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Abstract 

Very little attention has been given to the modeling of yield distribution for crops and 
regions in which yields exhibit irregular behavior.  We undertake a statistical case study 
of Texas upland cotton and propose an alternative mixture distribution based on regime-
switching model in which the conditional distribution of yield depends upon an 
observable drought index.  The results show that the mixture distribution model provides 
a better fit to the data than conventional parametric distributions and produces higher 
implied premium rates than the current published Group Risk Plan insurance rates in 
more than two-thirds of Texas counties examined.  
 
 
Key words: Crop insurance, adverse selection, semi-parametric mixture distribution, 
regime-switching model, yield distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The modeling of crop yield distributions continues to receive considerable attention in the 

academic crop insurance and agricultural risk management literature.  The importance of 

properly modeling yield distributions stems in part from the dramatic growth in 

participation in the U.S. crop insurance program and the introduction of a broad range of 

new crop insurance products after the enactment of the 2000 Agricultural Risk Protection 

Act (Goodwin, Vandeveer and Deal; Glauber).  In 2004, total liability of all insurance 

contracts under the program reached $46.6 billion, an increase of 67% over 1998 levels. 

 Accurate assessment of yield distributions, particularly their lower tails, is 

necessary for precise computation of crop insurance premium rates.  Inaccurate rates can 

lead to adverse selection, in which producers whose rates are low relative to expected 

indemnities participate in greater proportion than producers whose rates are high relative 

to expected indemnities.  Adverse selection raises the ratio of indemnities paid to the 

premiums collected, undermining the actuarial performance of the federal crop insurance 

and reinsurance program (Skees and Reed; Miranda; Goodwin).  Concerns regarding the 

accuracy of crop insurance rates and rating methodologies have been voiced by critics of 

the U.S. crop insurance program, which during the period 1981-1993 experienced a loss 

ratio of 1.52 (Glauber). 

 Numerous studies have highlighted the challenges associated with the statistical 

modeling of yield for the rating of crop insurance (Day; Gallagher; Taylor; Goodwin and 

Ker; Just and Weninger; Ker and Goodwin; Ramirez, Misra and Field; Ker and Coble; 

Atwood, Shaik and Watts; Sherrick, et al.).  Most published studies have developed 

statistical models of yields for crops and regions in which yield variation is relatively 

regular and for which crop abandonment is relatively rare (e.g., Iowa corn).  In most of 



these studies, standard parametric distribution methods are applicable and the discussion 

has centered on the appropriateness of one standard distributional form versus another 

(e.g., the normal versus the beta distribution) (Day; Gallagher; Taylor; Just and Weninger; 

Ramirez, Misra and Field; Atwood, Shaik and Watts; Sherrick, et al.). 

 However, very little attention has been given to the modeling of yield 

distributions for crops and regions in which yields exhibit irregular behavior.  Of 

particular interest are crops and regions that exhibit high post-planting abandonment rates 

in years of unfavorable weather.  In such regions, zero or near-zero individual and 

aggregate yields are observed with some frequency, making common unimodal 

continuous probability distributions inadequate for explaining yield variation.  The 

correct choice of distributional form for the yields of such crops remains an unsettled but 

important question. 

 In this paper, we undertake a statistical case study of Texas upland cotton, which 

in recent years has exhibited poor actuarial performance under the U.S. crop insurance 

program.  During the 1989-2004 period, indemnities paid to Texas cotton producers 

exceeded premiums collected in every year but 1994 (see Figure 1) and the typical 

insured Texas cotton producer received a $2.79 of indemnity per dollar of premium paid.  

During this period, Federal subsidies and premium discounts to Texas cotton producers 

averaged $116 millions per year, accounting for 12% of total subsidies provided by the 

federal crop insurance program nationally (RMA). 

 Texas upland cotton yields exhibit greater variation and irregularities than yields 

of other major crops.  For example, between 1972 and 2004, the coefficient of variation 

of Texas county-level cotton yields was 38%, as compared to 19% for Iowa corn yields.  



In addition, Texas cotton acreage abandonment rates averaged around 13%, as compared 

to 4% for Iowa corn.  Thus, the conventional distributional forms used to model Iowa 

corn yields may not provide sufficient degrees of freedom in higher moments to 

accurately capture the idiosyncrasies of Texas cotton yields. 

 In this paper, we examine the performance of alternative distributional 

assumptions for the modeling of Texas county-level upland cotton yields.  In order to 

establish a baseline, we fit conventional parametric distributions that have been widely 

used or have otherwise been proposed to rate crop insurance products: the normal, 

lognormal, and beta distributions.  We then propose and estimate an alternative semi-

parametric mixture distribution based on a regime-switching model in which the 

distribution of yield is conditioned on exogenous drought indices. 

 We also examine the implications of the various distributional forms for the 

computation of crop insurance rates.  In particular, we compare the Group Risk Plan 

(GRP) fair premium rates implied by the various distributions and further compare them 

to the rates published by the Risk Management Agency (RMA). 

