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Bias and Efficiency of Uniform Bid Design in Contingent Valuation 
 
 
 
 

Abstract: While contingent valuation (CV) methods have experienced growing popularity 
for estimating the willingness to pay for nonmarket goods and services, optimal bid designs 
for CV that provide guidance in bid point placement often render themselves impractical by 
relying on pretest or prior information about the true distribution for willingness to pay.  
We investigate the use of a practical alternative to existing optimal or robust bid designs 
called the uniform design. Uniform design randomly draws bid points from a 
predetermined uniform distribution. Analytics and simulations show that the uniform 
design has higher low-bound of relative efficiency at 84 percent of D-optimum than a 
robust design. Simulations also demonstrate that uniform design outperforms other optimal 
designs when initial information about true parameters is poor and even outperforms robust 
designs when the true values of parameters are known. 
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A Uniform Experimental Design for Binary Contingent Valuation 
Response Models: A Comparison with D-optimal and Robust Designs 

 
 
1. Introduction 

Binary response experiments have been widely used in fields as different as biology 

and economics.  For example, in biological assay studies, clinical trial participants receive a 

randomly assigned ‘dose,’ and are then observed at some point in the future for their 

‘response’. In many cases, the response variable takes the form of a binary indicator:  alive 

or not, cancer-free or not.  The varying dose information combined with the binary 

response variable forms the necessary information to estimate the dose-response function.  

In economics, the contingent valuation method (CV) closely mimics the biological assay 

framework.  CV measures consumer willingness to pay (WTP) for goods or services for 

which traditional markets do not exist.  Hypothetical markets, in which survey participants 

must decide whether to purchase a good or service (binary response) at a randomly offered 

bid (dose), act as a proxy for market based decisions.  The dose-response function 

estimated from the survey responses gives a measure of WTP (or demand) for the good or 

service.  

Such examples describe the unique statistical problem of binary response 

experimental design. In previous literature, ad hoc designs or optimal design rules based on 

prior knowledge of the true response function have been used in choosing experimental 

design points. However, the bias of parameter estimates is analytically a function of 

experimental points and unknown true parameters (Copas 1988), and the choice of 

experimental points results in dramatically different point estimate (Cameron and Huppert 

1991, Cooper and Loomis, 1992, Kanninen 1995). While parameter estimates converge 

asymptotically to the true parameter, the standard error of parameter estimates still depends 

on both experimental design points and unknown true parameters (e.g. Abdelbasit and 

Plackett 1983, Sitter 1992). A pressing question in such binary response experiment 

becomes, what is the optimal set of dose from which the experimental point should be 

drawn and offered to subjects to get the most information about the population response 

function (Abdelbasit and Plackett 1983, Cameron and Huppert, 1991, Sitter 1992, Nyquist 
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1992, Sitter and Wu 1993a,b, Cooper 1993, Alberini 1995)? Furthermore, which set of dose 

provides the estimation result less sensitive to prior knowledge of true response function?  

In this paper, we propose a practical and viable alternative to existing experimental 

designs to solve the efficiency loss problem and to provide a practical design. The proposed 

experimental design focuses on the problem of designing the optimal bid set in 

dichotomous choice contingent valuation among applications to many fields. The new 

experimental design, named uniform design, draws experimental points from a pre-

specified continuous uniform distribution1. Researchers can implement an experiment by 

simply deciding the range of uniform distribution as 0 02.72µ σ±  where 0µ  is the initial 

information of the population mean of WTP and 0σ  is the initial information of the 

standard deviation of WTP. Boyle et al. (1988) suggest a similar continuous bid design 

named as the “method of complementary random numbers,” that constructs an empirical 

cumulative distribution function from prior information on the distribution of WTP. The 

difference between the uniform design and the method of complementary random numbers 

is that the uniform design selects random bid points from a predetermined uniform 

distribution instead of the empirical distribution of the method of complementary random 

numbers.  

We compare the efficacy of the uniform design with those of D-optimal design and 

Sitter’s robust design. D-optimal design is widely used as a benchmark bid design but it 

relies on the quality of information about the true parameter estimates to get optimal 

efficiency.  Sitter’s (1992) robust design aims to reduce the dependence on true parameters. 

Section 2 briefly reviews them and other existing experimental designs. Section 3 provides 

an analytical context for D-optimal, robust and uniform designs and section 4 compares 

them in terms of efficiency and relative efficiency. Section 5 shows the simulation result 

comparing experimental designs in contingent valuation study. Section 6 summarizes the 

analysis and provides further discussion. 

 

2. Overview 

                                                 
1 The uniform design draws upon the work of Lewbel et al. (2003) which assumes a continuous bid 
distribution to solve an identification problem in nonparametric estimation of willingness to pay in contingent 
valuation.   
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Suppose that we estimate willingness to pay (WTP) for a good (G) from individual 

responses to the stylized contingent valuation question:  Would you be willing to pay $bi 

for G? Individual responses are of the binary form: 1iy =  if i iWTP b>  (a ‘yes’ response) 

and 0iy =  otherwise (a ‘no’ response). In this dichotomous choice contingent valuation 

setting, the bid design problem is simply how to determine the set of ib ’s to get the most 

efficient estimates of the parameters of the willingness to pay function. 

