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Threshold autoregressive (TAR) models were introduced to the econometrics literature by Tong 

(1983). In essence, in TAR models the autoregressive parameters are allowed to switch values 

over time as the residuals cross one or more thresholds. The most common TAR model exhibits 

two sets of parameters, which apply depending on the signs of the residuals. This implies that the 

characteristics, that is the height/dept and duration of the upward and downward cycles can be 

substantially different, i.e. that the cycles can be asymmetric. In the extreme, there could be 

upward but no downward cycling behavior or vice versa. In practice, there is no reason to expect 

that agricultural time series variables such as commodity cash or futures prices, crop acreage, 

etc., exhibit symmetric cycles as assumed in the standard autoregressive models. Therefore, TAR 

models could be very useful for analyzing the behavior of agricultural time-series variables. 

Researchers have explored the use of TAR models in a variety of non-forecasting 

applications. Petruccelli and Woolford (1984) illustrate the estimation and use of a first order 

threshold autoregressive [TAR(1)] model. Tsay (1989) focuses on the testing for TAR processes, 

while Brockwell, Liu and Tweedie (1992) investigate the existence of stationary TAR moving 

average processes. Chang (1993) evaluates the consistency and limiting distribution of the least 

squares estimator of a TAR model. Balke and Fomby (1997) propose an approach for testing for 

cointegration in the presence of TAR rather than AR processes.  

Recent applications of TAR models include Granger and Lee’s (1989) investigation of 

production, sales and inventory relationships using multicointegration and non-symmetric error-

correction models; Potter’s (1995) analysis of the changes in real U.S. GNP; Bradley and 

Jansen’s (1997) cross-country evaluation of business cycle dynamics; Obstfeld and Taylor’s 

(1997) analysis purchasing power parity and the law of one price under imperfect arbitrage in the 

presence of transaction costs and uncertainty; and Goodwin and Piggott’s (2001) evaluation of 
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dairy price linkages among corn and soybean markets in North Carolina. Such research 

corroborates the potential importance of TAR models in the analysis of agricultural time series. 

This study contributes to the understanding and application of TAR models by proposing 

and illustrating the use of a relatively straightforward Maximum Likelihood- (ML) based 

estimation procedure for cases when the conditional mean of the time series variable of interest 

is not zero but rather a function of one or more exogenous factors. A second contribution is to 

expand TAR models and estimation procedures to allow for the possibility of heteroskedasticity, 

i.e. for different levels of error term variation in upward versus downward cycles. A third major 

contribution of this study is to derive the formulas needed to obtain unbiased one-, two- and 

three-period-ahead predictions from TAR models. Substantial gains in forecasting precision are 

found when applying the proposed ML-based procedure to estimate TAR models of U.S. 

quarterly soybeans future prices and Brazilian coffee spot prices in comparison with AR models 

estimated using standard procedures. The estimated TAR models also provide useful insights on 

the markedly different dynamics of the upward versus the downward cycles exhibited by U.S. 

soybeans and Brazilian coffee prices. 

Maximum Likelihood Estimation of TAR Models 

The TAR model explored in this study is defined as follows: 

(1) yt = xtβ + et, 

 et = φ1pet-1 + φ2pet-2 + … + φkpet-k + vt  if et-1≥TR, and 

 et = φ1net-1 + φ2net-2 + … + φknet-k + vt  if et-1<TR, 

where yt is the dependent variable of interest, xt is a 1xm vector of exogenous variable values, β 

is an mx1 vector of intercept and slope parameters, vt is a normally and independently distributed 

random variable with mean zero and variance σ2, and TR is a threshold value to be estimated. 
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The TAR model above allows for two different autocorrelation regimes to apply depending on 

the value of the error term (et) during the previous time period. The occurrence of an error (et-1) 

greater than or equal to TR prompts the regime implied by the set of autocorrelation parameters 

φp = [φ1p φ2p … φkp], while an error that is less than TR sets off the alternative regime implied by 

φn = [φ1n φ2n … φkn]. As previously discussed, in both theory and practice, this allows for an 

asymmetric cycling behavior of the error term. 

 More complicated TAR error-term structures where multiple thresholds are allowed have 

been explored in the econometrics literature (Balke and Fomby 1997; Enders and Granger 1998; 

Enders and Siklos 2001). Previous methodological research, however, has focused on the 

estimation and use of the pure time series form of equation (1), i.e. on the case where xtβ=0, 

which substantially facilitates estimation by permitting the use of Ordinary Least Squares (OLS) 

(Chan 1993). By extension, applications where xtβ≠0 have been simply estimated on the basis of 

the OLS residuals following a procedure that will be described later in this section. 

The presentation of the proposed method begins with the concentrated log-likelihood 

function corresponding to the model in equation (1): 

(2) −Tln(σ)+∑ Itp[−0.5T-1ln|ψp|−0.5(e*tp/σ)2]+ Itn[−0.5T-1ln|ψn| −0.5(e*tn/σ)2] 
=

T

t 1
∑
=

T

t 1

where Itp is an indicator variable taking a value of one if et-1 greater than or equal to TR and a 

value of zero otherwise; Itn=1-Itp; ψp and ψn are the error term correlation matrices corresponding 

to the two possible autocorrelation regimes; and e*tp and e*tn are transformed residuals obtained 

as in the case of the standard autoregressive models (Judge et al. 1985, pp. 283-297): 

(3) e*p = Pp(Y-Xβ) 

(4) e*n = Pn(Y-Xβ) 
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where Y is the Tx1 vector of dependent variable observations; X is a Txm matrix of exogenous 

variable values; β is as previously defined; Pp and Pn are transformation matrices such that 

(P’pPp)–1=ψp and (P’nPn)–1=ψn, respectively; and e*p and e*n are Tx1 vectors containing e*tp and 

e*tn (t=1,…T), respectively. 

Note that the two components of the log-likelihood function {equation (2)} are the log-

likelihoods corresponding to two standard autoregressive processes with error term correlation 

matrices ψp and ψn. As in maximum likelihood estimation of standard autoregressive processes, 

ψp, ψn, Pp, and Pn, are functions of the autocorrelation parameters φp = [φ1p φ2p … φkp] and φn = 

[φ1n φ2n … φkn] (Judge et al. 1985, pp. 283-297). Also note that, if φp = φn, equation (2) becomes 

the log-likelihood function of a standard autoregressive process with error-term correlation 

matrix ψ = ψp = ψn. Thus, the null hypothesis of symmetric cycles (Ho: φp = φn) versus the 

alternative of asymmetric cycles (Ha: φp ≠ φn) can be evaluated through a likelihood ratio test. 

Also note that for the purposes of estimation the indicator variables Itp and Itn determine 

which of the two components of the log-likelihood function is switched on for the tth observation, 

depending on the value of et-1. This switching process creates as discontinuity in the log-

likelihood function with respect to the parameters in β. That is, in some regions of the β space a 

small change in one or more of the parameter values could cause at least one of the residuals (et-1 

= yt-1-xt-1β) to transition from being below to being above TR, or vice versa, which would switch 

the values taken by the corresponding indicator variables Itp and Itn. Such a switch would apply a 

different autocorrelation regime to et causing a discrete shift in the log-likelihood function value. 

