
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 

A Semiparametric Test for Heterogeneous Risk 
 
 
 
 
 

Author 
Stephen M. Stohs 

National Marine Fisheries Service 
8604 La Jolla Shores Drive 

La Jolla, CA 92037-1508 
Stephen.Stohs@noaa.gov 

 
 

 
 
 

Selected Paper prepared for presentation at the American Agricultural Economics 
Association Annual Meeting, Long Beach, California, July 23-26, 2006 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2006 by Stephen M. Stohs.  All rights reserved.  Readers may make verbatim 
copies of this document for non-commercial purpose by any means, provided that this 
copyright notice appears on all such copies. 



A Semiparametric Test for Heterogeneous Risk

Stephen M. Stohs

May 31, 2006

Introduction

Various empirical settings feature repeated exposure to a risk that leads to

a binary classification at the observation level. The standard modeling ap-

proach treats the outcomes as a series of Bernoulli trials, assigning a random

variable equal to 1 for the outcome which is classified as “success” and 0 for

the outcome which is classified as “failure.“ If the observations can be fur-

ther classified by some natural grouping into clusters of small size, a question

arises whether the probability of success is constant across clusters, or if some

clusters face a significantly higher risk of success than others, warranting a

less restrictive model which accommodates heterogeneous risk.

I consider two cases which fit the above description. The first example

was suggested by a mentor in graduate school, who conjectured that the

large number of sons among his offspring suggested that nonrandom factors

may play a role in gender determination. To investigate this conjecture,
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we can begin by thinking of gender determination as a random experiment,

analogous to a Bernoulli coin toss, which begins with fertilization of the egg

by a gamete (from the father) possessing either an X or a Y chromosome and

ends with the birth of either a daughter or a son. Under the homogeneous

risk assumption, the chance for a child of either gender is like an independent

coin toss with constant and homogeneous probability of female birth across

couples. Under the alternative hypothesis of heterogeneous risk, the gender

determination process is heterogeneous, with some couples at greater risk of

bearing sons, and other couples at greater risk of bearing daughters.

A second example, which potentially has general implications for man-

aging economic production activities that pose risk to endangered species,

arises in the context of incidental take of protected species by commercial

fishermen. For an example, I consider California’s large-mesh drift gillnet

commercial fishery for swordfish and thresher shark (California DGN fish-

ery). A drift gillnet fishing trip consists of a number of sets on the range

from 1 to 20. Each set involves lowering a net into the water for about twelve

hours then hauling it back up to retrieve the catch. The sets are roughly uni-

form with respect to duration and gear type and may each be regarded as one

day’s worth of fishing effort. If an endangered leatherback turtle is entangled

more than one hour before the end of the set, it is virtually certain to die of

suffocation.

Empirical evidence suggests that after controlling for geography and gear

type, a reasonable first approximation to the set-level risk of leatherback
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turtle take is provided by a Poisson distribution with homogeneous risk.

However, the fact that a few trips experience multiple leatherback takes

while many others experience none raises the question of whether some trips

face significantly higher leatherback take risk than others. The evidence is

confounded by variation in the number of sets per trip, raising the possibility

that trips with multiple leatherback takes may simply reflect greater risk

exposure.

A standard approach to testing the homogeneous risk hypothesis is to use

a Chi square test based on the observed and expected number of successes

within each cluster. However, the rule of thumb for using a Chi square

test suggests the number of expected observations under the null hypothesis

within at least most of the observation units should be five or more (Lindgren

1976), which generally will be far from the case if the data features a large

number of clusters of small size. The Chi square test is known to produce

better results when the sample size is at least four or five times the number

of cells, and if the number of clusters is large relative to the cluster size, this

is unlikely to be the case.

To test for heterogeneous risk when the data consists of many clusters of

small size, I have developed an asymptotically valid semiparametric test of

the null hypothesis that risk is homogeneous across clusters. Under the null

hypothesis, I estimate the probability of success as the sample proportion

of successes in the data. In order to properly account for the influence of

cluster size variation on the number of successes, I assume that the number
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of successes within a cluster is binomially distributed conditional on cluster

size, with the same binomial parameter applying to all clusters. Then I use

the empirical distribution of cluster size to compute an expected number

of successes for each cluster size present in the data. Pearson’s chi square

goodness-of-fit test is applied to compare the expected and observed number

of successes for each cluster size. A significant chi square statistic leads to

a rejection of the homogeneous risk hypothesis in favor of the heterogeneous

risk alternative.