 The paper is organized as follows: in the next section, we discuss the Texas 

county-level upland cotton yield data used in the analysis and the methods used to extract 

exogenous secular trends from the data.  In the subsequence section, we fit the detrended 

yield data to common parametric distributional forms.  In the next section, we introduce 

and estimate a semi-parametric mixture distribution model for detrended yields.  In the 

final section, the implications of distributional assumptions for the computation of GRP 

fair premium rates are analyzed.  We summarize our findings and discuss the conclusions 

that may be drawn from the analysis. 



Detrending of Yields 

This research employs 1972-2004 Texas upland cotton county-level yields published by 

the National Agricultural Statistical Service (NASS).  Cotton production practices in 

Texas include irrigated and non-irrigated (i.e. dryland) cotton.  We focus on forty-five 

Texas counties where dryland practices are dominant.  For each of these counties, thirty-

three annual dryland yield observations, measured in pounds, are utilized. 

 Exogenous secular trends in yields due to technical change pose a challenge for 

the modeling of yield distributions for the purposes of rating crop insurance products 

(Ker and Goodwin; Ker and Coble; Goodwin and Mahul; Ozaki, et al.).  Lack of 

sufficient data compounds the problem, raising uncertainty about the exact form of the 

yield distribution (Goodwin and Mahul; Ozaki, et al.). 

 We initially considered several detrending methods suggested in literature, 

including first- and higher-ordered polynomials (Atwood, Shaik and Watts; Sherrick, et 

al.; Goodwin and Mahul; Oazki, et al.) and autoregressive integrated moving average 

models (Goodwin and Ker; Ker and Goodwin).  However, none of these methods proved 

satisfactory, due primarily to overfitting problems. 

 For the purposes of this study, we elected to use a piecewise linear spline to 

model yields trends.  This is the same method used to compute GRP insurance rates by 

the Risk Management Agency (Skees, Black and Barnett; Ker and Coble).  The piecewise 

linear spline model allows up to two distinct linear trends in the data.  In particular, the 

trend yield in period t, tŷ , is presumed to be a function of time: 

(1)  ( ) ( ) ( )∗∗∗ −+−+== ttttytfyt ,0max,0minˆ 21 ββ   



The breakpoint ∗t  between linear segments and the slopes 1β  and 2β  of the linear 

segments are endogenously determined and estimated by nonlinear least squares.  The 

piecewise linear spline model appeared to be free of the overfitting problems exhibited by 

more flexible models, but provided a necessary additional degree of flexibility not offered 

by a simple linear trend model.  In this analysis, the breakpoint year occurs in the late 

1980s in most counties. 

 Given the trend yields implied by the piecewise linear spline model, detrended 

county-level Texas upland cotton yields were computed by normalizing observed yields 

to 2004 equivalents as follows: 

(2)  
t

t
d
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ˆ
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Here, d
ty  is the detrended yield in year t, ty  is the yield realized in year t and tŷ  is the 

fitted trend yield in year t. 

 Table 1 shows descriptive statistics for detrended yields.  Contradicting findings 

of negative skewness in most studies (Gallagher; Goodwin and Ker), the detrended Texas 

upland cotton yields exhibited positive skewness in 35 of 45 counties.  The positive 

skewness implies that probability is amassed at lower tail of the yield distribution.  

Heteroscedasticity was also examined using White’s test.  Only 6 of 45 estimates rejected 

the hypothesis of homoscedasticity at a 5% significance level, indicating that 

heteroscedasticity is not a concern.   

 

Parametric Distribution Models 



In order to establish a baseline against which to evaluate the effectiveness of mixture 

distribution models for Texas county-level upland cotton yields, we begin by fitting 

common parametric distributions to the detrended county-level yields.  The three 

parametric distributions examined are the normal, lognormal, and beta distributions. 

 Common parametric distributions often present problems for the modeling yield 

distributions, particularly in the rating of crop insurance products.  The beta distribution, 

for example, is very sensitive to assumptions about the maximum and minimum possible 

yield, often producing unreasonable “U-shapes” when the data exhibits substantial 

variation (Ker and Coble; Goodwin and Mahul).  The lognormal distribution is often 

criticized for possessing positive skewness, a property generally believed not be exhibited 

by yield distributions.  And the normal distribution can be problematic for the rating of 

crop insurance because it allows negative yields. 

 Maximum likelihood estimates for the parameters and goodness-of-fit statistics 

for each of the three parametric distributions are presented in Table 2.  To assess 

goodness-of-fit, we compute the Anderson-Darling statistic ( 2A ) 

(3)  ( ) ( ) ( )( ) ( )( )[ ]∑
=

−+−+−−−=
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where ( )iyF̂  is the fitted cumulative probability density of the specified distribution at a 

given observation and n is the sample size.  The Anderson-Darling statistic allows one to 

test whether the yield data is generated by a specified distribution.  An alternative to chi-

square and Kolmogorov-Smirnov D tests, the Anderson-Darling statistic 2A  places more 

weight on the tail of the distribution. 



