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On the Productive Value of Biodiversity

1. Introduction

Since the development of food production some 10,000 years ago, agriculture has been in
the business of using the earth ecosystem to satisfy man’s nutritional needs. In this context,
agriculture has seen major improvements in technology (e.g., Boserup, 1975, 1981). Over the last
century, growth in agricultural productivity has been large enough to allow the earth to feed its
growing human population. But this has been associated with significant alterations in the earth
environment, which have raised concerns about the sustainability of current agricultural practices.
Since the number of cultivated plants remains relatively small (Heiser), the development of
agriculture has implied a decline in biodiversity. Previous research has documented that
biodiversity is an important component of ecological systems (e.g., Tilman and Downing; Tilman
et al.; Heal; Wood and Lenne). There is empirical evidence that a loss of biodiversity can have
adverse effects on the functioning of ecosystems (e.g., Laureau and Hector; Naeem et al.; Tilman
and Downing; Tillman et al.). Yet, while the term biodiversity has acquired a positive
connotation, its measurement and conceptualization remains difficult. A number of indices of
biodiversity have proposed, including the Shannon index and the Simpson index (see Hill; Lande;
May; Polasky and Solow; Simpson). These indices have been used extensively in the empirical
analysis of biodiversity issues (e.g., Heisey et al.; Meng et al.; Priestley and Bayles; Smale et al.,
1998, 2002, 2003; Smale; Wood and Lenné). However, there is a debate on which diversity index
is most appropriate (see Keylock; Routledge; Tsallis). At this point, it appears that no particular
index is always superior. This is made clear when the value of biodiversity is found to depend on
the presence and nature of complementary among services provided by an ecological system
(e.g., Faith et al.; Justus and Sarkar; Loreau and Hector). Weitzman (1992, 1998) has proposed
measuring biodiversity through a diversity function based on a measure of dissimilarity.

Weitzman (1992) showed that this diversity function is one half of the Shannon index. However,



Brock and Xepapadeas have argued that a more diverse ecosystem can be much more valuable
even when the increase in dissimilarity is almost zero. Using Bt-corn for motivation, they show
that biodiversity can stimulate productivity by reducing pest populations. This reflects the
complexity of ecosystems. It also suggests the need for further research on the characterization
and valuation of biodiversity.

The objective of this paper is to develop a general analysis of the productive value of
biodiversity. The research focuses on the productive services provided by an ecological system.
For example, in the context of agriculture, this would involve environmental goods (including
ecological capital and environmental services) used in the production of food. The analysis
applies under general conditions, allowing for non-convexity, lack of free-disposal in
environmental goods, and dynamics. First, we propose a general measure of the productive value
of biodiversity. The measure is designed to answer the question: is the value of an ecosystem
“greater than the sum of its parts”? This involves a thought experiment where an ecosystem is
split into separate sub-systems, holding technology and resource use constant. The analysis
makes use of Luenberger’s shortage function (Luenberger, 1995) as a representation of the
underlying technology. Our proposed measure of the value of biodiversity has a monetary
interpretation that applies even when environmental services are non-market goods. And when
positive, the value of biodiversity means that the ecosystem is worth more than “the sum of its
parts.”

Second, we show that the value of diversity can be decomposed into four additive parts:
one associated with complementarity, one with scale effects, one with convexity effects, and one
with catalytic effects. Complementarity means that there is positive synergy across sub-systems,
where some environmental goods have positive effects on the marginal productivity of others.
The role of complementarity has been identified in previous research (e.g., Faith et al.; Justus and
Sarkar; Loreau and Hector). Our analysis shows that complementarity is indeed an important

component of the value of biodiversity. The scale component establishes linkages between the



scale of an ecosystem and its functioning. For example, under increasing returns to scale, we
show how an ecosystem can be “too small” to function properly, thus contributing to a positive
value of biodiversity. The convexity component reflects the role and nature of the underlying
technology. It shows that diminishing marginal productivity contributes to a positive value of
biodiversity. This identifies the role of resource scarcity in the valuation of biodiversity. Finally,
the catalytic component measures the possible discontinuous effects of environmental goods
around 0. This decomposition provides new information on the sources and determinants of
biodiversity value.

Third, the analysis is extended to apply under uncertainty. This is relevant since the
future productivity of dynamic ecosystems is often imperfectly known. The role of risk and of
downside-risk exposure and their effects on the value of biodiversity are explored. This provides

useful insights on how management and policy decisions can affect the value of biodiversity.