My statistical test will be demonstrated on two data sets which are repre-

sentative of the examples described above. The first is a sample of the number

of male and female siblings within a collection of families for students in a

large econometrics course at the University of California - San Diego. The

homogeneous risk hypothesis is supported if the numbers of children of each

gender reflect a collection of binomial distributions mixed by the distribution

of family size. Too many families with excessively large proportions of sons

or daughters will lead to a rejection in favor of the hypothesis that gender

determination risk is heterogeneous across families.

The second data set consists of a historical collection of trip-level data

for a geographically limited portion of the California drift gillnet fishery over

the period from 1990-2005, which includes information on fishing effort (the

number of sets1) and the number of incidental leatherback takes on each

1A drift gillnet set consists of lowering the net into the water and soaking it over a
period of about 10 hours, then hauling the catch on board the fishing vessel.
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trip. The risk of leatherback take on any individual set is very small, and is

closely approximated by a Poisson random variable with homogeneous take

risk at the set level. However, some trips resulted in more than one set with

leatherback takes. Application of my test addresses the question of whether

individual DGN fishing trips are subject to significantly heterogeneous take

risk. The answer to this question has implications for controlling leatherback

bycatch risk.

Description of the Probability Model and Semi-

parametric Test

The objective is to apply a version of Pearson’s Chi square test to the ques-

tion of whether the cluster-level risk is homogeneous. The challenges are that

the average cluster size is small, resulting in a typical expected number of

successes per cluster smaller than five, and that cluster size varies randomly

according to an unknown distribution. The approach I chose was to develop

a test statistic which considers the random variation in cluster size with-

out requiring knowledge of its unknown distribution. The resulting test is

semiparametric in that the conditional distribution of successes within each

cluster is parametric, while the distribution of the number of Bernoulli trials

across clusters is not.

Let N denote the random variable for cluster size, which assumes pos-

itive integer values over k observation observation units2. The distribution

2In my applications, the observation units are either families or DGN fishing trips.
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of N is described by a cumulative distribution function F (·) with unknown

properties. Assume that {Ni, i = 1, 2, . . . ,k} denotes a sample of k observa-

tions on N . Further let Xit denote a Bernoulli (0/1) random variable with

probability of success given by θi, for i = 1, 2, . . . , k and t = 1, 2, . . . , Ni.

We are interested in testing the null hypothesis that θi = θ for all values of

i = 1, 2, . . . , k, where θ is a constant. For the ith cluster, define the random

variable

Yi =

Ni∑
t=1

Xit, (1)

which is the sum of Ni Bernoulli trials in the cluster, i.e., the number of

successes for that cluster. Assuming the Bernoulli random variables which

comprise the ith cluster are exchangeable3, we can model the conditional

distribution of Yi |Ni as Binom(Ni, θi) in the unrestricted model and as

Binom(Ni, θ) in the restricted case.

Suppose the econometrician has a sample consisting of observations on

the number of successes yi over ni Bernoulli trials in each of k clusters,

{(yi, ni), i = 1, 2, . . . k}. Under the null hypothesis of homogeneous risk, the

exact conditional distribution for the number of successes Yi in the ith cluster

is a binomial distribution conditional on the number ni of Bernoulli trials in

the ith cluster:

p(y |ni) =

(
ni

y

)
θy(1− θ)ni−y, i = 1, 2, . . . , k. (2)

3The Bernoulli random variables are considered to be exchangeable if their joint dis-
tribution within a cluster is not altered by permuting the labels i = 1, 2, . . . , Ni.

6



Define ymax as the largest value of y which corresponds to one of the cells

in the Chi square classification4. An expected number of observations for

each value of y = 1, 2, 3, . . . , (ymax− 1) may be computed using the observed

number of Bernoulli trials in each cluster5 in conjunction with the conditional

distribution of y|ni:

êy = E(number of clusters with y successes)

= kp̂k(y)

= k
∞∑

n=1

p̂(y |n)(F̂k(n)− F̂k(n− 1))

=
k∑

i=1

p̂k(y |ni), (3)

where the empirical conditional probability mass function (p.m.f.) for Y

given ni,

p̂(y |ni) =

(
ni

y

)
θ̂y(1− θ̂)ni−y. (4)

This is the estimate of the conditional distribution of Yi given ni based on

the minimum Chi square estimate6, θ̂, of θ.