In addition, the log-likelihood function reaches a local maximum with respect to β for each set of 

values that can be taken by the pair of indicator variable vectors (Ip = [I1p, I2p,…, ITp] and In = [I1n, 

I2n,…, ITn] = 1-Ip = [1-I1p, 1-I2p,…, 1-ITp]). Although this is not a violation of the regularity 
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conditions for ML estimators (Judge et al. 1985, p. 178), after extensive testing it is concluded 

that in many cases this phenomenon makes it very difficult for gradient-based estimation 

algorithms such as Newton Raphson to smoothly converge into the function’s global maximum. 

To address the formerly described problem, this manuscript proposes the use of a grid 

search over the β and TR space combined with least-squares estimation of φp, φn and σ, in order 

to maximize the log-likelihood function {equation (2)}. Without loss of generality, the steps for 

estimating a second-order TAR {TAR(2)} model with the proposed (TARP) procedure are: 

a) Select the grid on the β and TR space over which the search is to be conducted. 

b) For each set of β and TR values on the grid obtain the Tx1 vector of residuals (r) and 

its corresponding set of Tx1 indicator variable vectors (Ip and In; where, for t=2 to T 

Itp=1 if rt-1≥TR and Itp=0 otherwise, Itn= 1-Itp, and I1p= I1n=0.5). 

c) Also for each set of β and TR values on the grid obtain estimates of φp and φn by 

conducting OLS regressions of “indexed” residual vectors (r*p and r*n) on their first 

and second lags. In the case of a TAR(2), the dependent variables in these regressions 

are the (T-2)x1 vectors r*p and r*n, where r*p= Ip[3:T].*r[3:T], r*n= In[3:T].*r[3:T], 

.* is the element-by-element vector multiplication operator, and [3:T] indicates that 

only elements 3 to T of those vectors are included. The independent variable matrices 

are rl*p=Ip[3:T].*(r[2:T-1]~r[1:T-2]) and rl*n= In[3:T].*(r[2:T-1]~r[1:T-2]) where ~ 

is the horizontal vector concatenation operator. 

d) Compute and add up the sum of the squared residuals (SSR) from the two OLS 

regressions in c) and obtain an estimate for σ2 by dividing the SSR by T-2. 

e) Use the so obtained estimates for β, TR, φp, φn, and σ2 to compute the corresponding 

value of the log-likelihood function {equation (2)}. The ML-based set of estimates is 

of course the one that results in the highest log-likelihood value. 
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Note that this procedure only differs from a strict application of the maximum likelihood 

principle by the exclusion of the first two elements of the transformed error term vectors e*p and 

e*n. Therefore, it is asymptotically equivalent to maximum likelihood estimation, i.e. it will yield 

identical results given large sample sizes and fairly similar results in small sample applications. 

Another contribution of this research is to consider the possibility that TAR error term 

variation might be different depending on whether the error is above or below TR, i.e. a 

heteroskedastic TAR specification. Under these circumstances the log-likelihood function 

includes two different variance parameters (σp and σn) as follows: 

(5) Itp[−ln(σp)−0.5T-1ln|ψp|−0.5(e*tp/σp)2]+ Itn[−ln(σn)−0.5T-1ln|ψn| −0.5(e*tn/σn)2] ∑
=

T

t 1
∑
=

T

t 1

where, for application of the proposed TARP method, σ2
p and σ2

n are estimated by: 

(6) s2
p = SSRp/∑Itp, and 

s2
n = SSRn/∑Itn, 

where SSRp and SSRn are the sum of the squared residuals from the two OLS regressions in step 

c) and ∑Itp and ∑Itn represent the number on non-zero observations in those two regressions. 

A simpler procedure to estimate TAR models (TARS) is also evaluated in this study. This 

method involves computing β and the corresponding residuals by OLS or by means of the more 

efficient AR model (note that the β estimates from these two procedures have the same expected 

value). The residuals (rt) are then divided into two sets depending on whether rt-1≥TR or  rt-1<TR 

and the φp and φn parameter vectors are estimated by OLS regressions of rt versus rt-1, rt-2,…,rt-k 

applied to each of these two sets of residuals. This process is repeated over a set of plausible TR 

values and the “optimal” TR and autoregressive parameter vector estimates are the ones 

corresponding to the lowest combined residual sum of squares from those two regressions. 



 7

Multi-Period TAR Forecasts 

Unbiased multi-period forecasts from TAR models can be obtained by properly computing the 

expected values of the future errors conditional on the previous residuals. The forecasting 

formulas for a TAR(2) are derived next since the TAR(1) is a trivial case and the formulas 

corresponding to higher order processes are a logical extension of the TAR(2)’s. As in standard 

AR(2) models, the one-period-ahead forecast from a TAR(2) model is: 

(7) yFT+1 = E[yT+1|eT,eT-1] = E[xT+1β]+E[eT+1|eT,eT-1] = xT+1E[β] + E[ITpφ1peT+ITnφ1neT] 

         + E[ITpφ2peT-1+ITnφ2neT-1]; 

where the subscript F indicates forecast, T refers to the time period corresponding to the last 

available observation, and everything else is as defined before. Note that (7) is easily computed 

since eT, ITp and ITn are known constants and E[β], E[φ1p], E[φ1n], E[φ2p], and E[φ2n]  can be 

replaced by ML estimates. The two-period-ahead forecast from a TAR(2) model is: 

(8) yFT+2 = E[yT+2|eT,eT-1] = E[xT+2β] + E[eT+2] 

         = xT+2E[β] + E[IT+1pφ1peT+1+IT+1nφ1neT+1] + E[IT+1pφ2peT+IT+1nφ2neT] 

where (from here on) all expectations are conditional on the known eT and eT-1 values and φ1p, 

φ1n, φ2p, and φ2n denote the ML estimates for these parameters, which are independent of all other 

random variables in the following equations. The last term of (8) is: 

(9) E[IT+1pφ2peT+IT+1nφ2neT] = E[IT+1p]φ2peT+E[IT+1n]φ2neT, 

where the expected values of the indicator variables at T+1 are computed as follows: 

(10) E[IT+1p] = Prob[eT+1>0] = Prob[E[eT+1]+vT+1>0] = Prob[vT+1>-E[eT+1]] 

  = Prob[vT+1>-(ITpφ1peT+ITnφ1neT+ITpφ2peT-1+ITnφ2neT-1)] = ; ∫
∞

C
Vf

where C =-(ITpφ1peT+ITnφ1neT+ITpφ2peT-1+ITnφ2neT-1) is a known constant and fv is a normal 

density with mean zero and variance σ2; and E[IT+1n]= Prob[eT+1<0]= 1-Prob[eT+1>0]= 1-E[IT+1p]. 
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The second term of (8) (E[IT+1pφ1peT+1+IT+1nφ1neT+1]) is more complicated to compute 

because it involves eT+1. Specifically, substituting E[eT+1]+vT+1 for eT+1 yields: 

(11) E[IT+1pφ1peT+1+IT+1nφ1neT+1] = E[IT+1pφ1p(E[eT+1]+vT+1) + IT+1nφ1n(E[eT+1]+vT+1)] = 

 E[IT+1pφ1pE[eT+1] + IT+1nφ1nE[eT+1]] + E[IT+1pφ1pvT+1 + IT+1nφ1nvT+1]. 