2. The Productive Value of Environmental Goods

Consider an ecological system as a production process involving m private goods and n
environmental goods. Let z = (zy, ..., Zmnn) = (Za, Zb), Where z, = (zy, ..., Z,) € R™ is the quantity
of the m private goods, and z, = (Zms1, .-, Zmin) € R is the quantity of the n environmental
goods. Using the netput notation, quantities are defined to be negative for inputs (i.e., z; < 0 when
the i-th netput is an input) and positive for outputs (i.e., z; 2 0 when the i-th netput is an output).
The underlying production technology is denoted by the set Z < R™", where z = (z,, z,) € Z
means that private goods z, can be feasibly produced in the presence of environmental goods z,.
Throughout, we assume that the set Z is closed, and that it exhibits free disposal with respect to
the private goods z, (where free disposal in z, means that, for any z = (z,, z,) € Z, z,' < z, implies
that (z,, z,) € Z). However, we do not assume that the set Z is convex, or that it exhibits free

disposal with respect to z,. Thus, our analysis applies under non-convexity and under scenarios



where the environmental goods z, do not exhibit free-disposal. Finally, when the netputs z take

place in different time periods, our approach allows for general dynamics. To illustrate, letting z
= (Z11, Z1 1.1, Zat), the dynamics of the system can be represented by Z = {(zys, Z1.1.1, 22): Z1c = h(z; 1,
7o), (z1, Z2)) € 2’ }, where z;, is a vector of state variables at time t (e.g., physical and ecological
capital), z,, is a vector of control variables at time t, z;, = h(z, 1, Z,) is the state equation
describing the evolution of the ecosystem over time, and Z’ is the feasible set for (zy, Z). In this
context, the z’s can capture stock effects (e.g., the effects of ecological capital) as well as flow
effects (e.g., food production). This means that our analysis applies to a very general technology
characterizing the productivity of the ecological system.

This is illustrated in Figure 1, where m = 1, n = 1, and the upper bound of the feasible set
Z is given by the line ABCDEFGH. In the region EFG both z, and z, are considered as outputs.
This would apply to a healthy ecosystem that allows for the production of valuable ecological
services as well as private goods. In the region BCDE, the environmental good z; is an input in
the production of z,. This corresponds to situations where the ecological system is used mainly to
produce private goods (e.g., agriculture using the ecological system to produce food). Region GH
corresponds to a case of environmental enhancement where the private good z, is an input into the
production of the environmental good z, (e.g., protecting the ecological system that provides
clean water for New York City). Finally, in the region AB, both z, and z, are inputs. This would
correspond to unproductive ecological systems where the production of private goods becomes
impossible (e.g., on Mount Everest). Note that the technology Z in Figure 1 is not convex (e.g.,
the region CDEF). And it does not exhibit free disposal in the environmental good z;, in the
regions ABC and DEF.

We are interested in providing a general representation of the frontier technology given

by the boundary of Z. Such a representation is given by the shortage function proposed by



Luenberger. Let g € R be a reference bundle of private goods satisfying g > 0, and g # 0. For a

given g, the shortage function S(z, g) evaluated at point z = (z,, z,) is defined as
S(z, g) = ming {0 (z, - A g, 2,) € Z}, if there is an & such that (z, - o g, z,) € Z},
= +o0 otherwise. (1)
The shortage function S(z, g) measures the number of units of the reference bundle g
reflecting the distance between point z = (z,, z,) and the frontier technology. It has some useful
properties (see Luenberger):
1. z e Zimplies S(z, g) <0,
2. Under free disposal in z,, Z = {z: S(z, g) < 0},
3. Under free disposal in z,, S(z,, z, g) is non-decreasing in z,,

4. S(z,+a g, 7y, g =0+ S(z, g), for any a.

Property 1 shows that S(z, g) < 0 is associated with the feasibility of the netputs z = (z,,
7). Under free disposal in z,, property 2 implies that S(z, g) < 0 provides a complete
characterization of the technology. In this case, S(z, g) = 0 if and only if z is on the upper bound
of the feasible set Z, with S(z, g) = 0 providing a multi-input multi-output functional
representation of the underlying frontier technology. Under free disposal in z,, property 3 states
that the shortage function S(z,, 7, g) is non-decreasing in the private goods z,. Note that, in
general, S(z,, z,, g) can be either increasing or decreasing in the environmental goods z,. As
suggested by property 3, it would be non-decreasing in 7y if the technology exhibited free

disposal in z,. But it would be decreasing in z, in regions where free disposal in z, fails to hold.

08(z,,2,,2)
Z

a

Finally, if S(z,, z,, g) is twice differentiable in z, property 4 implies that g=1and

9°S(z,.2,.8)

h
that d(z,,z,)0z,

g=0.



The shortage function is illustrated in Figure 1. Consider evaluating it at point J, where
the private good z, > 0 is an output (represented by the distance OK in Figure 1) and the
environmental good z, < 0 is an input (where |z,| is given by the distance OL). Given the
reference bundle g (represented by JM in Figure 1), the shortage function S(z, g) evaluated at
point J is given by -JN/JM.