To obtain maximum efficiency, numerous optimality criteria have been discussed in 

the statistical and experimental literature: e.g. A-, C- and D-optimality, Fiducial interval, 

and Mean Squared Error (MSE). All optimal criteria aim to minimize or maximize a 

variance-related criterion function of the relevant parameter estimates. For instance, A-

optimal design minimizes the trace of the inverse of the information matrix, i.e., trace of 

variance-covariance matrix (Sitter and Wu 1993a, Mathew and Sinha 2001). C-optimal 

design minimizes the variance or the asymptotic variance of the summary statistics of 

interest, such as mean or median of willingness to pay (Wu 1988, Ford et al. 1992). Instead 

of the asymptotic confidence interval, the Fiducial design minimizes the length of the 

fiducial interval proposed by Finney (1971) using Fieller’s theorem (Abdelbasit and 

Plackett 1983, Sitter and Wu 1993b, Alberini 1995). D-optimal design minimizes the 

volume of the confidence ellipsoid of parameter estimates by maximizing the determinant 

of the information matrix (Abdelbasit and Plackett 1983, Minkin 1987, Ford et al. 1992, 

Nyquist 1992, Mathew and Sinha 2001).  

Optimal designs, except the MSE-based design, typically consist of one, two or 

three bid values that depend on the correct model specification, true parameters of the 

underlying response function and the number of observations. The fundamental paradox of 

the optimal bid design literature is that the information required for achieving the optimum 

is exactly the information to be estimated. If such information is available, estimation is 

unnecessary (Haab and McConnell 2002). In practice, this fact implies that the efficacy of 

each design hinges on the quality of that prior information. Poor initial information of the 

true parameter results in loss of efficiency2.  

                                                 
2 Efficiency is defined as the ratio of the determinant of the information matrix of a design to the optimal 
determinant. The definition is discussed in detail in section 4. Abdelbasit and Plackett (1983) show the 
efficiency loss in optimal designs with poor information. 
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An obvious solution for efficiency loss due to poor initial information is a 

sequential design (Abdelbasit and Plackett 1983, Minkin 1987, Nyquist 1992). The 

sequential design divides the experiment into a series of sub-experiments. The bid design is 

updated after each iteration based on estimates of parameters garnered from the previous 

stage. Consequently, sequential designs have more design points than optimal designs. 

Successive updates improve the efficiency of the design for poor initial estimates 

(Abdelbasit and Plackett 1983) and the procedure can be designed more efficiently by 

considering how good the initial estimate turns out to be once the previous estimation is 

conducted (Minkin 1987). In spite of the intuitive appeal, however, the practicality of a 

sequential method in contingent valuation applications is still in question. 

Alternatively, Sitter (1992) introduces a minimax procedure to obtain designs robust 

to the uncertainty of the initial information. D-optimal design is a special case of the robust 

design when the experimenter is confident with his data. In general, the robust design, 

however, has more design points over wider range than optimal designs.  Sitter argues that 

“the less knowledge of the parameter values one has prior to the experiment, the more 

spread out the design should be and the more design points should be used.” Although 

Sitter’s design is robust to poor initial parameter estimates and the implementation for a 

specific application is straightforward, the robust design relies critically on the 

experimenter’s confidence about the quality of the information. 

 

3. The Value of Initial Information in Experimental Designs 

To demonstrate the effect of poor initial information on experimental designs, we 

first derive the general expression for the determinant of the information matrix for a 

standard CV problem. Suppose that iWTP  for G has a constant mean (µ) and an additive 

i.i.d. error component ( iε ) following a logistic distribution with zero mean and constant 

variance ( 2σ ): i iWTP µ ε= + . The probability of a “yes” response is 

(1)      ( ) [ ] ( )( )Pr Pri i i i iyes b F bµ ε β µ= + > = −  

where ( ) ( ) ( ) 1
exp 1 expi i iF t t t

−
⎡ ⎤= +⎣ ⎦ , ( )ii bt −= µβ  and β is the inverse of the standard 

deviation. Then, the log likelihood function of binary response becomes 
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( ) ( ) ( ){ }log 1 ln 1 lni i i i
i

L y F t y F t⎡ ⎤= − − +⎣ ⎦∑  

where iy  is the binary response vector.  The analytics of the design problem are simplified 

for the case of the logistic distribution by taking advantage of the logistic relation: 

( ) ( ) ( )( )1f t F t F t= − . Define a weight iw  as 

(2)     ( )
( ){ }2

exp

1 exp
i

i

i

t
w

t
≡

+
, 

then the information matrix of the log-likelihood function becomes 

(3)    ( )
( )

( ) ( )

2

2,
i i i

i i

i i i i
i i

w w b
I

w b w b

β β µ
µ β

β µ µ

⎡ ⎤−
⎢ ⎥

= ⎢ ⎥
− −⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑
. 