The probability for the cell corresponding to ymax is computed as the sum

4The value of ymax should be chosen if possible to ensure a sufficiently high expected
number of observations in each cell of the classification scheme.

5The equivalence of the following series of equations is demonstrated in Appendix B.
6The procedure for computing the minimum Chi square estimate is explained in Ap-

pendix A. An alternative approach is to use the maximum likelihood estimate (MLE)

of the Bernoulli parameter, θ̃ =
Pk

i=1 yiPk
i=1 ni

. However, as noted in Hogg and Craig (Hogg &
Craig 1978) and other sources, the Chi square statistic based on MLE parameter estimates
results in an upward bias to the computed p-value.
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of probabilities over the upper tail of the distribution beginning with ymax,

which is most easily calculated using the complementary probability:

Pr{Y ≥ ymax} = 1−
ymax−1∑

y=0

p̂k(y). (5)

The expected cell frequencies are calculated as

êy =
k∑

i=1

p̂k(y |ni) (6)

for y = 0, 1, 2, . . . , (ymax − 1) and

êymax = kPr{Y ≥ ymax} = k −
ymax−1∑

y=0

êy. (7)

The observed number of clusters with Yi = y is counted using

oy =
k∑

i=1

1{yi = y}, (8)

for y = 0, 1, 2, . . . , (ymax− 1), where 1{· · · } is the indicator function equal to

1 if the given condition is true and 0 otherwise, and

oymax = k −
ymax−1∑

y=0

oy. (9)

These two calculations give rise to vectors of observed and expected num-

ber of observations on each possible number of successes 0 ≤ y ≤ ymax over
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all clusters in the data, ê = [ê0 ê1 . . . êymax ]
′ and o = [o1 o2 . . . oymax ]

′.

The null hypothesis of homogeneous risk may be tested using a Chi square

test based on comparing the observation vector o to the vector of the expected

number of observations e:

χ̂2
k =

ymax∑
y=0

(oy − êy)
2

êy

, (10)

which has an asymptotic χ2 distribution with ymax−1 degrees of freedom, as

one degree of freedom is sacrificed for the constraint that the total number

of expected observations must sum to k, and a second degree of freedom

is lost in estimating θ by the minimum chi square estimate subject to the

homogeneity restriction (θi = θ for i = 1, 2, . . . , k).

Human Gender Determination

An introductory discussion of the role of probability in genetics and gender

determination is provided in Feller (Feller 1968). Human gender is deter-

mined by a pair of chromosomes. In all individuals except for a negligible

share of exceptions, females have an XX pair, while males have an XY pair.

At first glance, the question of human gender determination seems straight-

forward: In reproduction, the female contributes an X-chromosome, while

the male contributes either an X- or a Y -chromosome through a selection

process whose outcome is commonly likened to that of a fair coin toss. Fer-
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tilization of the egg in the former case ultimately results in the birth of a

female child and in the latter case results in the birth of a male child.

Whether this simple symmetric model of human gender determination is

accurate is an empirical question. There are a number of reasons this model

might fall short of actual experience:

1. Nature may favor one gender over another, increasing the relative

chance that, say, a sperm with an X chromosome is the one which

successfully fertilizes the egg, or that female fetuses will survive gesta-

tion;

2. Genetic variation in the parent population could result in significant

differences in the relative probability of male or female birth across

couples;

3. Variations in mating behavior could account for differences in the prob-

ability of male births across couples;

4. Some societies have a gender preference which could induce statistical

dependence between family size and gender distribution of offspring.

For instance, in some Asian and Latin American cultures, male children

are preferred to females. If a couple keeps trying until at least one male

child is born, then if we assume a fixed chance of female birth on each

attempt, we would expect to see an increasing percentage of females

with respect to family size7

7This form of discretionary censoring could result in selectivity bias in the observed
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No. of Children Count Percentage

1 29 12.9%
2 121 54.0%
3 51 22.8%
4 13 5.8%
5 6 2.7%
6 2 0.9%
7 2 0.9%

Table 1: Family size distribution

Hence it is entirely possible to find significant variation across couples in the

odds of giving birth to daughters rather than sons.

Statistical Analysis

The test is applied below to a combined sample of students from two sec-

tions of Econometrics C, a required course in the undergraduate economics

curriculum at the University of California, San Diego. The table shows the

observed numbers of successes (female births) over the distribution of family

size, assuming accurate reporting by the students who were polled8.