 Since E[eT+1] is a known constant (defined as -C above), E[IT+1pφ1pE[eT+1] + 

IT+1nφ1nE[eT+1]] = -C(φ1pE[IT+1p] + φ1nE[IT+1n]), where E[IT+1p] and E[IT+1n] are computed as 

described in equation (10). Calculation of E[IT+1pφ1pvT+1 + IT+1nφ1nvT+1], on the other hand, 

requires knowledge of E[IT+1pvT+1] and E[IT+1nvT+1], which are obtained as follows: 

(12) E[IT+1pvT+1] = , ∫
∞

C
Vfv

where C and fv are as defined above; and, since E[IT+1nvT+1] + E[IT+1pvT+1] = E[vT+1] = 0, 

E[IT+1nvT+1] = -E[IT+1pvT+1]. Finally, the first term of (8) (xT+2E[β]) is obtained by replacing E[β] 

with the MLE for β. The three-period-ahead forecast involves the following computations: 

(13) yFT+3 = E[yT+3|eT,eT-1] = E[xT+3β] + E[eT+3] 

         = xT+3E[β] + E[IT+2pφ1peT+2+IT+2nφ1neT+2] + E[IT+2pφ2peT+1+IT+2nφ2neT+1] 

The first term in (13) is obtained by replacing E[β] with the MLE for β. Then, after 

substituting E[eT+2]+vT+2 and E[eT+1]+vT+1 for eT+2 and eT+1, the second and third terms become: 

(14) E[IT+2pφ1peT+2+IT+2nφ1neT+2] = E[IT+2pφ1pE[eT+2]] + E[IT+2nφ1nE[eT+2]] + E[IT+2pφ1pvT+2] 

         + E[IT+2nφ1nvT+2], and 

(15) E[IT+2pφ2peT+1+IT+2nφ2neT+1] = E[IT+2pφ2pE[eT+1]] + E[IT+2nφ2nE[eT+1]] + E[IT+2pφ2pvT+1] 

         + E[IT+2nφ2nvT+1]. 

 Since E[eT+1] is a known constant (-C above), the terms in (15) are computed as follows: 

(16) E[IT+2pφ2pE[eT+1]] = -Cφ2pE[IT+2p]; 
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where E[IT+2p] = Prob[eT+2>0] = Prob[E[eT+2]+vT+2>0] = Prob[vT+2>-E[eT+2]] 

= Prob[vT+2>-(IT+1pφ1peT+1+IT+1nφ1neT+1+IT+1pφ2peT+IT+1nφ2neT)] 

= Prob[vT+2>-(IT+1pφ1p(E[eT+1]+vT+1)+IT+1nφ1n(E[eT+1]+vT+1)+IT+1pφ2peT+IT+1nφ2neT)] 

= ; where D = -(IT+1pφ1p(E[eT+1]+vT+1)+IT+1nφ1n(E[eT+1]+vT+1)+IT+1pφ2peT+ IT+1nφ2neT), 

E[eT+1] = -C, IT+1p = 0.5(1+{eT+1/|eT+1|}) = 0.5(1+{(E[eT+1]+vT+1)/ |E[eT+1]+vT+1|}) 

∫∫
∞

∞−

∞

21vfv
D

= 0.5(1+{(-C+vT+1)/|-C+vT+1|}), IT+1n=1-IT+1p, and fv1v2 is a bivariate normal density with means 

[0,0] and variances [σ2,σ2]. 

(17) E[IT+2nφ2nE[eT+1]] = -Cφ2nE[IT+2n]; 

where E[IT+2n] = Prob[eT+2<0] = 1-Prob[eT+2>0] = 1-E[IT+2p]; and E[IT+2p] is computed as in (13). 

(18) E[IT+2pφ2pvT+1] = φ2pE[IT+2pvT+1] = φ2p ; ∫∫
∞

∞−

∞

211 vfvv
D

(19) E[IT+2nφ2nvT+1] = φ2nE[IT+2nvT+1] = -φ2nE[IT+2pvT+1]. 

The last two terms in (14) (E[IT+2pφ1pvT+2] and E[IT+2nφ1nvT+2]) are analogously computed: 

(20) E[IT+2pφ1pvT+2] = φ1pE[IT+2pvT+2]; where E[IT+2pvT+2] = ; ∫∫
∞

∞−

∞

212 vfvv
D

where E[IT+2nφ1nvT+2] = φ1nE[IT+2nvT+2] = -φ1nE[IT+2pvT+2] and E[IT+2pvT+2] is computed as above. 

Lastly, computation of the first two terms in (13) is carried out as follows: 

(21) E[IT+2pφ1pE[eT+2]] =  φ1pE[IT+2p{IT+1pφ1p(E[eT+1]+vT+1)+IT+1nφ1n(E[eT+1]+vT+1)+IT+1pφ2peT 

                             + IT+1nφ2neT}], and 

(22) E[IT+2nφ1nE[eT+2]] = φ1nE[IT+2n{IT+1pφ1p(E[eT+1]+vT+1)+IT+1nφ1n(E[eT+1]+vT+1)+IT+1pφ2peT 

     + IT+1nφ2neT}]. 
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 Noting again that E[eT+1] = -C, the known constant defined above, computation of (21) 

and (22) requires finding the expected value of products random variables such as: 

(23) E[IT+2pIT+1p] = Prob[eT+2>0 and eT+1>0] = Prob[E[eT+2]+vT+2>0 and E[eT+1]+vT+1>0]  

        = Prob[vT+2>-E[eT+2] and vT+1>-E[eT+1]] = ; ∫∫
∞∞

CD

vfv 21

(24)  E[IT+2pIT+1pvT+1] = E[vT+1|eT+2>0, eT+1>0] = E[vT+1|E[eT+2]+vT+2>0, E[eT+1]+vT+1>0]  

    = E[vT+1|vT+2>-E[eT+2], vT+1>-E[eT+1]] = . ∫∫
∞∞

CD

vfvv 211

The expected values of the remaining products are computed analogously. The Gauss 

programs needed to compute these one-, two- and three-period ahead TAR model forecasts will 

be made available upon request. 

Theoretical Performance 

Monte Carlo experiments are conducted to evaluate the finite sample estimation and forecasting 

performance of the proposed ML-based estimation method (TARP) versus the simpler TARS, and 

the standard MLE for AR(1) and AR(2) models when the data-generating process is TAR. In 

these experiments xtβ=β0+β1xt=-1+1xt, xt is a binomial random variable with P=0.5, and σ=1. 

Table 1 shows the autocorrelation and partial autocorrelation functions (ACF/PACF) of 

the various TAR processes evaluated. Note that the general patterns of these ACF and PACF do 

not visually appear to be different from and could easily be confused with those of standard 

autoregressive processes. However, the specific arrays of error term autocorrelations implied by 

some TAR processes can not be closely approximated by standard autoregressive processes, 

which will later be shown to have substantial forecasting precision implications.  

Figure 1 illustrates the dynamics of a typical TAR(1) error term with φ1p=0.9 and φ1n=0. 

Note that although the underlying random process (vt) is white noise, nearly 80% of the 
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simulated errors (et) are positive and the large sample average of all errors is approximately 1.35. 

The process can be described as fluctuating around zero (between –2 and 2) about 68% of the 

time and showing a marked upside cyclical behavior 32% of the time. A TAR(1) process with 

φ1p=0.9 and φ1n=-0.8 shows an average error term value of about 1.6, 85% positive errors, 63% 

within the –2 to 2 range, and 37% showing a marked upside cyclical behavior.  