Most of optimal designs choose the bid-vector to optimize criteria functions derived 

from the information matrix.  D-optimal design maximizes the determinant of the 

information matrix since the determinant represents the volume of the inverse the k-

dimensional variance-covariance. When the number of bid points is J and observations (N) 

are distributed evenly across the J bid points, the determinant of the information matrix 

becomes 

(4)         ( ) ( ) ( )
2

2

1 1
det ,

2

J J

i j i jJ
i j

n
I w w b b

β
µ β

= =

⎡ ⎤ = −⎣ ⎦ ∑∑ . 

where n=N/J.  The determinant in equation (4) depends on the squared distance between 

each pair of bid points, the weight evaluated at each point, and the true parameter β.  The 

weight is also a function of true parameters { },µ β . 

In application of bid designs to CV, the researcher chooses actual bid points by 

selecting normalized design points id  from a pre-specified bid distribution and then 

calculating the actual bid points based on id  and the prior information 0µ  and 0β  about the 

true parameter values3: 

(5)     0 0/i ib dµ β= + . 

                                                 
3 Most practitioners directly choose bi when implementing a CVM survey.  For generality in design, the 
optimal design literature focuses on choosing the normalized bid points, di.  Conditional on the prior 
information, there is a one-to-one mapping between normalized bid points and actual bid points. 
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By substituting (5) into (4) and using the definition of the weight in the equation (2), the 

determinant of a kk-design with J points becomes4 

(6)      ( ){ } ( ) ( )
22

0
1 10 0

1det exp exp
2

J J
i j

J i j
i j i j

d d
n d d

A A
β ββ µ µ
β β= =

⎧ ⎫−⎡ ⎤⎛ ⎞ ⎧ ⎫⎪ ⎪= − +⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠ ⎩ ⎭⎪ ⎪⎣ ⎦ ⎩ ⎭

∑∑  

where { } ( ){ }
0 0exp expk kA dβ

β β µ µ= + − . The determinant of any symmetric design is 

expressed as a function not only of the choice of design points ( id ), but also of the quality 

of the initial information through ( )0β µ µ−  and 0/β β . From equation (6), the 

determinant of the symmetric two-point design is expressed by5 

(7)         ( ){ }
2

0
0

0

det expD
Nd
AB

β β µ µ
β

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

where ( ) ( ){ }
0 0 0exp expA dβ

β β µ µ= + − and ( ) ( ){ }
0 0 0exp expB dβ

β β µ µ= − + −  and 0d±  

are two symmetric design points. When the researcher has the correct prior information 

about µ and β, the two-point design has its maximum determinant of 2 25.01 10 N−⋅  at 

0 1.54d =  for the logistic distribution, which is called D-optimum6.  

For equally spaced kk-designs, the determinant in equation (6) can be expressed 

using the order of bids and the distance since the distance between adjacent points is fixed. 

Let Jh  be the distance between adjacent points of J bid points and suppose that design 

points are rearranged in the order from the lowest. Then, using ( )i j Jd d i j h− = − , 

( )1i j Jd d i j J h+ = + − − , and ( )1 / 2i Jd i J h⎡ ⎤= − +⎣ ⎦ , the determinant of Sitter’s robust 

design becomes 

(8) ( ){ } ( ) ( )
22

0
1 10 0

1det exp exp 1
2

J J

R J J
i j i j

i j
nh i j J h

A A
β ββ µ µ
β β= =

⎧ ⎫⎡ ⎤ −⎛ ⎞ ⎧ ⎫⎪ ⎪= − + − −⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎜ ⎟
⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎩ ⎭⎣ ⎦ ⎩ ⎭

∑∑  

where ( ){ } ( ){ }
0 0exp 1 / 2 expk JA k J hβ

β β µ µ⎡ ⎤= − + + −⎣ ⎦ .  

                                                 
4 A kk-design has k design points symmetric around µ and equal number of observations at each point. 
5 The formula can be easily derived from equations (4) and (5). See Abdelbasit and Plackett (1983) 
6 Kalish and Rosenberg (1978) showed, in their unpublished technical report, that two-point designs 
symmetric with respect to µ are optimal for several design criteria including D-optimality. Also, see Ford et al. 
(1992) for the optimal probability mass point of various distributions. 
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When bid points are randomly selected from a continuous distribution, the 

determinant of information matrix in equation (3) is expressed by an asymptotic 

determinant similarly to the case of constant information design in Abdelbasit and Plackett 

(1983). Let the asymptotic density of b be ( )h b  and take the limit of the information matrix 

as J →∞  so that the summation is replaced by the integral and jn  by ( )h b db  in the 

information matrix: 

( )
( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

2

2
,

w b h b db b w b h b db
I

b w b h b db b w b h b db

β β µ β µ β µ
µ β

β µ β µ µ β µ

⎡ ⎤− − −
⎢ ⎥=
⎢ ⎥− − − −⎣ ⎦

∫ ∫
∫ ∫

. 