The distribution of family sizes is displayed in the following table:

The table below shows the observed and expected numbers of female

children based on the estimated marginal distribution of the number of female

children given the empirical distribution of family size, with the expected

gender distribution, even if the fertilization process itself was equally likely to produce a
male or a female embryo.

8Identical twins were treated as a single roll of the genetic dice, while fraternal twins
were treated as separate rolls.
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Expected
No. of Girls Observed MLE Min χ2

0 59 56.74 53.58
1 105 99.14 98.81
2 41 53.50 55.85
3 12 11.48 12.29
4 4 2.43 2.66

5 or more 3 0.5890 0.6659

Table 2: Observed and expected numbers of girls

(o− e)2/e
No. of Girls MLE Min χ2

0 0.0903 0.4117
1 0.3464 0.3767
2 2.9193 3.7086
3 0.0236 0.0010
4 1.0062 0.7419

5 or more 7.3758 6.2158
χ2 11.7615 11.4558

p-value 0.0192 0.0219

Table 3: Chi square statistics and p-values

numbers of girls computed using both the MLE and the minimum Chi square

estimates of the Bernoulli parameter, θ:

The intermediate steps in calculating the test statistic are displayed in

the table below.

Whether the MLE or the minimum Chi square estimate of the Bernoulli

parameter is used to develop the expected number of female children, the re-
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sulting p-value for the calculated value of the test statistic is between 1% and

5%, so a classical hypothesis test of the null hypothesis that the probability

of having daughters is a like homogeneous Bernoulli coin toss would reject

the null hypothesis in favor of the alternative hypothesis that the probability

of having daughters is heterogeneous across families (and in particular with

respect to family size) at the 5% but not the 1% significance level.

A quick look at the data for the observed and expected number of daugh-

ters indicates that the observed number of daughters was less than expected

for families with only two children, and greater than expected for families

with five or more children. This is consistent with a behavioral model where

at least a significant share of couples have a target level for the number (or

percentage) of sons in their brood; if the threshold number of sons is reached

after having only two children, such couples stop. If such a couple has a

disproportionate number of daughters by the time they have four children,

they try for one more son.

Should Fewer Cells be Used?

The results presented above show that the uppermost cell in the table of

expected frequencies does not satisfy the standard rule-of-thumb that the

smallest cell frequency should not be less than five. However, attempting

to remedy this situation through reducing the uppermost value of y in the

partition is problematic. The following table shows that the p-value increases

monotonically as the cutoff value for the uppermost cell is decreased:
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MLE Min χ2

Cell Limit Degrees of Freedom χ2 p-value χ2 p-value

2 1 1.4052 0.23586 0.57784 0.44716
3 2 4.6642 0.09709 4.5089 0.10493
4 3 8.1032 0.043927 8.1012 0.043966
5 4 11.761 0.019216 11.456 0.021892

Table 4: Cell limits and p-values

The difficulty is that the test statistic only possesses an asymptotic Chi

square distribution under the null hypothesis; the distribution under any

particular form of the alternative is generally unknown, but is only potentially

detectible in the deviations of observed counts from their expected counts

at the individual cell level. Aggregating cells at the top end of the table

implicitly reduces the set of alternatives which can be detected by the chi

square test by summing residuals across any cells which are pooled in order

to increase the expected cell count.

For example, suppose that under the homogeneity assumption, the ob-

served count of families with five or more daughters is significantly above its

expected count, while the observed count of families with only two daughters

is far below the expected count. This prema facie evidence of a departure

from the homogeneity hypothesis would be obscured if the top categories

were combined into a single category for “two or more daughters.”
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Testing Homogeneity of Leatherback Bycatch

Risk over Drift Gillnet Fishing Trips

In this section, I consider statistical questions which arise in connection with

managing leatherback turtle bycatch in the California Drift Gillnet (DGN)

Fishery. The fishery is described in detail in the Pacific Fishery Management

Council’s Fishery Management Plan for Highly Migratory Species (Council

2003); a summary is provided below.

Description of the California DGN Fishery

The California DGN fishery traces its origin to the late 1970s when incidental

catches of pelagic sharks in a Southern California coastal set net fishery

motivated a group of 15 fishing vessel owners to experiment with large-mesh

nets targeting thresher shark. Subsequently, California’s swordfish industry

transformed from primarily a harpoon fishery to a DGN fishery in the late

1970s, and landings soared to a historical high of 286 metric tons (mt) by

1984. After 1981, swordfish became the primary target species for the fleet,

because it commands a higher price-per-pound than thresher shark, resulting

in a decline in reported thresher shark landings to lows of the late 1980s and

early 1990s. The number of DGN vessels landing swordfish declined from

228 in 1985 to 43 in 2004.