 As seen in Table 2, the beta distribution is rejected at 10% significance level for 

all 45 counties while the normal distribution is rejected in 8 counties.  Based on the 

Anderson-Darling test, the parametric distributions may be ranked from best to worst 

fitting as follows: 1) normal distribution, 2) lognormal distribution and 3) beta 

distribution. 

 Figure 2 illustrates the selected Texas county-level upland cotton yield 

distribution.  In the figure, the histogram represents the historical detrended yields and the 

plotted curves represent the fitted parametric distributions.  This figure suggests bi-

modality of observed Texas upland cotton yields for Plain Regions, i.e. the northwest of 

Texas.  This figure further suggests that parametric distribution provide a poor fit for the 

lower tails of the yield distribution. 

 

Mixture Distribution Models 

To address suspected misspecification problems associated with conventional parametric 

distributions, we estimate an alternative mixture distribution based on a regime switching 

model that is an extension of Quandt’s λ -method and Goldfeld and Quandt’s D-method.  

The basic idea underlying this approach is that the probability distribution of the 

detrended yield may be conditioned on exogenous environmental and economic condition 

or regimes.  Under different regimes, the parameters of the conditional yield distribution 

may differ. 

 Specifically, we posit that the probability distribution of the detrended yield 

depends upon whether drought conditions exist.  The detrended yield ty  is drawn from a 

normal distribution with mean 1µ  and variance 2
1σ  if drought condition exists, or from a 



normal distribution with mean 2µ  and variance 2
2σ , otherwise.  Whether drought 

conditions exist depends upon a pair of exogenous random variables, one observable and 

the other unobservable.  In particular, we assume that a drought occurs if, and only if, 

∗<+ zz tt ε~  where tz  is an observable index of drought conditions during the critical 

month of the growing season, ∗z  is an unknown critical threshold to be estimated, and tε
~  

is an unobserved error term, assumed to be an i.i.d. normal random variable with zero 

mean and variance 2
~εσ . 

 Under this assumption, the log likelihood of observing yield ty  in year t, 

conditional on contemporaneously observed drought index tz , is 
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where F is the cumulative distribution function for a standard normal random variable 

and f is the normal probability density function.   

 We consider two alternative indices of drought conditions, both of which are 

published by the National Weather Service: 1) average rainfall throughout the climate 

division in which the county is located and 2) the Palmer Drought Index for the climate 

division in which the county is located.  In all cases, the values of the indices during the 

critical third month of the cotton growing season are used to assess drought conditions.  

Since the month in which cotton is planted in Texas varies by geographic region, and 

may begin as early as February in South Texas and as late as June in Plain Region, the 

critical third month depends upon where the county is located. 



 A challenge arises in computing estimates for the regime switching model due to 

the highly irregularity of the likelihood function.  In order to rule out the globally 

suboptimal local optima, an extensive grid search in both ∗z  and εσ ~ .  Maximum 

likelihood estimates for the two mixture distribution models are reported in Table 3 and 4.  

Hereafter the two mixture models are referred to as the “rainfall index”, and the “Palmer 

index” mixture models.  In the two mixture models, the maximum likelihood estimates 

for εσ ~  are zero in most counties, which implies the two regimes are perfectly 

discriminated by the observed index variable.   

 In the previous section, the normal distribution was found to fit to Texas upland 

cotton yields best among all conventional parametric distributions.  In order to evaluate 

the effectiveness of the semi-parametric mixture distribution model, we therefore limit 

the analysis to a comparison between the mixture model and the normal distribution 

model.  Limiting the analysis to this comparison has the advantage that the normal 

distribution model may be viewed as a parametric restriction of the mixture model, 

allowing the comparison to be performed using the likelihood ratio test.  The likelihood 

ratio is defined as     

 (5)  
( )
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=  

where Rθ̂  is the maximum likelihood estimator under the restriction of normality and Uθ̂  

is the maximum likelihood estimator obtained without the restriction.  The likelihood 

ratio statistics, λln2− , is asymptotically a Chi-square statistic with 3 degrees of freedom. 

 Tables 3-4 present the likelihood ratio tests of the mixture distribution models 

against the alternative of a normal distribution.  At the 5% significance level, the normal 



distribution model may be rejected in favor of the rainfall index mixture model in 44 of 

45 counties; and the normal distribution model may be rejected in favor of the Palmer 

index mixture model in 42 of 45 counties.  These results suggest that in most Texas 

counties, a mixture distribution can explain the variation in Texas cotton yields 

significantly better than the normal distribution (see Figure 3 and 4). 

 

Rating Crop Insurance Contract 

This paper has been motivated by the need to compute accurate crop insurance rates, 

which depend largely upon how well the lower tail of the yield distribution is captured.  

Fair premium rates for GRP insurance computed using mixture distributions are now 

compared to the rates computed using common parametric distribution alternatives in 

order to assess potential systematic biases in these computations.   