Interestingly, the transposing of a TAR(1) process parameters (i.e. to let φ1p=φ1n and 

φ1n=φ1p) does not affect the ACF/PACF; it simple reverses the signs of the simulated error term 

patterns. In a TAR(1) with parameters φ1p=−0.8 and φ1n=0.9, for example, 85% of the errors are 

negative, rather than positive, the average of all errors is approximately -1.6, rather than 1.6, and 

37% show a marked downside, rather than upside, cyclical behavior. 

Figure 2 illustrates dynamics of a typical TAR(2) error term with parameters φ1p=1.5, 

φ2p=−0.8, φ1n=−0.9 and φ2n=0. Note that about 80% of the simulated errors are positive and the 

average of all errors is approximately 2.06. The behavior of this process can be described as 

randomly combining cycles of similar length that peak at different levels. In addition, although 

the error term drops below zero at the end of nearly every cycle, because φ1n=−0.9, it rarely stays 

negative for more than one time period. Also, as in the case of a TAR(1), the transposing of the 

parameters of a TAR(2) process does not affect the ACF and PACF, but it does reverse the signs 

of the simulated error term patterns.  

Table 2 shows select Monte Carlo simulation statistics about estimated TARP, TARS and 

standard AR models under different TAR(1) and TAR(2) processes and two sample sizes. The 

following conclusions are derived from those simulation statistics: 

1) Although the TARP is a biased estimator for the intercept (β0) and autocorrelation 

coefficients (φ1p, φ2p, φ1n and φ2n), it is a consistent estimator for all of those parameters. The 
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degree of bias decreases with sample size (T) and, in all cases evaluated, the percentage bias is 

negligible at T=500. The consistency of the proposed estimator is numerically verified by 

estimating the models with T=50000. 

2) As OLS, the standard AR model estimation method is a biased and an inconsistent 

estimator for a TAR model’s intercept. This is related to the previous discussion about the 

dynamics of TAR processes. Both OLS and the AR estimator are based on the assumption that 

the unconditional expected value of the error term is zero, and standard AR processes can only 

replicate symmetric error term cycles with expected values of zero. Therefore, when applied to 

the modeling of TAR processes with error terms exhibiting non-zero expected values, such as 

those depicted in figures 1 and 2, they do so through a biased/inconsistent estimation of the TAR 

processes’ intercepts. In the case of the previously discussed TAR(1) with φ1p=0.9 and φ1n=-0.8, 

for example, OLS and a standard AR model would estimate the intercept with a bias and 

inconsistency of 1.6 (table 2), which is equal to the expected value of this particular TAR(1) 

error process. Biases in AR intercept estimation range from ±2.06 {TAR(2) with φ1p=1.5, 

φ2p=−0.8, φ1n=−0.9 and φ2n=0} to ±0.09 {TAR(2) with φ1p=1.3, φ2p=−0.6, φ1n=0.5 and φ2n=0.4}. 

3) Both the TARP and the AR models are unbiased and consistent estimators for the slope 

parameter (β1). However, as expected, the TARP is a more efficient estimator for this parameter. 

Estimation efficiency differences range from 7% to over 100%. 

4) The TARP model forecasts obtained using the formulas derived in the previous section 

are unbiased both within and out of sample, although biased TARP model estimates for the 

intercept and autoregressive parameters have to be used to compute them. Interestingly, the 

predictions from the AR models, obtained using standard formulae, are unbiased as well. 
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5) Although the AR models can be used to approximate TAR processes, these 

approximations are generally far from perfect. The average R2s of the AR models are 3% to 24% 

lower than those obtained when using the TARP models. Moderate to relatively high differences 

in forecasting precision, as measured by the root mean square of the within- and out-of-sample 

forecast errors, are also found between the estimated AR and TARP models when the underlying 

error term process is TAR. These differences range from about 3 to 65% and average 

approximately 20% for both the one- and the two-period-ahead out-of-sample forecasts, and are 

somewhat smaller in the case of the three-period-ahead predictions (table 2). 

 6) Since the simpler (TARS) method involves using the intercept estimate from the AR 

model which, as discussed in 2) above, is both biased and inconsistent, the TARS estimates for 

the autocorrelation parameters (φ1p, φ2p, φ1n, and φ2n) are also biased and inconsistent.  

7) This biased and inconsistent estimation of the intercept and autocorrelation parameters 

by the TARS has substantial forecasting implications. The forecasting precision of the TARS is 

somewhere in between that of the standard AR and the proposed (TARP) estimation method. 

When the expected value of the underlying TAR error term process is substantially different 

from zero {such as in the TAR (2) with φ1p=1.5, φ2p=−0.8, φ1n=−0.9 and φ2n=0} the forecasting 

precision of the TARS is closer to that of the AR, while when the expected TAR error value is 

relatively close to zero {such as in the TAR (2) with φ1p=1.3, φ2p=−0.6, φ1n=0.5 and φ2n=0.4} the 

TARS forecasting precision is not substantially different from that of the TARP. 

8) As expected, the differences in the root mean square of the one-period-ahead within 

sample forecasting errors corresponding to the AR, TARS and TARP models (WFE in table 2) 

are a good relative indicator of the differences in one-, two- and three-period-ahead out-of-

sample forecasting precision (FE1, FE2 and FE3 in table 2) across these three models. 
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A final issue is whether TAR processes can be reasonable representations of the random 

components associated with some agricultural time series variables. To explore this issue, 

consider the most extreme of the previously discussed TAR processes where yt = β0+β1xt+et; 

β0=-1, β1=1, and et follows a TAR with φ1p=1.5, φ2p=−0.8, φ1n=−0.9 and φ2n=0.  If this model 

were estimated by OLS or by standard AR methods the intercept estimate would on average be 

1.06 and the residuals (yt -
^
B 0-

^
B 1xt) would resemble those in figure 2, except that they will all 

be shifted by -2.06 and thus centered at an average of zero. Once centered at zero, the residuals 

in figure 2 do not appear very peculiar. In contrast, a properly estimated TAR model would on 

average have an intercept of -1 and residuals averaging 2.06 (as in figure 2). Yet, the 

unconditional expected value of the dependent variable predictions (ŷt) would be the same in 

both cases: E[ŷt] = 1.06+xt+E[et] = 1.06+xt under OLS and E[ŷt] = -1+xt+E[et] = 1.06+xt under 

the properly estimated TAR. Therefore, applied researchers should not be unsettled by the fact 

that TAR model residuals do not have an expected value of zero. TAR models simply provide 

for more complex, asymmetric cycling error term behaviors than standard AR models.  

Applications 

In this section, TARP, TARS and standard AR models of quarterly U.S. soybean future prices and 

of quarterly Brazilian coffee spot (New York) prices over the last three decades are estimated 

and compared. Both price series are stationary according to the augmented Dickey-Fuller unit 

root test (α<0.01). All initial models as specified with five autoregressive error term lags and a 

systematic component (xtβ) consisting of an intercept and a simple linear time trend. The AR 

models are estimated using the standard Gauss 6.0 ARIMA procedure. The TARP and TARS are 

estimated using Gauss 6.0 code developed as part of this research. All Gauss programs used in 

these applications will be made available upon request. 
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In the case of coffee prices, the initial AR(5) and TARP(5) models reach maximum log-

likelihood function values of -411.34 and -377.02, respectively. Since the AR(5) is a restricted 

formulation of the TARP(5), a likelihood ratio (LR) test for the statistical validity of those 

restrictions (Ho: φp=φn and σ2
p=σ2

n vs. Ha: φp≠φn and/or σ2
p≠σ2

n) can be conducted. This test 

(LR=2*(411.34-377.02)=68.64>χ(6,α=0.005)=18.5) strongly rejects those restrictions suggesting 

that the TARP(5) is a statistically superior representation of the data-generating process. 