Historically, the California DGN fleet has operated within US Exclusive

Economic Zone (EEZ) waters adjacent to the state to about 150 mi offshore,
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ranging from the U.S.-Mexico border in the south and as far north as the

Columbia River during El Niño years. The majority of the current DGN

fishing effort is concentrated in the southern California bight due in part to

a leatherback turtle time/area closure north of Pt. Conception. Fishing ac-

tivity is highly dependent on seasonal oceanographic conditions that create

temperature fronts that concentrate feed for swordfish. The DGN fishery

typically begins in late May and continues through the end of January, al-

though 90 percent of the fishing effort typically occurs from mid-August to

the end of December.

Drift gillnet fishing requires specialized inputs, including a crew of 2-3

(including the captain) and appropriate gear which includes a gillnet and a

boat (30-85 feet long, with 60 percent of the vessels less than 50 ft in total

length) outfitted to transport the fishermen to access the fishing grounds, to

permit setting and retrieval of the gillnet, and to facilitate storage of the fish

until landing them.

A typical drift gillnet fishing trip consists of between 5 and 15 “sets” of

the net, with about 6 sets on average. Nets are typically set in the evening,

allowed to soak overnight, and then retrieved in the morning. The average

soak time is around 10 hours. The vessel remains attached to one end of the

net during the soak period, drifting with the net. During retrieval, the net is

pulled over the stern by a hydraulic net reel. As the net is pulled, anything

caught in the net can usually be seen coming to the surface, at which point

the reel is slowed and stopped if the catch is too large. The catch is either
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pulled aboard in the net, or if too large, tied with a line, so as not to be lost,

and winched aboard. Once onboard, entangled fish are removed from the net

using routine procedures.

Net length ranges from 4,500 ft to 6,000 ft and averages 5,760 ft while net

depth ranges from 145 ft to 165 ft and averages 150 ft. The top of the net

is attached to a float line and the bottom to a weighted lead line. Although

termed “gillnets,” the nets actually catch fish by entanglement, rather than

literally trapping them by the gills. Nets are also size selective; large fish such

as swordfish become entangled while smaller fish pass through the mesh.

Unfortunately, the mesh is not sufficiently large to permit the passage of

large charismatic megafauna such as leatherback turtles, which occasionally

become entangled. As the nets entrap animals at a submersion depth of 36

feet or greater and are only hauled up after soaking for a period of 12 hours or

so, there is a high probability that oxygen-breathing animals which become

entangled (such as sea turtles and marine mammals) will drown before the

net is hauled up.

The Endangered Species Act and Marine Mammal Protection Act are fed-

eral laws which impose strict limits on the allowable level of protected species

bycatch. Leatherback turtles are granted protection under the Endangered

Species Act, and hence a key concern in commercial fisheries management

is to limit the risk of accidently capturing or killing them. Since 1990, ob-

servers have been sent out on drift gillnet fishing boats to closely monitor

the number of leatherback turtles and other species which are caught as by-
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catch. Over the period from 1990 through 2005, a total of 23 leatherback

turtles were captured as bycatch over the course of approximately 7000 ob-

served9 drift gillnet fishing trips. As 21 of these trips occurred in the portion

of the drift gillnet fishing grounds to the north of Pt. Conception, the risk

of leatherback bycatch was deemed excessive and this portion of the fishing

grounds was closed to fishing from 2001-2005 over the peak fishing period

(August 15-November 15). This “turtle conservation area” will be reopened

to a limited amount of fishing effort for the 2005-2006 fishing season, but

fishing trips will be subject to 100% observer coverage, and fishing effort will

be immediately halted at any point in the season if two leatherback turtles

are caught as bycatch.

Questions of interest in connection with leatherback bycatch include the

following:

1. Is the risk of leatherback bycatch heterogeneous across fishing seasons?

2. Is the risk of leatherback bycatch geographically heterogeneous – that

is, are some areas of higher bycatch risk than others?