 Under GRP insurance, an indemnity is paid if and only if the realized county yield 

y~  falls below a specified trigger yield, which is set equal to an elected coverage level α  

times the published expected area yield ey .  Specifically, per dollar of coverage, 

(6)  Indemnity
⎭
⎬
⎫

⎩
⎨
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= e

e
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yy
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Indemnities and premium rates are based on National Agricultural Statistics Service 

(NASS) county yield estimates, which is calculated by dividing the NASS estimates of 

crop production for specified practice in the county by the NASS estimates of planted or 

harvested acres for specified practice in the county. 

 Premium rates are set by computing the expected indemnity per dollar of 

coverage as 
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where f is the probability density function of yield as estimated from historical county 

yield data.  In addition, geographic smoothing methods are applied to GRP premium rates, 

rendering a final premium rate for each county that is as a weighted average of the raw 

premium rates for the county and its neighbors (Skees, Black and Barnett). 

 Table 5 provides the comparison of GRP 2006 rates versus the computed 

premium rates for the normal distribution, rainfall index mixture distribution, and Palmer 

index mixture distribution assuming a coverage level of 85 percent.  In most counties, the 

mixture distribution models produce higher premium rates than the normal distribution.  

Among the 45 counties for which GRP rates are published by RMA, the rainfall index 

mixture model produces rates that are higher than the published rates in 32 counties and 

the Palmer index model produce rates that are higher than the published rates in 30 

counties.  In addition, the mixture distribution models produce higher premium rates than 

the normal distribution in more than one-half of Texas counties examined. 

 

Summary and Conclusions 

This research undertakes a statistical case study of Texas non-irrigated upland cotton, 

which has historically exhibited poor actuarial performance under the U.S. crop insurance 

program.  Texas upland cotton yields exhibit greater variation and irregularities than 

yields of other crops in other parts of the country, suggesting that the poor actuarial 

performance of crop insurance for this cotton may be due in part to inadequacies in the 

conventional statistical models used to compute premium rates.  A mixture distribution 



conditioned on area drought condition is proposed for Texas county-level upland cotton 

yields and compared to conventional parametric models for the rating of crop insurance. 

 Anderson-Darling goodness-of-fit tests indicate that the beta distribution, which is 

widely utilized in the literature, is statistically rejected in modeling of upland cotton 

yields in all 45 counties while the normal distribution provides the best fit among other 

standard parametric distributions.  Comparison of the proposed mixture distribution to the 

normal based on likelihood ratio tests are then used to establish that in most counties, the 

mixture distribution model provides a better fit to the data and produces higher implied 

GRP premium rates.  The premium rates computed from the mixture distribution, 

moreover, are higher than the current published GRP rates in more than two-thirds of 

Texas counties examined, which suggests that current GRP rating methods underestimate 

the fair premium rate offering at least a partial explanation for the poor actuarial 

performance of the GRP program for upland cotton. 
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Figure 1. Producer Loss Ratios in Iowa Corn vs. Texas Upland Cotton 
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Figure 2. Parametric Distributions for Non-irrigated Upland Cotton in Yoakum 
County, Texas 
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Figure 3. Yield Distributions for Non-irrigated upland cotton in Crosby County, 
Texas 
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Figure 4. Yield Distributions for Non-irrigated upland cotton in Yoakum 
County, Texas 
 

 