Let also t be ( )bβ µ −  and substitute the asymptotic density function with a continuous 

uniform density function, then the asymptotic determinant becomes 

(9)  ( ) ( ){ } ( ){ } ( ){ }2
2

2

1det ,I w t dt w t t dt w t tdtµ β
β

⎡ ⎤= −⎢ ⎥⎣ ⎦∫ ∫ ∫  

since dt dbβ= − . Note that ( )w t  and ( ) 2w t t  are symmetric around zero. While the 

constant information design has a determinant independent of true parameters when the 

design measure is uniform (Abdelbasit and Plackett, 1983), the determinant in equation (9) 

is inversely dependent on the true variance. Equation (9) implies that the experimental 

design with a continuous uniform distribution for its bid selection provides more 

information as the true WTP is widely distributed. 

Since the new experimental design utilizes a continuous uniform design, we name 

equation (9) by the asymptotic determinant of uniform design. In uniform design, poor 

information in the choice of bid range by researcher distorts the asymptotic determinant of 

the information matrix. Let the normalized endpoints of uniform distribution be α± . Then, 

the nominal bid range becomes 0 0/b µ α β= −  and 0 0/b µ α β= + . Plugging two endpoints 

into equation (9) provides the asymptotic determinant of uniform design conditional on 

initial information. Researcher’ problem is how to choose α to maximize the optimal 

criterion function, which is explained in the next section.  

 

4. Efficiency and Relative Efficiency of Uniform Design 
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Following Abdelbasit and Plackett (1983), the loss of information of uniform design 

due to poor initial information is measured in terms of efficiency. The efficiency of 

experimental design is defined by the ratio of the determinant of a design evaluated at 0µ  

and 0β  to D-optimum. For the comparison purpose, the determinant of D-optimal design 

and its D-optimum are also expressed in the asymptotic form. Note that the determinant of 

D-optimal design in the equation (7) is the square of rectangular area with the height of 

( ) ( ){ }0 0 0/ exp /d ABβ β β µ µ−  and the width of N and that D-optimum is 2 25.01 10 N−⋅ . 

Suppose that true parameters are available for initial information. Then, by taking the same 

sample size as uniform design, the asymptotic D-optimum becomes ( )2
0.1b .7 Now, the 

asymptotic efficiency of uniform design is defined as the ratio of the asymptotic 

determinant of uniform design to the asymptotic D-optimum: 

(12)  ( ){ } ( ){ } ( ){ }
2 2

21
0.1

b b b

U b b b
Eff w t dt w t t dt w t tdt

bβ
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫ ∫ . 

The integration in the asymptotic efficiency is computationally calculated for a given range 

of design.  

The optimal bid range of uniform design is defined by the range maximizing the 

asymptotic efficiency. Figure 1 and Table 1 show computationally and through simulation 

that given the true parameter, the maximum efficiency of uniform design is 84 percent of 

D-optimum when the range of uniform distribution is approximately [ ]2.72,  2.72− . The 

optimal range of uniform design corresponds to 6.2th and 93.8th percentiles in the logistic 

distribution. In considering that D-optimal design has design points at 17.6th and 82.4th 

percentiles of the logistic distribution, uniform design suggests wider range for the bid 

distribution8. Narrowing the range of the uniform distribution reduces the efficiency more 

rapidly than does broadening the range.  

[Figure 1 located here]  

[Table 1 located here]  
                                                 
7 As the determinant of D-optimum depends only on the sample size N, the asymptotic determinant of D-
optimum depends only on the range. 
8 The result that uniform design has wide range of bid is consistent with previous studies suggesting wider 
range for the robust estimate (Kanninen 1995 and Alberini 1995). However, uniform design provides much 
wider than others provide.  
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Given initial estimates of the mean and variance of WTP, the optimal choice of 

uniform bid range may be 0 0 02.72 /b µ β= −  and 0 0 02.72 /b µ β= + . Plugging two 

endpoints into equation (12) provides the asymptotic efficiency of the optimal uniform 

design conditional on initial information. By definition, the asymptotic efficiency shows the 

relative increase of confidence volume of parameter estimates due to poor information. 

Poor information deteriorates the asymptotic efficiency of uniform design through 

( )0β µ µ−  and 0/β β . Figure 2 exhibits the asymptotic efficiency with poor initial 

information. The maximum efficiency of uniform design is 84 percent at correct initial 

information where D-optimal design has the maximum determinant, and poor information 

of 0µ  reduces symmetrically the asymptotic efficiency given 0/β β .  