3. Is the risk of leatherback bycatch heterogeneous across trips?

Given the availability of close to 7,000 observed drift gillnet sets from

1990-2005, including geographic markers for the approximate location where

fishing occurred, the first two of these questions are amenable to a standard

9Observed trips involve the literal inclusion of an observer as a passenger on shipboard
during a fishing trip; the observer keeps a running tally of the catch and bycatch of the
different species which are caught in each drift gillnet set.
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Chi square testing approach. However, in the case of the third question,

the fact that the average drift gillnet trip only consists of about six sets of

fishing, and that a total of only 23 leatherback takes have occurred over the

period from 1990-2005, imply that a standard Chi-square testing approach

will suffer the shortcoming of an excessive number of cells with an observed

count of 0 “successes10.”

Statistical Analysis

A significant difference in DGN leatherback bycatch risk has been demon-

strated to exist between the areas north and south of Pt. Conception11

(Carretta, Price, Petersen & Read 2004). For purposes of this paper, the

focus is limited to the area north of Pt. Conception where bycatch risk is

relatively higher. The data were extracted from the California Drift Gillnet

Observer Database, and are a representative sample of approximately 20% of

the fishing effort which took place for the portion of California DGN fishery

North of Pt. Conception over the period from 1990-2004. The distribution

of the number of sets per trip is given in Table 5 below.

Based on the empirical conditional distribution of y given n, the observed

and expected numbers of trips with 0, 1, or 2 or more leatherback incidental

10Environmentalists might prefer to classify leatherback bycatch as “failures” on seman-
tic grounds.

11Pt. Conception lies at 37◦27′ North Latitude, and represents a dividing line between
the geographically and ecologically distinct southern and northern ranges of the DGN
fishery.
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takes are shown in the subsequent table12. The expected number of takes in

the bottom row of the table remains somewhat unsatisfactory in light of the

rule-of-thumb stipulation that this value should exceed five, but this problem

is somewhat intrinsic to a context with a very small “success” rate13. The

Chi square statistics for the two cases, and the associated p-values (based on

a Chi-square distribution with 1 degree of freedom14), are displayed in Table

7.

Test results from using the MLE and from using the minimum Chi-square

estimate of θ are comparable, with a slightly larger p-value in the latter case

reflecting that the Chi-square statistic was minimized over θ. In both cases,

the results for testing the null hypothesis of homogeneous leatherback take

risk across DGN fishing trips is inconclusive: A classical hypothesis testing

approach would suggest the null hypothesis could be accepted at the 1% sig-

nificance level, but would be rejected at the 5% significance level. A glance

at the computed values of (o−e)2/e for each different level of number of takes

per trip suggests that the two trips with two leatherback takes were signif-

icantly higher than expected under the homogeneity hypothesis, suggesting

that risk is sometimes unusually high. On the other hand, only two trips out

of 490 with two leatherback takes suggests that even if risk is heterogeneous,

the occasions when risk is inordinately high are rare.

12The expected number of trips was computed two ways: first using the MLE of the
Bernoulli parameter (θ̃), then using the minimum Chi square estimate (θ̂)

13The difficulty could potentially be remedied with a sufficiently large data set.
14There are three cells in the contingency table, but 1 degree of freedom is lost due to the

summing-up condition, and a second is lost due to estimation of the Bernoulli parameter.
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Sets per Trip Number of Trips Percentage

1 39 8.0%
2 37 7.6%
3 30 6.1%
4 32 6.5%
5 112 22.9%
6 59 12.0%
7 50 10.2%
8 40 8.2%
9 33 6.7%
10 19 3.9%
11 17 3.5%
12 8 1.6%
13 6 1.2%
14 3 0.6%
15 3 0.6%
16 1 0.2%
17 0 0.0%
18 0 0.0%
19 1 0.2%

Table 5: Distribution of number of sets per trip

Expected
Takes Observed MLE Min χ2

0 471 469.49 466.06
1 17 20.03 23.29

2 or more 2 0.48 0.65

Table 6: Observed and expected numbers of trips with 0-2 leatherback takes
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(o− e)2/e
Bycatch MLE Min χ2

0 0.004876 0.05242
1 0.45955 1.6982

2 or more 4.8331 2.7725
χ2 5.2976 4.5231

p-value 0.021 0.033

Table 7: Chi square statistics and p-values

Conclusion

This paper has developed and illustrated the use of an asymptotically valid

Chi square test for heterogeneous risk which is particularly suited in situa-

tions where the risk of success is small on any individual Bernoulli trial, and

where the data are naturally aggregated into a large number of clusters of

small individual size. The test is semiparametric in that it makes no para-

metric assumptions about the distribution of cluster size, but assumes the

number of “successful” outcomes within each cluster follows a (parametric)

binomial distribution conditional on cluster size. Under the null hypothesis

of homogeneous risk, a Chi-square test is developed based on the empiri-

cal marginal distribution of the number of successes over clusters, and it is

shown in Appendix 2 that the resulting test statistic retains the asymptotic

properties of the standard Chi-square goodness-of-fit test statistic.