The initial AR(5) model shows statistically insignificant fourth- and fifth-order 

autoregressive parameters (α=0.20). A likelihood ratio test (LR=2.57<χ(2,α=0.20)=3.22) does not 

reject the autoregressive parameter restrictions leading to the final AR(3) model presented in 

table 3. A Box-Pierce statistic of 19.68 does not reject the null hypothesis that the sample 

autocorrelation coefficients between the AR(3) model residuals and their first 20 lags are jointly 

equal to zero (α=0.25), suggesting that these residuals are independently distributed. 

The initial TARP model of Brazilian coffee prices shows several statistically insignificant 

autoregressive parameters (α=0.20). A likelihood ratio test (LR=3.30<χ(5,α=0.25)=6.63) does not 

reject the five autoregressive parameter restrictions leading to the final TARP model (table 3). A 

Box-Pierce statistic of 22.78 does not reject the null hypothesis that the sample autocorrelation 

coefficients between the final TARP model residuals and their first 20 lags are jointly equal to 

zero (α=0.25), suggesting that these residuals are independently distributed as well. 

With only three additional parameters, the final TARP model of Brazilian coffee prices 

exhibits a substantially higher maximum log-likelihood function value that the final AR model. 

The TARP model’s R2 of 0.894 is also noticeable higher than the AR’s 0.838. The root mean 

square of the one-period-ahead within sample forecast error (RMSFE) is 19.60 cents/lb under the 

TARP versus 24.15 cents/lb, or 23.24% higher, under the AR (table 3). By any standards this
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would be considered a substantial difference in forecasting precision that justifies using the more 

sophisticated TARP modeling technique. 

In addition, the TARP model provides useful insights into the dynamics of Brazilian 

coffee price cycles that are not attainable with the standard AR model. Specifically, 44% of the 

residuals are expected to be above the estimated threshol R=-31.86), i.e. 44% of the price 

realizations are anticipated to be over PTR = xtβ+TR = 222.45-0.995t-31.86 = 190.59-0.995t. 

Since the expected value of the TAR error term in this case is E[et]=-31.58, the expected 

(unconditional) trend of Brazilian coffee prices is E[yt] = +E[et] = 222.45-0.995t-31.58 = 

190.87-0.995t, i.e. coincidentally close to the previously

This is markedly different from the 203.86-1.255t price t

^

^

In regard to the cycling behavior of Brazilian cof

model 44% of the price realizations will be above and 56

The dynamics of the upward cycles, however, are very d

cycles (table 4). Only 7.58% of the prices crossing over P

at least one more price realization above that threshold e

the prices crossing under PTR will not be followed by ad

threshold. Interestingly, the AR implies that 19.81% of t

model’s estimated trend equation will go back across the

TARP model suggests that only 16% of the upward cycle

quarters versus over 29% of the downward cycles; while

be of this length. In contrast, nearly 45% of the upward c

cycles (and 18% of the AR cycles), are predicted to last b

while 27% of the downward cycles will tend to last over

upward cycles (and about 10% of the AR cycles) are exp
 xtβ
^

d (T̂
 discussed threshold equation (figure 3). 

rend implied by the final AR model. 

fee prices, according to the final TARP 

% will be below PTR=190.59-0.995t. 

ifferent from those of the downward 

TR are expected not to be followed by 

quation, while the majority (21.84%) of 

ditional price occurrences below the 

he prices crossing over or under this 

 next quarter. On the other hand, the 

s will last between two and four 

 43% of the AR cycles are expected to 

ycles, but only 14% of the downward 

etween five and seven quarters. And, 

 10 quarters, less than 16% of the 

ected to be than long.  
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The σp and σn estimates {sp and sn in equation (6)} measure the root mean square of the 

one-period-ahead within sample forecast errors for the upward and downward cycles, 

respectively. Thus, another practical advantage of the TARP model is to be able to ascertain these 

differential levels of forecasting precision, that is, the typical prediction errors are estimated to be 

sp=26.78 in the upward and sn=14.35 cents/lb in the downward cycles. This indicates that the 

level of unpredictable variation in the upward price cycles is nearly twice as high as in the 

downward cycles; which is evident in the observed Brazilian coffee price data (figure 3). 

In short, the TARP model suggests that the upward price cycles are expected to be 

moderately-lived but quickly reach fairly high levels. While about half of the downward cycles 

are expected to be short-lived (one to five quarters), the other half will tend to be moderately to 

longer- and could even be very long-lived and reach fairly low levels, but in a gradual manner. 

According to the simulation results, the AR model yields biased intercept and unbiased 

but inefficient slope parameter estimates. In this case, the estimates for the both the intercept and 

the time trend parameter from the final AR(3) model (203.86 and -1.255) are markedly different 

from the TARP (222.45 and -0.995). This is not surprising since the TARP error term has a non-

zero expected value (E[et]=-31.58). As a result, with an R2 of 0.860 and WFE of 22.66 cents/lb 

(table 3), the TARS model’s performance in this application is closer to the AR’s (R2=0.838 and 

WFE=24.15 cents/lb) than to the TARP’s (R2=0.894 and WFE=19.60 cents/lb). 

In the case of U.S. soybean future prices, the initial AR(5) and TARP(5) models reach 

maximum log-likelihood function values of -516.87 and -499.30, respectively. A likelihood ratio 

test (LR=2*(516.87-499.30)=35.14>χ(6,α=0.005)=18.5) strongly rejects the autoregressive 

parameter restrictions implied by the AR(5) model (φp=φn and σ2
p=σ2

n) suggesting that the 

unrestricted TARP(5) model is statistically superior representation of the data-generating process. 
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The initial AR(5) model shows statistically insignificant third- fourth- and fifth-order 

autoregressive parameters (α=0.20). A likelihood ratio test (LR=4.32<χ(3,α=0.20)=4.64) does not 

reject the restrictions leading to the final AR(2) model (table 3). A Box-Pierce statistic of 14.23 

does not reject the null hypothesis independence in this model’s residuals (α=0.25). 

The initial TARP model of U.S. soybean prices only shows two statistically insignificant 

autoregressive parameters (α=0.20). A likelihood ratio test (LR=2.24<χ(2,α=0.20) =3.22) does not 

reject the restrictions leading to the final TARP model (table 3). A Box-Pierce statistic of 19.76 

does not reject the null hypothesis independence in this model’s residuals either (α=0.25). 

The final TARP model exhibits a markedly higher maximum log-likelihood function 

value than the final AR model (table 3). The TARP model’s R2 of 0.728 is substantially higher 

than the AR’s 0.622 as well. The RMSFE is 50.86 cents/bushel under the TARP versus 59.93 

cents/bushel, or 17.83% higher, under the AR. As in the case of the Brazilian coffee price 

models, such a difference in forecasting precision clearly justifies using the TARP technique. 