Table 1. Descriptive Statistics for Detrended Yields 

COUNTY NAME MEAN STD DEV MIN MAX SKEWNESS KURTOSIS CV
ANDREWS 126.90 84.06 15.81 319.29 0.83 22.61 66.24 
BAILEY 153.65 106.65 14.21 436.36 0.81 0.47 69.41 
BORDEN 189.74 115.36 11.67 482.62 0.30 -0.40 60.80 
BRISCOE 163.85 82.66 45.26 354.88 0.56 -0.45 50.45 
CAMERON 245.77 119.98 31.27 540.92 0.25 0.09 48.82 
CHILDRESS 244.06 92.56 49.08 415.91 -0.02 -0.34 37.92 
COCHRAN 179.91 129.38 7.28 488.03 0.88 0.34 71.91 
COLLINGSWORTH 264.28 95.07 116.13 473.53 0.58 -0.20 35.97 
CONCHO 241.71 115.91 4.25 585.38 0.54 1.35 47.96 
COTTLE 199.80 80.55 36.95 376.42 -0.10 0.23 40.32
CROSBY 261.22 102.68 99.75 567.72 0.58 0.98 39.31 
DAWSON 187.81 101.65 24.68 420.51 0.08 -0.70 54.12 
DICKENS 274.81 114.87 77.42 638.79 0.89 2.25 41.80 
DONLEY 260.21 97.32 86.76 454.47 0.07 -0.72 37.40 
ELLIS 421.71 140.86 102.75 681.01 -0.13 -0.30 33.40 
FISHER 233.30 117.34 6.11 431.24 0.05 -0.81 50.30 
FLOYD 271.10 128.86 43.95 547.71 0.27 -0.43 47.53 
GAINES 146.36 78.34 10.81 344.24 0.50 -0.07 53.52 
GARZA 268.13 137.05 59.00 663.08 0.69 0.73 51.11 
GLASSCOCK 83.09 52.33 12.93 256.58 1.15 2.25 62.98 
HALE 294.87 143.88 37.71 590.15 0.36 -0.58 48.79 
HALL 255.16 90.37 85.27 426.53 0.24 -0.74 35.42 
HASKELL 250.82 109.20 24.43 457.52 -0.10 -0.45 43.54 
HILL 489.75 159.64 215.04 845.12 0.67 0.09 32.60 
HOCKLEY 211.62 108.34 7.32 512.42 0.83 0.75 51.20 
HOWARD 139.44 86.65 13.35 344.07 0.04 -0.71 62.14 
KNOX 247.06 104.69 28.33 489.37 -0.10 -0.01 42.38 
LAMB 257.69 160.75 15.17 629.68 0.54 -0.51 62.38 
LUBBOCK 265.59 125.15 53.28 629.74 0.53 0.74 47.12 
LYNN 235.79 107.21 43.36 494.12 0.25 -0.05 45.47 
MARTIN 143.30 90.64 8.12 293.73 -0.04 -1.39 63.26 
MIDLAND 88.77 48.43 19.50 222.64 0.66 0.37 54.56 
MITCHELL 219.38 126.19 2.53 450.82 -0.02 -0.72 57.52 
MOTLEY 195.74 77.30 29.01 401.76 0.14 0.58 39.49 
NAVARRO 426.41 133.20 200.44 740.82 0.65 0.31 31.24 
NOLAN 206.21 106.63 14.12 394.54 -0.05 -0.81 51.71 
PARMER 242.68 144.98 15.72 695.02 1.05 1.57 59.74 
REFUGIO 593.53 220.88 77.70 1099.63 0.09 0.19 37.21 
SAN PATRICIO 692.91 198.75 311.97 986.51 -0.27 -1.17 28.68 
SWISHER 246.76 138.04 51.06 556.38 0.42 -0.51 55.94 
TERRY 198.60 102.45 43.54 391.49 0.31 -0.86 51.59 
TOM GREEN 191.77 82.55 7.70 475.18 0.93 3.57 43.05 
WILLACY 397.15 172.15 40.34 824.80 -0.38 0.80 43.35 
WILLIAMSON 509.80 119.91 220.16 748.47 0.03 -0.04 23.52 
YOAKUM 137.64 87.14 3.68 335.62 0.46 -0.63 63.31 

An asterisk (*) indicates statistical significance at the 05.0=α  or smaller level. 