[Figure 2 located here] 

To compare the efficacy of uniform design with other designs under poor initial 

information, efficiencies of D-optimal and robust designs are derived below. From equation 

(7) and D-optimum, the efficiency of D-optimal design is expressed as 

(10)  ( ){ }
2

0 2 2
0

detexp
5.01 10

D
D

CEff
A B N

β β µ µ
β −

⎡ ⎤⎛ ⎞
= − =⎢ ⎥⎜ ⎟⋅ ⋅⎢ ⎥⎝ ⎠⎣ ⎦

. 

where A and B are defined in equation (7), and ( ) ( ){ }0 01 exp 1 expC d d⎡ ⎤ ⎡ ⎤= + ⋅ + −⎣ ⎦ ⎣ ⎦  and 

0 1.54d = . Note that the efficiency of D-optimal design does not depend on the sample size9. 

As shown by Abdelbasit and Plackett (1983), the effect of poor initial estimates of µ is 

symmetric and overestimating β results in a greater loss of efficiency than underestimating. 

As the size of the true β is larger, i.e., as the true variance becomes smaller, the effect of 

poor information is more serious.   

The second design scheme for the comparison with uniform design is Sitter’s robust 

design with D-optimal criterion, which is one of equally spaced kk-design. From equation 

(8) and D-optimum, the efficiency of Sitter’s robust design is expressed as 

                                                 
9 The efficiency (standard error) of parameter estimate increases as the number of sample size increases. 
However, since the efficiency of a design, by definition, represents the relative size of information matrix, the 
number of different bid points instead of the sample size affects the efficiency through the denominator and 
summation.  
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(11)   
( ){ } ( ) ( )

22

0
1 10 0 0

2 2

1 exp exp 1
2

det
5.01 10

J J
J

R J
i j i j

R

i jhCEff i j J h
J d A A

N

β ββ µ µ
β β= =

−

⎧ ⎫⎡ ⎤ −⎛ ⎞ ⎧ ⎫⎪ ⎪= − + − −⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎜ ⎟
⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎩ ⎭⎣ ⎦ ⎩ ⎭

=
⋅

∑∑
. 

Like the efficiency of D-optimal design, the efficiency of Sitter’s design, in fact the 

efficiency of equally spaced kk-design, does not depend on the sample size but on total 

number of different bids, distance between adjacent bid points and poor initial information. 

Table 2 reports the efficiency of Sitter’s robust design in equation (11) when the researcher 

has correct information ( 0µ µ=  and 0β β= )10. Table 2, therefore, shows the result of the 

best case contrary to the Sitter’s table 1 that reports the worst case. By construction, Sitter’s 

robust design with correct information has the highest efficient when experimental points 

are evenly distributed in two D-optimal design points and loses the efficiency as it has more 

bid points.  

[Table 2 located here]  

Table 3 exhibits the efficiency contour of Sitter’s design when the prior information 

deviates from the true value. By construction, the top-left figure of Table 3 is the efficiency 

of D-optimal design. As can be seen in Table 3, the highest efficiency of robust design does 

not correspond to the situation when the researcher has the true information. For example, 

the robust design with J = 4 and h = 2.23 at / 1.5U Lβ β =  and 2.0µ∆ = ,  has 65.4 percent 

efficiency of D-optimum at correct initial information, but the efficiency increases as 0/β β  

is smaller than one and 0µ  is close to µ. Given 0/β β , the poor information of 0µ  has the 

symmetric effect on the efficiency in all cases.  

[Table 3 located here] 

Figure 2 and Table 3 show that the asymptotic efficiency of uniform design is 

relatively flat compared to that of D-optimal design, which implies that problem from poor 

initial information is not as serious in the uniform design as in the D-optimal design. 

Compared with robust design, uniform design has lower efficiency when initial information 

is correct or close to correct, but efficiency of robust design deteriorates more rapidly than 

                                                 
10 The number of observation in point is normalized to be one when total experimental points are 13, thus n is 
the relative size of observation in each design.  



 

 11

uniform design in many cases. More seriously, however, the efficacy of robust design relies 

heavily on the confidence of researcher. 

For more clear comparison, we define the relative efficiency of a design by the ratio 

of the efficiency of a design to the efficiency of D-optimal design, i.e. the determinant of a 

design with 0µ  and 0β  to the determinant of D-optimal design evaluated at the same 

information rather than D-optimum: 

/ det / detJ J D J DRff Eff Eff= = . 

The relative efficiency of robust designs, therefore, is the ratio of equation (8) to equation 

(7) with 0 1.54d =  or the ratio of (11) to (10). The asymptotic relative efficiency of uniform 

design is defined as the ratio of the asymptotic efficiency of the uniform design to the 

asymptotic efficiency of D-optimal design. By definition, the relative efficiency implies 

how slowly a design loses the efficiency compared with D-optimal design as initial 

information becomes worse.  

Figure 3 and Table 4 show the relative efficiency of uniform design and robust 

design, respectively. The relative efficiency of D-optimal design is always one by definition. 