Also as in the case of coffee, the TARP model provides valuable insights into the 

dynamics of soybean price cycles. Specifically, 41.6% of the price realizations are anticipated to 

be over PTR= xtβ+TR = 725.15-0.985t-9.18 = 715.97-0.985t. Since E[et] = -23.27 in this case, 

the expected trend of U.S. soybean prices is

i.e. somewhat lower than the threshold equa

prices, the difference between the unconditi

implied by the final AR model (685.32-0.98

In regard to the cycling behavior of 

model 41.6% of the price realizations will b

0.985t. As in the case of coffee prices, the d
^

^ ^
 xtβ+E[et] = 725.15-0.985t-23.27 = 701.88-0.985t, 

tion (figure 4). Note that, unlike in the case of coffee 

onal price expectations under the TARP and those 

1t) is mainly due to the intercept estimate. 

U.S. soybean prices, according to the final TARP 

e above and 58.4% will be below PTR = 715.97-

ynamics of the upward cycles are very different from 
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those of the downward cycles (table 4). The majority (61%) of the upward “cycles”, for example, 

are composed of only one or two price realizations above PTR, while just 32% of the downward 

“cycles” last two quarters or less. Interestingly, 42% of the upward and downward cycles implied 

by the estimated AR model are composed of one or two observations only. About 30% of the 

upward cycles and 38% of the downward cycles (and 41% of the AR cycles), are predicted to 

last between three and seven quarters. And, while 30% of the downward cycles would tend to 

last 8 quarters or more, less than 9% of the upward cycles (and about 17% of the AR cycles) are 

expected to be than long. Note that, as in the case of coffee prices, the cycling behavior implied 

by the TARP model appears to match the behavior of the observed soybean price data (figure 4). 

The typical forecast errors are estimated to be sp=48.94 in the upward and sn=51.74 

cents/lb in the downward cycles. That is, unlike in the coffee price model, unpredictable 

variation in the upward price cycles is nearly the same as in the downward cycles; which is 

evident in the observed soybean price data as well (figure 4). 

In short, the estimated TARP model suggests that upward price cycles are substantially 

less likely than downward cycles lasting more than two quarters and, while most upward cycles 

exceeding two quarters are expected to be moderately-lived, the likelihood of both moderately 

and longer-lived downward cycles is substantial. 

Finally, in this case, the estimates for the intercept and slope parameters from the final 

AR(2) model (685.32 and -0.981) are relatively much closer to the TARP’s (725.15 and -0.985) 

than in the Brazilian coffee price application. As a result, the TARS model’s R2 (0.726) and 

RMSFE (51.22 cents/bushel) (table 3) are substantially closer to the TARP’s (0.728 and 50.86 

cents/bushel) than to the AR’s (0.622 and 59.93 cents/bushel). 

 



 20

Concluding Remarks 

The theoretical simulation and the empirical application results lead to three main conclusions:   

a) substantial gains in forecasting precision in relation to the standard AR models are expected 

by using the proposed (TARP) estimation method when the dependent variable is characterized 

by both a systematic and a random component and the random component follows a TAR rather 

than an AR process, b) the estimated TAR models also provide empirically valuable insights on 

the asymmetric dynamics of the upward and downward dependent variable cycles, c) since it is 

not possible to ascertain a priory whether the simpler TARS method will perform well in relation 

to the TARP in a particular application, the latter should be used in all cases. In short, researchers 

interested in thoroughly understanding the cycling behavior and obtaining more reliable forecasts 

for agricultural time series variables should consider using of the proposed procedure to ascertain 

if a TAR model is more suitable than a standard AR model in any particular application. 
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Table 1. Correlation and Partial Autocorrelation Functions for TAR Processes Discussed and Evaluated in the Study 

TAR 
Parameters 

TAR 
Parameters 

TAR 
Parameters 

TAR 
Parameters 

TAR 
Parameters 

TAR 
Parameters 

TAR 
Parameters 

φ1p= 0.9 φ2p= 0.0 
φ1n= 0.0 φ2n= 0.0 

φ1p= 0.9 φ2p= 0.0 
φ1n= -0.8 φ2n= 0.0

φ1p= 1.5 φ2p= -0.8 
φ1n= 0.0 φ2n= 0.0 

φ1p= 1.5 φ2p= -0.8 
φ1n= -0.9 φ2n= 0.0

φ1p= 1.2 φ2p= -0.8 
φ1n= 0.8 φ2n= 0.0 

φ1p= 1.3 φ2p= -0.6 
φ1n= 0.5 φ2n= 0.4 

φ1p= 0.9 φ2p= 0 
φ1n= -1.5 φ2n= 0 

ACF              PACF ACF PACF ACF PACF ACF ACF ACF PACF ACF PACF ACF PACF
0.763    0.763 0.714 0.714 0.680 0.680 0.633 0.633 0.728 0.728 0.811 0.811 0.686 0.686
0.605    0.050 0.548 0.074 0.187 -0.513 0.068 -0.558 0.381 -0.321 0.626 -0.090 0.513 0.077
0.483    0.011 0.426 0.017 -0.170 -0.039 -0.285 0.002 0.148 0.036 0.470 -0.030 0.391 0.021
0.386    0.001 0.333 0.005 -0.273 0.033 -0.274 0.107 0.058 0.049 0.383 0.092 0.300 0.005
0.309    0.001 0.261 0.002 -0.174 0.037 -0.011 0.137 0.041 0.006 0.333 0.046 0.230 0.000
0.247    -0.004 0.206 -0.002 -0.013 0.011 0.247 0.077 0.040 -0.006 0.300 0.018 0.176 -0.004
0.197    -0.003 0.161 -0.003 0.089 -0.009 0.289 -0.031 0.032 0.000 0.267 0.006 0.134 -0.004
0.157    -0.004 0.124 -0.006 0.097 -0.007 0.136 0.007 0.020 -0.004 0.234 0.004 0.101 -0.005
0.126    -0.001 0.096 -0.001 0.047 0.005 -0.046 0.031 0.008 -0.003 0.204 0.006 0.075 -0.003
0.099    -0.006 0.073 -0.005 -0.009 -0.002 -0.126 -0.007 0.001 -0.004 0.177 -0.001 0.056 -0.004
0.078    0.000 0.055 -0.003 -0.037 -0.004 -0.081 -0.008 -0.002 0.000 0.155 0.003 0.041 -0.001
0.062    -0.003 0.040 -0.005 -0.034 -0.005 0.021 -0.001 -0.003 -0.004 0.136 -0.002 0.029 -0.006
0.048    -0.003 0.031 0.001 -0.015 -0.001 0.089 0.001 -0.004 -0.002 0.119 0.000 0.019 -0.004
0.037    -0.004 0.022 -0.006 0.002 -0.005 0.078 -0.009 -0.005 -0.005 0.104 -0.002 0.012 -0.004
0.027    -0.003 0.014 -0.004 0.009 -0.002 0.018 -0.001 -0.007 -0.002 0.090 -0.002 0.007 0.000
0.020    -0.002 0.007 -0.006 0.005 -0.006 -0.036 -0.004 -0.007 -0.005 0.078 -0.004 0.002 -0.006
0.014    -0.002 0.002 -0.002 -0.003 -0.003 -0.047 -0.003 -0.008 -0.003 0.066 -0.003 -0.002 -0.005
0.009    -0.006 -0.002 -0.005 -0.009 -0.003 -0.022 -0.005 -0.008 -0.004 0.057 -0.001 -0.004 -0.003