Table 2. Maximum Likelihood Estimates for Parametric Distributions 

 NORMAL LOGNORMAL BETA 
COUNTY NAME Mean Std Dev A-sq Scale Shape A-sq Shape Shape A-sq 
ANDREWS 1.27  0.84  1.000*  0.73  0.00  0.258   0.74  0.78  2.639*  
BAILEY 1.54  1.07  0.498   0.95  0.10  1.135*  0.66  0.83  2.445*  
BORDEN 1.90  1.15  0.494   0.87  0.37  1.234*  0.75  0.85  2.322*  
BRISCOE 1.64  0.83  0.527   0.56  0.36  0.369   1.02  0.90  2.574*  
CAMERON 2.46  1.20  0.462   0.68  0.73  1.801*  0.97  0.89  2.871*  
CHILDRESS 2.44  0.93  0.192   0.48  0.80  0.931*  1.37  0.81  1.962*  
COCHRAN 1.80  1.29  0.730*  1.00  0.24  0.933*  0.61  0.71  2.441*  
COLLINGSWORTH 2.64  0.95  0.419   0.37  0.91  0.176   1.31  0.79  3.715*  
CONCHO 2.42  1.16  0.272   0.84  0.69  2.484*  0.88  0.93  3.688*  
COTTLE 2.00  0.81  0.486   0.55  0.58  1.905*  1.24  0.90  2.757*  
CROSBY 2.61  1.03  0.361   0.42  0.88  0.665*  1.20  1.04  4.188*  
DAWSON 1.88  1.02  0.436   0.73  0.42  1.413*  0.90  0.86  2.136*  
DICKENS 2.75  1.15  0.715*  0.46  0.92  1.078*  1.09  1.03  4.823*  
DONLEY 2.60  0.97  0.185   0.42  0.88  0.598   1.43  0.88  2.116*  
ELLIS 4.22  1.41  0.217   0.41  1.37  0.804*  1.60  0.84  2.060*  
FISHER 2.33  1.17  0.516   0.90  0.62  2.470*  0.89  0.65  1.341*  
FLOYD 2.71  1.29  0.173   0.60  0.86  0.766*  1.05  0.83  2.241*  
GAINES 1.46  0.78  0.308   0.70  0.20  0.797*  0.90  0.90  2.610*  
GARZA 2.68  1.37  0.320   0.60  0.84  0.678*  0.92  0.95  3.537*  
GLASSCOCK 0.83  0.52  0.593   0.71  -0.40  0.486   0.74  0.99  3.723*  
HALE 2.95  1.44  0.480   0.62  0.93  0.742*  1.03  0.81  2.174*  
HALL 2.55  0.90  0.328   0.39  0.87  0.274   1.41  0.76  2.605*  
HASKELL 2.51  1.09  0.472   0.63  0.78  1.774*  1.15  0.80  1.895*  
HILL 4.90  1.60  0.908*  0.33  1.54  0.490   1.54  0.89  3.761*  
HOCKLEY 2.12  1.08  0.743*  0.73  0.58  1.492*  0.90  0.92  3.590*  
HOWARD 1.39  0.87  0.773*  0.96  0.01  2.246*  0.72  0.82  2.136*  
KNOX 2.47  1.05  0.187   0.60  0.77  1.636*  1.15  0.91  2.624*  
LAMB 2.58  1.61  0.475   0.83  0.69  0.657*  0.76  0.80  2.085*  
LUBBOCK 2.66  1.25  0.326   0.55  0.85  0.892*  0.99  0.98  3.693*  
LYNN 2.36  1.07  0.232   0.56  0.73  1.019*  1.09  0.92  2.773*  
MARTIN 1.43  0.91  0.836*  0.99  0.02  1.653*  0.73  0.65  0.891*  
MIDLAND 0.89  0.48  0.415   0.62  -0.29  0.635*  0.91  0.98  3.015*  
MITCHELL 2.19  1.26  0.242   1.17  0.43  2.763*  0.72  0.65  1.207*  
MOTLEY 1.96  0.77  0.214   0.51  0.57  1.214*  1.22  1.00  3.443*  
NAVARRO 4.26  1.33  0.472   0.32  1.40  0.236   1.58  0.93  3.848*  
NOLAN 2.06  1.07  0.190   0.80  0.51  1.660*  0.91  0.70  1.192*  
PARMER 2.43  1.45  0.582   0.73  0.68  0.574   0.76  0.93  3.762*  
REFUGIO 5.94  2.21  0.248   0.50  1.69  1.177*  1.31  0.90  3.054*  
SAN PATRICIO 6.93  1.99  0.613   0.32  1.89  0.890*  1.96  0.74  1.245*  
SWISHER 2.47  1.38  0.418   0.68  0.71  0.945*  0.88  0.83  2.239*  
TERRY 1.99  1.02  0.453   0.61  0.53  0.698*  0.98  0.74  1.797*  
TOM GREEN 1.92  0.83  0.557   0.67  0.51  2.476*  0.97  1.02  4.965*  
WILLACY 3.97  1.72  0.739*  0.74  1.20  3.613*  1.02  0.88  3.458*  
WILLIAMSON 5.10  1.20  0.238   0.25  1.60  0.309   2.19  0.88  3.043*  
YOAKUM 1.38  0.87  0.444   0.95  0.02  1.001*  0.74  0.80  1.782*  
An asterisk (*) indicates statistical significance at the 10.0=α  or smaller level.  

 

 