The test was demonstrated using two datasets. The first provides evi-

dence for the heterogeneity of gender determination across different families.

The second provides evidence on the heterogeneity of leatherback turtle by-
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catch risk over drift gillnet commercial fishing trips over a geographically

constrained region. The empirical results in both cases present weak evi-

dence that the risk is heterogeneous across clusters, with a rejection of the

homogeneity hypothesis at the 5% level but not the 1% level.

One question for future research is that of what to do if the homogene-

ity hypothesis is rejected in favor of the alternative hypothesis that risk is

heterogeneous across clusters. Possible approaches include using a negative

binomial model to capture the overdispersion in the data, or to use a hier-

archical approach which models θi as a random parameter across clusters,

thereby explicitly modeling the heterogeneous risk.

A second question is that of how best to use the disaggregate data at the

sample unit level to conduct a homogeneity test of high statistical power.

The example for the case of aggregating the top cell of the chi square sta-

tistic for the gender test illustrates the loss of statistical power which can

result from aggregation. By aggregating the raw data up to the empirical

marginal distribution of y, the method presented here helps to solve the

problem of insufficiently small expected cell counts at the potential cost of

masking heterogeneity across sample units which is not reflected in the mar-

ginal distribution of y. A method which directly quantifies the variance in

cluster-level residuals (such as a conditional moment test) might potentially

increase statistical power by avoiding the cancelation effects which naturally

occur with aggregation.
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Minimum Chi Square Estimation of the Ho-

mogeneous Bernoulli Parameter

An initial estimate for the Bernoulli parameter θ may be obtained from the

method of maximum likelihood.

The likelihood for a sample of observations (yi , ni) is given by

L =
k∏

i=1

f(yi, ni; θi)

=
k∏

i=1

p(yi |ni; θi)f(ni)

=
k∏

i=1

(
ni

yi

)
θyi

i (1− θi)
ni−yif(ni), (11)
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where f(yi, ni; θi) is the joint p.m.f. of the observation (yi, ni), f(ni) is the

(unknown) marginal p.m.f. for N and p(yi |ni; θi) =
(

ni

yi

)
θyi

i (1−θi)
ni−yi is the

conditional likelihood of the observation yi given ni.

Noting that the likelihood is unique up to a factor which does not depend

upon the parameter(s) of interest, it may be more simply written as

L =
k∏

i=1

θyi

i (1− θi)
ni−yi (12)

which has a corresponding log likelihood

log L =
k∑

i=1

yi log(θi) + (ni − yi) log(1− θi). (13)

In the unrestricted case, first-order conditions for maximizing the likeli-

hood are given by

∂ log L

∂θi

=
yi

θi

− ni − yi

1− θi

= 0, (14)

which leads to the unrestricted maximum likelihood estimates

θ̃i =
yi

ni

(15)

for i = 1, 2, . . . , k.

Under the homogeneity restriction (θi = θ for i = 1, 2, . . . , k), the log
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likelihood reduces to

log L =
k∑

i=1

yi log(θ) + (ni − yi) log(1− θ)

= (
k∑

i=1

yi) log(θ) + (
k∑

i=1

ni −
k∑

i=1

yi) log(1− θ), (16)

and the first order condition for maximizing the likelihood is given by

d log L

dθ
=

∑k
i=1 yi

θ
−

∑k
i=1 ni −

∑k
i=1 yi

1− θ
= 0, (17)

whose solution provides the maximum likelihood estimate under the homo-

geneity restriction of

θ̃ =

∑k
i=1 yi∑k
i=1 ni

. (18)

The test statistic presented in this paper was computed using both the

MLE and the minimum Chi square estimates of the Bernoulli parameter θ

under the homogeneity restriction. The minimum Chi square estimate of

θ was obtained by taking the MLE as an initial value, then using matlab’s

fminsearch function to iterate to the value θ̂ which minimized the Chi square

statistic based on the observed data sample.
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Verification of the Formula for Expected Num-

ber of Observations

The main body of the paper asserted that the expected number of ob-

servations for each value of y = 1, 2, 3, . . . ,∞ could be computed using

ey =
∑k

i=1 p̂k(y |ni), and this is proved as follows:

ey = kp̂k(y)