 
Note: The autocorrelation and partial autocorrelation functions (ACF and PACF, respectively) of 1000 simulated samples of size T=500 

each are computed using the ACF and PACF commands in the ARIMA module of Gauss 6.0. Their averages over 1000 samples are 

reported in table 1. 
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Table 2. Select Monte Carlo Simulation Statistics About the Estimated TAR and AR Models Under 

Different TAR(1) and TAR(2) Processes and Sample Sizes 

TAR(1) Process with Parameters φ1p= 0.9, φ2p= 0.0, φ1n= 0.0, φ2n= 0.0 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.53 0.35 0.076 0.76 -- 0.76 -- 0.62 1.03 1.04 1.28 1.42
TARP L -0.50 -0.98 0.071 0.89 -- -0.02 -- 0.65 1.00 1.00 1.24 1.39
TARS L -0.53 0.35 0.076 0.83 -- 0.68 -- 0.63 1.03 1.03 1.27 1.41
AR S -0.52 0.35 0.174 0.73 -- 0.73 -- 0.59 1.02 1.06 1.31 1.45
TARP S -0.48 -0.89 0.166 0.86 -- -0.12 -- 0.62 0.98 1.03 1.28 1.42
TARS S -0.51 0.35 0.174 0.79 -- 0.65 -- 0.59 1.01 1.05 1.30 1.44

TAR(1) Process with Parameters φ1p= 0.9, φ2p= 0.0, φ1n= -0.8, φ2n= 0.0 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.58 0.62 0.082 0.72 -- 0.72 -- 0.56 1.09 1.10 1.32 1.43
TARP L -0.50 -0.99 0.069 0.90 -- -0.80 -- 0.64 1.00 1.00 1.26 1.39
TARS L -0.57 0.62 0.082 0.82 -- 0.59 -- 0.57 1.07 1.08 1.29 1.40
AR S -0.56 0.61 0.188 0.68 -- 0.68 -- 0.53 1.06 1.11 1.33 1.45
TARP S -0.49 -0.92 0.163 0.87 -- -0.69 -- 0.62 0.98 1.03 1.28 1.42
TARS S -0.55 0.61 0.188 0.77 -- 0.56 -- 0.54 1.05 1.09 1.30 1.43

TAR(2) Process with Parameters φ1p= 1.2, φ2p= -0.8, φ1n= 0.8, φ2n= 0.0 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.59 -1.35 0.068 0.97 -0.33 0.97 -0.33 0.62 1.10 1.13 1.58 1.72
TARP L -0.49 -1.00 0.057 1.20 -0.80 0.79 0.00 0.69 0.99 1.03 1.47 1.64
TARS L -0.52 -1.35 0.068 1.19 -0.67 0.76 -0.01 0.67 1.02 1.05 1.49 1.65
AR S -0.57 -1.35 0.158 0.96 -0.34 0.96 -0.34 0.61 1.07 1.12 1.60 1.76
TARP S -0.47 -1.01 0.142 1.17 -0.80 0.77 0.00 0.69 0.96 1.04 1.50 1.67
TARS S -0.50 -1.35 0.158 1.17 -0.66 0.76 -0.04 0.66 1.00 1.06 1.52 1.70

TAR(2) Process with Parameters φ1p= 1.5, φ2p= -0.8, φ1n= 0.0, φ2n= 0.0 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.71 0.28 0.075 1.03 -0.52 1.03 -0.52 0.63 1.24 1.25 1.80 1.96
TARP L -0.50 -1.00 0.049 1.50 -0.80 0.00 0.00 0.76 0.99 1.01 1.60 1.88
TARS L -0.65 0.28 0.075 1.35 -0.78 0.76 -0.33 0.67 1.16 1.16 1.71 1.94
AR S -0.69 0.28 0.173 1.02 -0.52 1.02 -0.52 0.63 1.21 1.29 1.84 1.98
TARP S -0.48 -0.98 0.121 1.48 -0.79 -0.02 0.01 0.76 0.96 1.07 1.64 1.91
TARS S -0.63 0.28 0.173 1.32 -0.77 0.77 -0.34 0.67 1.13 1.19 1.76 1.98

TAR(2) Process with Parameters φ1p= 1.3, φ2p= -0.6, φ1n= 0.5, φ2n= 0.4 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.64 -1.09 0.077 0.89 -0.09 0.89 -0.09 0.69 1.15 1.17 1.57 1.78
TARP L -0.49 -1.00 0.056 1.30 -0.60 0.49 0.40 0.77 0.99 1.02 1.42 1.64
TARS L -0.52 -1.09 0.077 1.25 -0.54 0.52 0.36 0.75 1.02 1.04 1.45 1.67
AR S -0.61 -1.07 0.176 0.87 -0.11 0.87 -0.11 0.66 1.11 1.18 1.59 1.82
TARP S -0.47 -0.99 0.144 1.29 -0.62 0.46 0.38 0.76 0.96 1.05 1.47 1.70
TARS S -0.52 -1.07 0.176 1.18 -0.49 0.56 0.25 0.72 1.02 1.09 1.50 1.73
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Table 2 (continued). Select Monte Carlo Simulation Statistics About the Estimated TAR and AR 

Models Under Different TAR(1) and TAR(2) Processes and Sample Sizes 

TAR(2) Process with Parameters φ1p= 1.5, φ2p= -0.8, φ1n= -0.9, φ2n= 0 
EM T AL β0 SE1 φ1p φ2p φ1n φ2n R2 WFE FE1 FE2 FE3 

AR L -0.98 1.06 0.099 0.99 -0.56 0.99 -0.56 0.61 1.62 1.65 2.33 2.45
TARP L -0.50 -1.00 0.048 1.50 -0.80 -0.89 0.01 0.85 0.99 1.01 1.66 1.99
TARS L -0.89 1.06 0.099 1.32 -0.77 0.64 -0.38 0.68 1.47 1.43 2.06 2.34
AR S -0.94 1.06 0.229 0.98 -0.57 0.98 -0.57 0.61 1.57 1.69 2.41 2.50
TARP S -0.48 -0.98 0.115 1.49 -0.79 -0.85 -0.01 0.84 0.97 1.06 1.69 2.04
TARS S -0.86 1.06 0.229 1.29 -0.76 0.66 -0.41 0.67 1.43 1.49 2.16 2.43

Notes: The statistics are over 10000 models estimated on the basis of a similar number of simulated 

samples. EM refers to the type of model being estimated: AR is the standard autoregressive model; TARP 

is a TAR model estimated using the proposed ML-based method; and TARS is a TAR model estimated on 

the basis of the AR residuals. T is the sample size {L=large (T=500), and S=small (T=100)}. AL indicates 

the average maximum value reached by the corresponding mean log-likelihood function. β0, φ1p, φ2p, φ1n, 

and φ2n refer to the averages of the estimates for the intercept and the four autocorrelation process 

parameters, respectively. SE1 stands for the standard deviation of the 10000 slope parameter estimates. 