Table 3. Parameter Estimates, Rainfall Index Mixture Distribution Model 

COUNTY NAME 1µ  2µ
2
1σ

2
2σ ∗z εσ ~  Likelihood Ratio

ANDREWS 0.72 1.60 0.09 0.75 1.79 0.44 17.090* 
BAILEY 1.62 0.18 1.05 0.00 4.15 0.00 16.546* 
BORDEN 1.85 2.59 1.34 0.00 3.86 0.00 22.938* 
BRISCOE 1.00 2.03 0.10 0.60 1.70 1.30 9.566* 
CAMERON 1.81 2.50 0.00 1.46 0.23 0.00 10.567* 
CHILDRESS 1.47 2.81 0.37 0.52 0.87 0.00 18.814* 
COCHRAN 1.01 2.01 0.42 1.73 1.20 0.00 7.722  
COLLINGSWORTH 2.67 2.42 0.99 0.00 3.70 0.48 21.087* 
CONCHO 1.98 2.94 0.59 1.66 2.91 0.00 10.690* 
COTTLE 1.11 2.33 0.33 0.33 0.87 0.00 21.135* 
CROSBY 1.45 2.92 0.09 0.81 1.20 0.00 22.680* 
DAWSON 0.59 2.26 0.04 0.65 1.15 0.75 17.733* 
DICKENS 1.76 3.12 0.55 1.05 0.87 0.00 12.313* 
DONLEY 1.93 2.99 0.43 0.79 1.35 0.00 12.383* 
ELLIS 2.85 4.73 1.29 1.20 1.20 0.00 14.948* 
FISHER 1.49 2.70 0.76 1.14 0.94 0.00 9.211* 
FLOYD 1.77 2.96 0.23 1.68 1.20 0.00 12.443* 
GAINES 1.04 1.86 0.35 0.50 2.03 0.00 11.404* 
GARZA 1.33 3.19 0.32 1.44 0.87 0.00 21.182* 
GLASSCOCK 0.40 1.03 0.03 0.25 1.44 1.14 9.565* 
HALE 3.00 2.23 2.10 0.00 4.15 0.00 18.841* 
HALL 1.79 2.99 0.32 0.54 1.35 0.00 19.012* 
HASKELL 1.58 2.91 0.84 0.75 0.94 0.00 13.057* 
HILL 3.43 5.45 0.85 1.97 1.20 0.00 15.032* 
HOCKLEY 1.34 2.17 0.00 1.17 0.52 0.00 26.092* 
HOWARD 0.36 1.81 0.05 0.39 1.37 0.82 20.515* 
KNOX 1.65 2.83 0.97 0.68 0.94 0.00 11.140* 
LAMB 1.12 2.84 0.13 2.48 0.77 0.00 15.198* 
LUBBOCK 1.21 2.89 0.00 1.37 0.61 0.95 18.992* 
LYNN 1.55 2.82 0.53 0.87 1.67 0.00 14.231* 
MARTIN 0.37 1.92 0.04 0.40 1.47 0.81 27.483* 
MIDLAND 0.41 1.10 0.02 0.17 1.46 0.82 17.048* 
MITCHELL 1.86 3.23 1.38 0.64 3.05 0.00 9.898* 
MOTLEY 1.13 2.27 0.26 0.35 0.87 0.00 19.362* 
NAVARRO 3.06 4.72 0.53 1.42 1.20 0.00 15.261* 
NOLAN 1.31 2.95 0.49 0.37 1.96 0.85 14.635* 
PARMER 1.07 2.51 0.02 2.04 0.52 0.00 9.342* 
REFUGIO 4.03 6.13 0.02 4.80 0.97 0.00 16.258* 
SAN PATRICIO 4.54 7.17 0.06 3.58 0.97 0.00 14.349* 
SWISHER 1.72 3.26 1.22 1.29 2.28 0.00 12.765* 
TERRY 0.73 2.35 0.04 0.71 0.95 1.23 13.690* 
TOM GREEN 1.84 2.48 0.31 2.83 5.20 0.00 15.979* 
WILLACY 0.55 4.44 0.02 1.44 0.06 1.26 20.814* 
WILLIAMSON 4.34 5.48 0.36 1.48 1.31 0.00 13.493* 
YOAKUM 0.71 1.79 0.18 0.64 1.80 0.72 10.409* 

An asterisk (*) indicates statistical significance at the 05.0=α  or smaller level.  

 

 



Table 4. Parameter Estimates, Palmer Index Mixture Distribution Model 

COUNTY NAME 1µ  2µ
2
1σ

2
2σ ∗z εσ ~  Likelihood Ratio

ANDREWS 0.46 1.37 0.00 0.68 -2.44 0.78 13.916* 
BAILEY 1.20 2.13 0.47 1.65 1.44 0.00 12.989* 
BORDEN 0.55 2.48 0.06 0.69 -1.54 0.00 44.448* 
BRISCOE 0.68 1.73 0.04 0.62 -2.40 0.00 10.465* 
CAMERON 0.46 2.73 0.01 0.96 -2.73 0.37 24.626* 
CHILDRESS 1.60 2.96 0.33 0.43 -0.54 0.82 20.335* 
COCHRAN 0.23 1.90 0.00 1.56 -2.51 0.00 19.022* 
COLLINGSWORTH 2.23 3.14 0.29 1.12 1.23 0.00 16.193* 
CONCHO 1.76 2.79 0.51 1.36 -1.34 0.00 10.253* 
COTTLE 1.54 2.49 0.42 0.39 0.68 0.00 14.555* 
CROSBY 2.15 3.10 0.52 1.09 0.50 0.00 10.612* 
DAWSON 1.46 2.60 0.79 0.55 1.44 0.00 12.303* 
DICKENS 2.36 3.52 0.59 1.78 1.79 0.00 13.483* 
DONLEY 2.14 3.04 0.50 0.92 0.32 0.00 9.853* 
ELLIS 3.29 4.56 2.22 1.37 -1.75 0.00 6.818  
FISHER 1.36 2.97 0.48 0.88 -0.36 0.00 21.840* 
FLOYD 2.23 3.22 0.81 1.96 0.50 0.00 8.572* 
GAINES 1.17 2.04 0.42 0.45 1.86 0.00 10.955*
GARZA 1.40 3.24 0.52 1.36 -1.54 0.00 19.273* 
GLASSCOCK 0.64 1.16 0.14 0.32 1.44 0.00 11.486* 
HALE 1.38 3.11 0.04 1.94 -2.40 0.00 13.165* 
HALL 2.18 3.38 0.51 0.43 1.95 0.19 14.305* 
HASKELL 1.44 2.97 0.55 0.71 -1.54 0.00 18.653* 
HILL 4.92 4.80 3.01 0.14 3.09 0.55 8.219* 
HOCKLEY 1.76 2.83 0.54 1.57 1.86 0.00 12.807* 
HOWARD 1.00 2.09 0.54 0.31 1.44 0.00 16.585* 
KNOX 1.86 2.98 0.79 0.72 -0.19 0.00 11.423* 
LAMB 2.10 3.53 1.53 3.11 1.86 0.00 8.511* 
LUBBOCK 0.86 2.77 0.11 1.39 -2.51 0.00 8.105* 
LYNN 1.93 3.25 0.66 0.86 1.95 0.42 11.747* 
MARTIN 0.98 2.22 0.57 0.22 1.44 0.00 22.360* 
MIDLAND 0.39 0.94 0.00 0.22 -2.40 0.00 18.879* 
MITCHELL 0.65 2.77 0.31 0.79 -1.63 0.27 25.902* 
MOTLEY 1.34 2.23 0.43 0.40 -1.54 0.00 11.217* 
NAVARRO 4.27 4.13 1.83 0.00 3.58 0.00 10.349* 
NOLAN 0.90 2.57 0.33 0.60 -1.54 0.00 25.973* 
PARMER 1.86 2.64 0.50 2.45 -1.56 0.00 8.253* 
REFUGIO 5.99 5.39 5.15 0.17 3.70 0.00 7.354  
SAN PATRICIO 3.75 7.25 0.23 3.08 -2.52 0.00 15.000* 
SWISHER 2.17 3.07 1.35 2.30 1.86 0.00 4.487  
TERRY 0.74 2.33 0.05 0.74 -1.75 0.84 17.014* 
TOM GREEN 1.40 2.26 0.33 0.59 -1.01 0.00 11.575* 
WILLACY 0.55 4.44 0.02 1.43 -2.72 0.37 36.230* 
WILLIAMSON 3.62 5.43 0.58 0.98 -2.29 0.68 11.063* 
YOAKUM 0.99 2.59 0.30 0.14 2.95 1.50 22.274* 