Figure 3 implies that uniform design outperforms D-optimal design especially when the 

initial information about µ is poor. The minimum of the asymptotic relative efficiency of 

uniform design is 84 percent at the point of the maximum efficiency, i.e. at 0µ µ=  and 

0β β= . The robust design has relatively higher advantage than D-optimal design in most 

cases, as the initial information is getting poorer. However, uniform design guarantees the 

lower bound of relative efficiency at 84 percent even though uniform design has lower 

relative efficiency than robust design when initial information seriously deviates from the 

true value.  

[Table 4 located here] 

[Figure 3 located here] 

 

5. Simulation using Albemarle and Pamlico Sounds Data 

In this section, by simulating of true willingness to pay from actual survey data, we 

compare D-optimal, robust, uniform designs as well as an ad hoc design using actual data 

in Huang, Haab and Whitehead (1997)’s contingent valuation study. The purpose of the 
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study was to estimate willingness to pay for a water quality improvement in the Albemarle 

and Pamlico Sounds in eastern North Carolina. In the study, the random-digit-dial 

telephone survey asked subjects whether they would be willing to vote for a project to 

restore Albemarle and/or Pamlico Sounds water quality to 1980 levels at a predetermined 

price (bid).  An ad hoc experimental design in the original study randomly selected bid 

values from the vector {$100, 200, 300, 400}. The estimated result from actual data was 

( )ln 3.8623 0.1034 0.3580WTP INC D ε= + ⋅ − ⋅ +  and ( )2~ 0,0.3047Nε −  

where INC is income level and D is a dummy variable for Pamlico sound only.  

With assumption that the log willingness to pay in the above is the true willingness 

to pay, the process of simulation is as follows. Each bid design selected bid points based on 

population mean and variance of log willingness to pay: ( )ln 3.99E WTP µ⎡ ⎤ = =⎣ ⎦  and 

10.3047σ −= .11 For Sitter’s robust design, the simulation chose the design scheme with 

/ 1.5U Lβ β =  and 2.0µ∆ = . Consequently, D-optimal bid vector was {$1.29, $2288.12} 

and optimal uniform distribution had a range of [$0.40, $7448.07]. Robust design bid vector 

was {$0.13, $7.22, $408.14, $23077.07}. For each bid design including the original ad-hoc 

design, hypothetical binary responses were generated by comparing the simulated true 

willingness to pay with randomly assigned bid points. The simulation was conducted with 

100 iterations. 

[Table 5 located here] 

Table 5 shows the estimation results for each of the four simulated models. The 

table also reports determinants and relative efficiency. In this simulation, D-optimal design 

was expected to provide the most efficient parameter estimates, since the log willingness to 

pay is a linear model, error term is symmetric in terms of log value, and initial information 

coincides with the true information. Relative efficiencies, however, show that uniform 

design yields the highest efficiency followed by D-optimal and the original ad-hoc design. 

The log linear specification of the true model may explain the reason of higher efficiency of 

uniform design over D-optimal design. Robust design has the lowest relative efficiency, 

which may be due to too generous confidence of researcher about the quality of initial 

                                                 
11 To adjust the analytical solution of the logit model for the normal distribution, bid points of robust and 
uniform designs were multiplied by 3 /π . D-optimal bid points are ( )exp 1.14µ σ±  following previous studies. 
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information. The original ad-hoc design has higher efficiency than the robust design even 

though the original design is a one-sided design (i.e., all bids are greater than the mean of 

expected log willingness to pay). Uniform design also outperforms other bid designs in 

terms of variance of parameter estimates (A-optimality) and the point estimate of the 

median willingness to pay.  

 

6. Discussion and Conclusions 

Both analytically and through Monte Carlo simulations, we compared the 

performance of uniform bid design with D-optimal design and Sitter’s robust designs.  D-

optimality was chosen for the optimal criterion because of its popularity and usefulness. By 

construction, optimal bid designs provide optimal efficiency when the underlying true 

distribution and parameters are known. Unknown true parameter values and uncontrollable 

response rates to surveys bring difficulty in applying optimal designs to actual survey. 

Sitter’s robust design or ad hoc designs employed in the actual studies reduce the risk from 

reliance on initial information by dispersing design points over wider ranges than D-

optimal design. While Sitter’s design is robust to poor information, the design point varies 

depending on researcher’s belief about the quality of information, which generates quite 

different design efficiency. Response rate is another problem of robust design as well as to 

other optimal designs. 

Analytics and simulations show that uniform design provides higher minimum 

efficiency than robust designs and outperforms the optimal design with poor initial 

information12. Uniform design scatters bid points by randomly drawing design points from 

a predetermined uniform distribution, so that each respondent receives a different bid point. 