= k
∞∑

n=1

p̂(y |n)[F̂k(n)− F̂k(n− 1)]

=
∞∑

n=1

p̂(y |n)[k(F̂k(n)− F̂k(n− 1))]

=
∞∑

n=1

p̂(y |n)(
k∑

i=1

1{ni ≤ n} −
k∑

i=1

1{ni ≤ n− 1})

=
∞∑

n=1

p̂(y |n)
k∑

i=1

(1{ni ≤ n} − 1{ni ≤ n− 1})

=
∞∑

n=1

p̂(y |n)
k∑

i=1

1{ni = n}

=
k∑

i=1

p̂(y |n)
∞∑

n=1

1{ni = n}

=
k∑

i=1

p̂(y |n), (19)

since
∑∞

n=1 1{ni = n} = 1 for each i = 1, 2, . . . , k.
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Asymptotic Convergence of

the Test Statistic

The semiparametric test described in this paper assumes a nonparametric

model for the distribution of cluster size, represented by the random variable

N , and a parametric (binomial) distribution of the number of successes, Y ,

conditional on cluster size, with conditional p.m.f.

p(y |N) =

(
N

y

)
θy(1− θ)N−y. (20)

The test statistic is a Chi-square statistic based on the distribution of counts

from the empirical marginal distribution of y, whose theoretical counterpart

is given by

p(y) =
∞∑

n=1

p(y |n)f(n)

=
∞∑

n=1

p(y |n)(F (n)− F (n− 1)), (21)

where F (n) ≡ 0 by definition15.

The empirical distribution function for N may be expressed as

F̂k(n) =

∑k
i=1 1{ni ≤ n}

k
, (22)

15Although there may be real-world reasons that F (0) = Pr{N = 0} > 0 in particular
settings of interest, we implicitly rule this out by conditioning on N > 0, thereby ignoring
clusters with no data to be observed.
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where 1{·} denotes the indicator function, equal to 1 if the parenthesized

condition is true and 0 otherwise, and k is the number of clusters. The

corresponding empirical probability mass function (or probability histogram)

is given by16

f̂k(n) = F̂k(n)− F̂k(n− 1). (23)

The empirical marginal distribution of y is given by

p̂k(y) =
∞∑

n=1

p̂(y |n)[F̂k(n)− F̂k(n− 1)]. (24)

A well-known result in probability theory shows that

plim {Fk(n)} = F (n), (25)

that is, the empirical distribution function asymptotically approaches the

cumulative distribution function of the underlying population distribution.

Further, under suitable regularity assumptions the minimum Chi square es-

timator θ̂ is a consistent estimator of the population Bernoulli parameter

θ. Noting that the expression for p̂k(y) is a continuous function of F̂k(n),

F̂k(n − 1), and the minimum Chi square estimator θ̂, it follows from the

Continuous Mapping Theorem that

plim {p̂k(y)} = p(y). (26)

16For the purpose of the following definition, we take F̂k(0) ≡ 0.
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Next denote by

χ2
k =

ymax∑
y=0

(oy − ey)
2

ey

, (27)

the test statistic based on a sample consisting of k clusters, but based on

the (unknown) marginal p.m.f. for Y , p(y) instead of the estimated marginal

p.m.f. p̂k(y). We accept on the basis of earlier proof (Cramér 1946) that

χ2
k converges in distribution to a Chi square random variable with ymax − 1

degrees of freedom, then note that χ2
k is a continuous function of ey for each

value of y = 0, 1, 2, . . . , ymax, provided ey 6= 0. Since

χ̂2
k =

ymax∑
y=0

(oy − êy)
2

êy

, (28)

is formally equivalent to χ2
k except that êy replaces ey in each term, and

plim {p̂k(y)} = p(y) implies that (oy−êy)2

êy
converges in probability to (oy−ey)2

ey
.

This fact and some additional analysis17 may be used to write

χ̂2
k = χ2

k + Rk, (29)

where plimRk = 0. It follows from Slutsky’s theorem that χ̂2
k has the same

limiting distribution as that of χ2
k.

17One can use a Taylor expansion of f(e) = (o−e)2

e about the points ey, then sum

the deviations from (oy−ey)2

ey
to obtain the residual difference Rk which converges to 0 in

probability.
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