An asterisk (*) indicates statistical significance at the 05.0=α  or smaller level. 

 

 



Table 5. Parametric and Mixture GRP Premium Rates1  

COUNTY NAME GRP06 DIVISION PALMER NORMAL 
ANDREWS 9.68 21.54* 23.13* 22.60* 
BAILEY 20.88 24.57* 21.83* 24.03* 
BORDEN 18.15 20.49* 22.71* 20.15* 
BRISCOE 12.87 15.19* 15.97* 15.55* 
CAMERON 12.83 14.47* 15.72* 14.83* 
CHILDRESS 8.60 10.68* 10.75* 10.10* 
COCHRAN 22.12 24.72* 25.69* 25.16* 
COLLINGSWORTH 7.60 8.58* 7.84* 9.27* 
CONCHO 11.15 13.28* 13.89* 14.45* 
COTTLE 10.19 11.92* 11.38* 11.12* 
CROSBY 10.66 11.31* 10.03  10.69* 
DAWSON 19.99 18.65  17.61  17.18   
DICKENS 8.10 11.89* 10.30* 11.76* 
DONLEY 11.48 9.73  9.41  9.88   
ELLIS 6.56 8.63* 8.40* 8.19* 
FISHER 15.39 15.55* 15.93* 15.48* 
FLOYD 12.87 13.85* 13.39* 14.26* 
GAINES 17.37 16.76  16.77  16.91   
GARZA 13.50 16.46* 16.34* 15.84* 
GLASSCOCK 22.98 21.20  19.91  21.13   
HALE 13.98 14.41* 15.18* 14.82* 
HALL 9.06 9.24* 8.99  9.04   
HASKELL 12.13 12.91* 13.12* 12.52* 
HILL 6.90 7.93* 7.42* 7.86* 
HOCKLEY 13.70 15.78* 14.30* 15.88* 
HOWARD 22.83 22.69  21.58  20.76   
KNOX 8.33 12.36* 12.26* 12.01* 
LAMB 20.44 21.26* 19.86  20.86* 
LUBBOCK 14.08 14.77* 14.45* 14.08* 
LYNN 14.19 13.46  12.94  13.36   
MARTIN 25.34 23.52  22.69  21.26   
MIDLAND 13.28 18.11* 17.75* 17.37* 
MITCHELL 19.10 19.28* 20.50* 18.69   
MOTLEY 9.63 11.41* 11.07* 10.77* 
NAVARRO 7.56 7.26  7.16  7.30   
NOLAN 15.64 17.31* 17.33* 16.11* 
PARMER 10.60 19.88* 18.55* 19.68* 
REFUGIO 10.22 9.73  9.28  9.80   
SAN PATRICIO 8.54 6.43  6.71  6.26   
SWISHER 14.87 18.17* 17.46* 17.98* 
TERRY 16.97 17.46* 17.43* 16.05   
TOM GREEN 9.65 9.64  12.11* 12.31* 
WILLACY 11.03 13.60* 13.25* 12.43* 
WILLIAMSON 4.59 3.57  4.58  4.25   
YOAKUM 21.91 21.25  20.93  21.28   

An asterisk (*) indicates computed premium rates are equal or smaller than  
published GRP rate.  
1/ The premium rates are calculated at 85 percent coverage level. 

 
 


