y1 = 1 and the event does
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occur and Y0 = 0 and the event does not occur. The covariance term re-
flects the model’s ability to make distinctions between individual occasions
in which the event occurs or does not occur.

Minvar(Y ∗) is the minimum forecast variance defined as:

minvar(Y ∗) = V ar(Y ∗)− Scatter(Y ∗) (7)

It represents the overall variance in the forecaster’s probabilities if there
were no scatter about the conditional means Ȳ ∗

1 and Ȳ ∗
0 .

In the conservation tillage model, Y ∗ is the probability of adoption. The
actual behavior is given by the variable Till

Y ∗ =
exp(Estimate)

1 + exp(Estimate)
(8)

Table 6 reports the Brier score for HUC 7080 for each of the four combinations
of parameter estimates and data sets. The Brier score for the estimation
sample is minimum for specification sample since model uncertainty is least
in this case. The specification sample estimation performs the best as it is
supposed to, mainly because of the high value of the covariance, reflecting the
model’s superior ability to make distinctions between individual occasions in
which the event occurs or does not occur.

The out-of-sample validation performs marginally better amongst the re-
maining three estimation types, again mainly because of the covariance term.

Bias is very low for all the estimation types, which indicates an overall
good performance of the estimation.

The variance of the actual outcomes Y or the exogenous factors affecting
estimations remain more or less constant across the four estimations types.

The scatter terms are highest for the specification and the out of sample
estimation. The data set is common in these two cases, which probably
explains the general variability in these two models.

The out-of-sample validation estimation performs well when presented
under this criteria. Thus the subsidy estimates resulting from these out-of-
sample validation would provide reasonable estimates as well as avoid the
data-dependent specification search.
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4 Conclusions

The objective of this paper is to evaluate the gains of avoiding data-dependent
specification search on an estimation sample while estimating a number of
conservation tillage adoption models for the Upper Mississippi river basin.
We began by splitting randomly the total available data in four sub-samples.
We undertook specification search on the specification sub-sample to select
the models with the best fit. We then obtained the specification-search-bias-
free estimates of model parameters by estimating the models selected on the
second, estimation sample. Finally, we used bootstrapping techniques to es-
timate the measures of excess optimism concerning model fit. We found that
the excess optimism is generally small, but varies with the sub-watersheds
and has a tendency to be larger for the sub-watersheds with smaller samples.

Because agricultural and ecological data sets are often characterized by
large number of observations, the model selection process we followed is vi-
able for these data sets. While we did not find large gains from avoiding the
improper specification search in our application, additional research is needed
to evaluate the magnitudes of the gains in other applications. An interesting
extension of this study would concern evaluating the gains of avoiding data-
dependent specification search on the estimation of region-average subsidies
needed for adoption of conservation tillage. As the estimates of the conser-
vation tillage adoption model are affected by the specification search, so are
the estimates of the subsidies which are the functions of the data and the
adoption model parameters.
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Table 3: Model specification and estimation
HUC 7010 7030 7050 7060 7070 7080
INTERCEPT -4602.71 2643.45 1449.5 9845.19 -1344.09 3400.85

(2092.38) (835.1) (596.26) (6421.66) (1644.82) (1500.53)
CORN ID 15.33 5.2 10.38 21.04 33.64 6.32

(10.68) (3.60) (4.15) (17.14) (15.54) (5.72)
SOY ID 14.98 4.2 11.55 17.36 34.89 4.44

(11.02) (3.7) (4.42) (15.57) (16.21) (5.73)
SLOPE -1.98 1.8 1.3 5.39 2.49 1.83

(1.47) (0.6) (0.33) (3.79) (1.08) (0.90)
PM -1.33 -0.8 x -2.41 x -0.59

(1.14) (0.72) (2.60) (1.04)
AWC 7.25 -31.9 x -192.07 x -94.85

(54.70) (38.13) (176.45) (64.03)
EI 2.11 -0.32 x -1.55 x -0.31

(1.34) (0.2) (1.13) (0.28)
OM -0.01 -0.07 x 0.32 x 0.11

(0.28) (0.16) (0.56 ) (0.23)
PH -4.03 3.01 x 5.38 x 0.52

(3.97) (2.00) (6.79) ( 2.78)
TMAX -5.39 0.14 x 10.55 x 0.25

(2.76) (0.6) (7.11) (0.94)
TMIN 6.20 2.23 x -4.68 x 1.20

(3.48) (0.7) (3.98) (1.02)
PRECIP -12.97 1118.9 1145.44 3134.21 2204.4 1243.24

(401.89) (228.6) (230.74) (1963.02) (857.4) (378.59)
TENANT x 55.3 x 995.44 x 256.19