Perhaps, this design scheme could be pointed out as the biggest drawback of uniform 

design since uniform design requires a different copy of the survey for each respondent, 

which increases the survey cost. However, additional burden of uniform design is 

outweighed by the potential statistical cost or extensive pretest information of ad hoc 

design and optimal or robust designs. Consequently, uniform design reduces the 

dependence of estimation result on design structure and poor information, guarantees a 

                                                 
12 Simulation results also show that uniform design does not lose efficiency more than other designs under the 
A- and other optimality criteria. 
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higher minimum efficiency in any situation, and relieves the difficulty of researcher in 

choosing arbitrary bid values. Since a design independent of the poor initial information is 

unavailable, uniform bid design offers a practical and robust alternative to existing bid 

designs for researchers facing strict budget constraints, or performing a pre-survey to gather 

better information for the next stage. Furthermore, uniform design provides binary data 

continuous with respect to bid, enabling the researcher to apply more flexible non- and 

semi-parametric estimation techniques. 
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Figure 1: Efficiency of Uniform Design with Different Bid Range 
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Figure 2: The Asymptotic Efficiency of Uniform Design 
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Figure 3: The Relative Efficiency of Uniform Design 
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Table 1: Different Range of Uniform Distribution with 1,000 Iterations, N = 320 

d  1.72 2.22 2.72 3.22 3.72 

µ 100.23 
(3.80) 

100.01 
(3.96) 

99.89 
(4.35) 

100.23 
(4.42) 

99.99 
(4.60) 

σ 30.27 
(4.37) 

29.95 
(3.72) 

29.98 
(3.35) 

29.80 
(3.28) 

29.91 
(3.11) 

Eff 67.57 80.52 84.03 81.10 75.00 

The true parameters are 100µ =  and 30σ = .  
The parenthesis reports the standard error in 1,000 iterations 
Eff=Efficiency relative to D-Optimum. 
 
 
Table 2: Efficiency of Sitter’s Robust Design using D-optimality Criterion 

  µ  
/U Lβ β   0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

1.0 J 2 2 2 3 3 3 4 4 4 4 
 h 3.09 3.15 3.35 2.53 2.99 3.46 2.80 3.17 3.52 3.86 
 Eff 1 0.9993 0.9883 0.7500 0.6165 0.4847 0.4907 0.4075 0.3435 0.2917
1.25 J 2 2 3 3 3 4 4 4 5 5 
 h 2.75 2.67 1.86 2.30 2.77 2.31 2.86 3.03 2.57 2.84 
 Eff 0.9788 0.9673 0.8638 0.8074 0.6815 0.6291 0.5216 0.4369 0.3702 0.3055
1.5 J 2 2 3 3 4 4 4 5 5 6 
 h 2.50 2.41 1.69 2.15 1.86 2.23 2.57 2.23 2.46 2.22 
 Eff 0.9342 0.9119 0.8544 0.8368 0.7702 0.6543 0.5518 0.4724 0.4006 0.3562
2.0 J 2 2 3 4 4 5 5 6 6 7 
 h 2.12 2.02 1.50 1.40 1.76 1.61 1.85 1.72 1.87 1.76 
 Eff 0.8188 0.7795 0.8158 0.8547 0.7979 0.7134 0.6149 0.5321 0.4709 0.4034
2.5 J 2 3 3 4 5 5 6 7 7 8 
 h 1.86 1.18 1.38 1.34 1.29 1.52 1.44 1.38 1.52 1.46 
 Eff 0.7103 0.6767 0.7746 0.8535 0.8240 0.7490 0.6627 0.5796 0.5077 0.4400
3.0 J 2 3 4 4 5 6 7 8 8 9 
 h 1.66 1.07 .93 1.28 1.23 1.20 1.17 1.16 1.27 1.25 
 Eff 0.6145 0.6085 0.7133 0.8481 0.8368 0.7749 0.6971 0.6082 0.5412 0.4661
3.5 J 2 3 4 5 6 7 8 9 10 11 
 h 1.51 .98 .90 .96 .98 .99 .99 1.00 .98 1.00 
 Eff 0.5381 0.5466 0.6927 0.8304 0.8416 0.7908 0.7173 0.6297 0.5669 0.4817
4.0 J 2 3 4 5 6 7 8 10 11 13 
 h 1.38 .90 .88 .92 .94 .95 .96 .87 .89 .81 
 Eff 0.4701 0.4879 0.6783 0.8175 0.8456 0.8077 0.7959 0.6532 0.5673 0.5131

µ∆  is defined as the confidence range of the mean of WTP such that 
0Lβ µ µ µ∆− ≤ , where Lβ  is the lower 

bound of β that the researcher believe. 
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Table 3: Efficiency of Sitter’s Design when initial information is poor 

  /U Lβ β   
µ 1 1.5 2.5 

0 

0.1

0.1
01

0.1

0.1
0.1

0.20.2
0.2

0.2

0.2
0.2

0.30.3
0.3

0.3

0.3
0.3

0.40.4
0.4

0.4

0.4
0.4

0.50.5
0.5

0.5

0.5
0.5

0.60.6
0.6

0.
6

0.6
0.6

0.6

0.70.7

0.7

0.7
0.7

0.7

0.8

0.80.8

0.8

0.8
0.9

0.9
0.9

0.9

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

 