The R2 is computed as the square of the correlation coefficient between the within sample one-period-

ahead autoregressive predictions and the actual dependent variable values. WFE stands for the averages 

the within sample root mean square errors of the one-period ahead forecasts; and FE1, FE2, and FE3 refer 

to the root mean square errors of the one-, two- and three-period-ahead out of sample forecasts. 
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Table 3. Key Statistics of Models for Quarterly Brazilian Coffee Spot and U.S. Soybean Future Prices 

 
Final AR Model of Coffee Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 203.86 -1.255 1.136 -0.547 0.183 0.000 0.000 1.136 -0.547 0.183 0.000 0.000
SE 20.58 0.293 0.095 0.135 0.095     --     -- 0.095 0.135 0.095     --     -- 
PV 0.000 0.000 0.000 0.000 0.056     --     -- 0.000 0.000 0.056     --     -- 

MLFV=-412.63 WFE=24.15 R2=0.838 
Final TARP Model of Coffee Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 222.45 -0.995 0.776 -0.743 0.428 -0.488 0.000 0.953 0.000 0.000 0.000 0.000
SE     --     -- 0.154 0.190 0.195 0.134     -- 0.027     --     --     --     -- 
PV     --     -- 0.000 0.000 0.031 0.000     -- 0.000     --     --     --     -- 

MLFV=-378.67 WFE=19.60 R2=0.894 
Final TARS Model of Coffee Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 203.86 -1.255 1.222 -0.833 0.569 -0.357 0.000 0.872 0.000 0.000 0.000 0.000
SE     --     -- 0.132 0.200 0.203 0.138     -- 0.050     --     --     --     -- 
PV     --     -- 0.000 0.000 0.006 0.011     -- 0.000     --     --     --     -- 

MLFV=-391.06 WFE=22.66 R2=0.860 
Final AR Model of Soybean Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 685.32 -0.981 0.899 -0.194 0.000 0.000 0.000 0.899 -0.194 0.000 0.000 0.000
SE 40.15 0.570 0.094 0.095     --     --     -- 0.094 0.095     --     --     -- 
PV 0.000 0.088 0.000 0.043     --     --     -- 0.000 0.043     --     --     -- 

MLFV=-519.03 WFE=59.93 R2=0.622 
Final TARP Model of Soybean Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 725.15 -0.985 0.749 0.000 0.461 -1.036 0.816 0.985 0.000 -0.280 0.333 -0.299
SE     --     -- 0.109     -- 0.145 0.176 0.139 0.080     -- 0.105 0.125 0.089
PV     --     -- 0.000     -- 0.002 0.000 0.000 0.000     -- 0.009 0.009 0.001

MLFV=-500.42 WFE=50.86 R2=0.728 
Final TARS Model of Soybean Prices 

PR β0 β1 φ1p φ2p φ3p φ4p φ5p φ1n φ2n φ3n φ4n φ5n 
PE 685.32 -0.981 0.747 0.000 0.462 -1.035 0.808 0.892 0.000 -0.290 0.325 -0.277
SE     --     -- 0.083     -- 0.145 0.177 0.144 0.092     -- 0.107 0.126 0.089
PV     --     -- 0.000     -- 0.002 0.000 0.000 0.000     -- 0.008 0.011 0.003

MLFV=-501.18 WFE=51.22 R2=0.726 
 
 

Notes: PR, PE, SE and PV stand for parameter, parameter estimate, standard error estimate and p-value; 

MVLF is the maximum value reached by the log-likelihood function; WFE is the within sample root mean 

square error of the one-period ahead forecasts; and the R2 is computed as described under table 2. 

Autoregressive parameters that are statistically insignificant at the 20% level have been set equal to zero. 
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Table 4. Relative Frequencies of the Cycle Durations Implied by the Estimated TARP and AR Models 

for Brazilian Coffee and U.S. Soybean Prices  

TARP – Coffee Prices TARP – Soybean Prices Cycle Length 
(quarters) Upward Downward 

AR–Coffee 
Prices Upward Downward 

AR–Soybean 
Prices 

1 7.58% 21.84% 19.81% 37.63% 21.20% 25.47% 
2 3.51% 12.77% 18.39% 23.32% 10.75% 16.68% 
3 4.61% 9.20% 14.58% 6.51% 12.59% 12.80% 
4 7.92% 6.83% 10.34% 11.17% 5.00% 9.69% 
5 13.57% 5.47% 7.46% 8.14% 6.63% 7.66% 
6 18.73% 4.51% 5.81% 1.93% 6.05% 6.05% 
7 12.34% 3.75% 4.43% 2.40% 7.82% 4.77% 
8 7.20% 3.29% 3.68% 0.83% 5.98% 3.68% 
9 5.09% 2.86% 2.92% 0.47% 6.07% 2.90% 

10 3.56% 2.50% 2.42% 0.99% 4.43% 2.29% 
11 2.83% 2.25% 1.98% 0.45% 3.69% 1.73% 
12 2.27% 1.99% 1.51% 0.50% 2.54% 1.41% 
13 2.05% 1.77% 1.27% 0.78% 1.88% 1.13% 
14 1.72% 1.68% 1.01% 0.25% 1.30% 0.77% 
15 1.30% 1.40% 0.83% 0.39% 1.02% 0.65% 
16 1.16% 1.38% 0.69% 0.32% 0.73% 0.52% 
17 0.94% 1.23% 0.58% 0.18% 0.61% 0.44% 
18 0.69% 1.10% 0.42% 0.34% 0.44% 0.29% 
19 0.55% 1.00% 0.34% 0.23% 0.28% 0.21% 
20 0.45% 0.89% 0.31% 0.17% 0.22% 0.18% 
21 0.36% 0.81% 0.22% 0.28% 0.17% 0.14% 
22 0.28% 0.80% 0.19% 0.13% 0.13% 0.09% 
23 0.23% 0.78% 0.16% 0.13% 0.10% 0.08% 
24 0.26% 0.63% 0.13% 0.20% 0.08% 0.08% 
25 0.13% 0.65% 0.09% 0.10% 0.07% 0.05% 
26 0.14% 0.63% 0.10% 0.18% 0.05% 0.05% 
27 0.12% 0.57% 0.06% 0.14% 0.03% 0.04% 
28 0.08% 0.51% 0.04% 0.10% 0.04% 0.02% 
29 0.06% 0.48% 0.05% 0.18% 0.02% 0.02% 
30 0.04% 0.40% 0.03% 0.07% 0.03% 0.01% 
31 0.04% 0.38% 0.03% 0.08% 0.01% 0.01% 
32 0.03% 0.41% 0.02% 0.13% 0.01% 0.02% 
33 0.02% 0.36% 0.01% 0.06% 0.01% 0.01% 
34 0.03% 0.34% 0.01% 0.06% 0.01% 0.00% 
35 0.02% 0.29% 0.02% 0.09% 0.00% 0.01% 
36 0.00% 0.27% 0.01% 0.05% 0.00% 0.00% 

 
Note: The Gauss program used to compute these frequencies will be made available upon request.  
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Figure 1: Dynamics of a typical TAR(1) process with parameters 0.9 and 0
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Figure 2: Dynamics of a typical TAR(2) process with parameters 1.5, -0.8, 
-0.9, and 0.0
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Figure 3: Actual v.s. predicted and trend of quarterly Brazilian 
coffee prices under the asymmetric-cycle TAR model
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Figure 4: Actual v.s. predicted and trend of quarterly U.S. soybeans 
future prices under the asymmetric-cycle TAR model
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