(100.25) (683.507) (193.78)
OFFARM x 52.9 x -1049 x 59.81

(105) (831.25) (230.74)
AGE x -3.6 x -24.21 x -1.55

(3.7) (17.51) (5.25)
MALE 4740.74 -2896.5 -1649 -9539 1089.8 -3796.85

(2145.77) (827.2) (62) (6269.92) (1632.9) (1523.02)
CODE x 8.6 x 13.90 x 14.44

(2.7) (11.83) (5.35)
VPRECIP -44780.9 28914.2 14013 105135 -14357.2 35780.70

(20743) (8446) (5915.81) (68027.8) (16943.3) (14916.50)
VRETURNS -0.29 0.35 0.27 -0.063 0.8 -0.48

(0.21) (0.26) (0.27) (0.71) (0.7) (0.43)
VTENANT x 297.4 x 9942.8 x 2537.93

(1019.8) (6726.62) (1879.31)
VOFFARM x 447.1 x -9626.09 x 292.73

(1040.5) (7813.82) (2087.97)
VAGE x -50.1 -14178 -292.74 x -54.01

(36.8) (6066.1) (206.35) (51.77)
VMSHARE 45622 -27495 x -90194.5 15262.9 -35052.1

(21043.1) (8143.8) (59624.6) (17411.1) (14614.40)
VCODE x 88.5 x 216.829 x 152.15

(27.4) (159.48) (55.84)
Invsigma 14.68 13.7 16.42 43.80 36.29 17.38

(6.93) (2.6) (3) (28.83) (14.38) (5.47)
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Table 3: Model specification and estimation..continued
HUC 7090 7100 7110 7120 7130 7140
INTERCEPT 7742.55 8187.26 1932.89 483.212 1825.86 2851.59

(7592.82) (2573) (4948.64) (417.64) (594.76) (922.25)
CORN ID 86.96 0.72 4.58 13.94 17.21 20.26

(85.88) (6.46 ) (8.46) (8.05) (7.87) (6.96)
SOY ID 102.59 3.21 0.30 14.003 15.04 15.26

(100.07) (6.49) (3.58) (8.18) (7.65) (6.16)
SLOPE 8.40 0.40 1.15 3.60 3.85 2.27

(8.05) (0.57) (2.10) (0.87) (1.06) (0.71)
PM x -0.15 2.52 x x x

(2.00) (4.18)
AWC x -76.05 142.96 x x x

(68.74) (241.51)
EI x -0.05 -0.04 x x x

(0.18) (0.28)
OM x -0.24 1.39 x x x

(0.56) (2.58)
PH x -1.70 -1.67 x x x

(1.77) (3.67)
TMAX x 5.37 2.42 1.46 x 1.87

(1.32) (6.19) (0.73) (0.69)
TMIN x -7.13 -7.59 x x x

(1.56) (12.32)
PRECIP 6430.86 630.07 -226.08 1305.36 1318.26 2285.15

(6149.12) (196.55) (1060.02) (286.47) (331.28) (593.49)
TENANT x 569.60 -502.92 x x x

(291.01) (1220.52)
OFFARM x 347.68 -1229.81 x x x

(221.71) (1173.72)
AGE x 2.66 -36.86 x x x

(11.35) (64.87)
MALE -8804.91 -9023.52 1266.04 -791.50 -2048.74 -3320.78

(8521.06) (2762.26) (2530.36) (435.93) (633.83) (1004.06)
CODE x 28.26 -22.71 x x x

(9.75) (18.62)
VPRECIP 45345.2 81129.00 6045.21 3817.34 23497.9 36904.2

(56301.8) (25530.00) (40530.3) (4382.54) (7203.35) (10327.3)
VRETURNS -2.87 -0.18 -9.52 0.13 -0.73 -1.09

(7.34) (0.26) (1.04) (0.22) (0.22) (0.29)
VTENANT x 5006.36 -9276.06 x x x

(2575.12) (16185.7)
VOFFARM x 1802.43 -12706.9 x x x

(2125.39) (11795.7)
VAGE x 0.82 -316.16 x x x

(96.73) (599.85)
VMSHARE -45890.6 -86034.20 22212.6 -3554.98 -23554.6 -36694.6

(57824.8) (26886.6) (30870.7) (4488.29) (7307.5) (10410.9)
VCODE x 245.67 -279.493 x x x

(87.42) (233.44)
Invsigma 125.28 9.53 6.86 34.08 35.65 26.73

(116.35) (2.57) (11.18) (7.37) (9.14) (7.10)
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Table 5: Bootstrap estimation of the measure of optimism
Sample Average

error
Mean Std.

Dev.
Min Max

Specification 7080 0.330 0.010 0.011 -0.028 0.05
Estimation 7080 0.323 0.012 0.011 -0.025 0.044
Specification 7100 0.248 0.015 0.013 -0.05 0.07
Estimation 7100 0.25 0.015 0.014 - 0.03 0.06
Specification 7110 0.12 0.019 0.016 -0.05 0.07
Estimation 7110 0.16 0.025 0.018 - 0.03 0.08

Table 6: Yates Decomposition of the Brier Score
Estimation Types Brier

Score
Bias
Square

Variance
of Till

CovarianceScatter Minimum vari-
ance of prediction

Specification 0.1975 0.000 0.2483 0.0513 0.0413 0.0106
Validation 0.2089 0.000 0.2479 0.0388 0.0326 0.0061
Out-of-sample 0.2207 0.00003 0.2479 0.039 0.0447 0.0061
Out-of-sample
validation

0.2011 0.0002 0.2473 0.0435 0.0329 0.0076
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