0.1
0.1

0.1

0.1
0.1

0.1

0.2
0.2

0.2

0.2

0.2
0.2

0.3
0.3

0.3

0.3

0.3
0.3

0.4
0.4

0.4

0.4

0.
4

0.4
0.4

0.4

0.5
0.5

0.5

0.5

0.5
0.5

0.6
0.6

0.6

0.6

0.6 0.6

0.70.7

0.7

0.7
0.7

0.80.8

0.
8

0.8 0.8

0.90.9

0.9
0.9

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

0.1
0.1

0.1

0.1

0.1
0.1

0.2
0.2

0.2

0.2

0.2

0.2
0.2

0.2

0.3
0.3

0.3

0.
3

0.3

0.3

0.4
0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.
5

0.5
0.5

0.6
0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.8

0.
8

0.8

0.9

0.9

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

1.0 

0.1
0.1

0.1
0.1

0.20.2
0.2

0.2
0.2

0.2

0.3
0.3

0.3

0.3
0.3 0.3

0.40.4
0.4

0.4
0.4 0.4

0.5
0.5

0.5

0.5
0.5 0.5

0.6

0.60.6

0.6

0.6

0.60.6

0.6

0.7

0.7
0.7

0.7

0.7
0.7

0.8

0.8
0.8

0.8
0.8

0.9

0.9
0.9

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

 

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2
0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.4
0.4

0.4

0.4

0.4

0.4
0.4

0.5
0.5

0.5

0.
5

0.5

0.5
0.5

0.6
0.6

0.6

0.6

0.6
0.6

0.7

0.7

0.7

0.7 0.7

0.8

0.8

0.
8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

0.1

0.1

0.1

0.1

0.1

0.1

0.2
0.2

0.2

0.2

0.2

0.2
0.2

0.3
0.3

0.3

0.3

0.3

0.3

0.3

0.4
0.4

0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.5

0.5

0.5
0.5

0.6
0.6

0.6

0.6

0.6

0.7
0.7

0.7

0.7

0.8

0.8
0.8

β / β0
β 

* 
( µ

 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

2.0 

0.1

0.1

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4
0.4

0.4

0.4

0.4
0.4

0.4

0.5

0.5 0.5

0.
5

0.5
0.5

0.6
0.6

0.
6

0.6
0.6

0.7
0.7

0.7
0.7

0.8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

 

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4
0.4

0.5
0.5

0.5

0.5

0.50.5

0.5

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.
7

0.7

0.7

0.8

0.8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.4
0.4

0.4

0.4

0.4
0.4

0.5
0.5

0.5

0.5

0.5
0.5

0.6

0.6 0.6

0.6

0.60.6

0.6

0.7

0.70.7

0.7

0.7

0.8

0.8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

3.0 

0.
2

0.2

0.
2

0.2

0.3

0.3

0.
3

0.3

0.
3

0.4

0.4

0.
4

0.4

0.4

0.4

0.5

0.
5

0.50.5

0.6

0.
6

0.6

0.
7

0.7

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

 

0.2

0.2

0.3

0.3

0.3

0.
3

0.3

0.4

0.4

0.
4

0.4

0.4

0.4

0.5 0.5

0.5

0.5
0.5

0.6

0.6

0.60.6

0.7

0.7

0.7

0.8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

0.1
0.2

0.2

0.3

0.3

0.3

0.3

0.4
0.4

0.4

0.4

0.40.4

0.4

0.5
0.5

0.
5

0.5

0.5

0.5

0.6
0.6

0.6

0.6
0.6

0.7
0.7

0.70.7
0.8

0.8

β / β0

β 
* 

( µ
 - 
µ 0

)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-3

-2

-1

0

1

2

3

 

 



 

 21

Table 4: Relative Efficiency of Sitter’s Design 

  /U Lβ β   
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Table 5: Estimation Result with Albemarle and Pamlico Sounds Data 

 True D-optimal Robust Original Uniform 

Constant 3.86 4.11 
(.40)* 

3.45 
(.47)* 

4.05 
(.37)* 

4.20 
(.35)* 

INC 0.10 -0.05 
(.09) 

0.05 
(.10) 

0.09 
(.06) 

-0.03 
(.08) 

D -0.36 -0.29 
(.37) 

-0.16 
(.41) 

-0.17 
(.24) 

-0.46 
(.33) 

ln(Bid) 0.30 0.34 
(.02)* 

0.30 
(.02)* 

0.42 
(.09)* 

0.32 
(.02)* 

Rff  100 45.81 59.27 122.66 

Mean 12340.51 
(4682.27)** 3256.79 9943.71 1235.81 5576.14 

Median 56.60 45.80 
(31.56  64.61) 

34.03 
(22.49  50.52) 

70.59 
(41.72 112.59) 

48.94 
(34.36  66.30) 

* Estimates are statistically significant with 95% confidence level. 
** The sample average of WTP 
 