As a further illustration, consider the case where g = (1, 0, ..., 0). Then S(z, g) = min,, {0
(1 -, Zy, .., Zian) € Z} = 71 - G(z.) Where z. = (2,, ..., Zmsn) and G(z.) = max {z;: (z;, z.) € Z}
is the largest possible z, that can be obtained given other netputs z.. In this case, under
differentiability, 0S/0z, = 1 and 0S/0z. = -0G/0z., implying that -0S/0z. can be interpreted as
measuring the marginal product of z..

For a given z = (z,, z,), the shortage function S(z, g) in (1) provides a convenient basis for
analyzing the productive value of the environmental goods z,. To see that, consider a change in
environmental goods from 7, to zbz. Then, define

Pz 20, 20, 8) = S(2as 25, 8) - S(2as 20, ©). 2)

Starting from the point z = (z,, z), P(za, 7, Z’, g) in (2) measures the number of
additional units of the reference bundle g that can be obtained from changing environmental
goods from 7, to z,~. To illustrate, consider the case where z, are inputs (with z, < 0) and (2) is
evaluated under a technology exhibiting free disposal in z,. As suggested by property 3, S(z,, z,
g) would be non-decreasing in z,. Then, with z, < 0, any increase in the environmental inputs
from Iz,'l to 1z;*| would mean a decrease in zy, implying that P(z,, 7', 72 g) 20 in (2). In this
case, increasing environmental input z, can make it possible to produce more of the private goods
Z, With P(z,, z,', 2., g) > 0 measuring the additional number of units of the private goods g that
can be produced.

To note the role of free disposal for the environmental goods z,, consider the case of an

increase in the environmental input from point J in Figure 1. With z, < 0, increasing the



environmental input Iz,| means a decrease in z, from point J, implying an increase in the shortage
function. This reflects the fact that free disposal in z, does not hold in the region BC of Figure 1,
and that the shortage function S(z,, z,, g) is now decreasing in z, in the neighborhood of point J.
In this case, any increase in the environmental input |z,| implies that P(z,, 7', 72 g) <0in (2).
This illustrates that, without free disposal, increasing environmental input Iz,| can reduce the
ability to produce the private goods z,, with P(z,, ', 7%, g) < 0 measuring the associated
reduction in the number of units of g that can be produced.

In the case where the private goods z, are also market goods with prices p, a monetary
evaluation of P(z,, z,', 7, g)in (2) is

Vi 2o 7', D, @) = Pz 20, 2", ©) (P £)

=[Sz, 20, ) - S(z0: 2", )] (P ©)- 3)

Starting from the point z = (z,, z,"), V(Za» 2", 2°, p» g) in (3) gives a monetary value of

the private goods that can be obtained when environmental goods change from z,' to z,”. Then,

comparing (2) and (3) gives the following result.

Proposition 1: When the reference bundle g is chosen to have unit value (with p g = 1), P(z,, 7,

zy’, ) in (2) gives a monetary value of changes in environmental goods from z,' to z,’.

This provides some guidance for choosing the reference bundle g. When g is chosen such
that p g = 1, Proposition 1 shows that P(z,, z,', z,’, g) in (2) measures the monetary value of
changes in environmental goods. This measure is attractive on several grounds: it allows the
analysis of environmental goods as "non-market goods", (i.e., goods with no observable price); it
allows for a general technology underlying the productivity implications of an ecological system;
it does not require the technology to be convex; and it does not require that the environmental

goods satisfy “free disposal.”



As shown in Proposition 1, equations (2) and (3) provide absolute measures of changes

environmental goods. Note that these measures can be easily modified into relative measures. To
see that, consider the case where z,' = 0 and z,” = z,. Then, equation (2) becomes

P(z,, 0, 24, 8) = S(Zu, 0, 8) - S(Zay 7, 2, @)
where P(z,, 0, zy, g) measures the total value of the environmental goods z, when p g= 1. In

situations where P(z,, 0, z,, g) # 0, a relative measure of changes in environmental goods from 7

to zb2 can be written as

Ri(ze 7', 20, 8) = P(20, 20, 20", ©)/P(2, 0, 2, )

= [S(z 20, 8) - S(z 2" YV[S(2a, 0, @) - S(2ar 27, D). “)

Ri(z,, 7', 7n, g) in (4) measures the value of the change from 7, to zb2 as a proportion of
the total value of z,° given in (2'). Finally, note that, in situations where (z,, sz) is on the upper
bound of the feasible set, then S(z,, 7, g) = 0 and equation (4) reduces to

Ri(za 20 2" 8) = S(20y 25, 2)/S(2, 0, 2), @)
showing that a ratio of shortage functions provides a simple relative measure of environmental

changes.

3. The Value of Biodiversity

Equations (2) and (3) measure the productive value associated with a change in
environmental goods. However, it is often of interest to know more about the source of this value.
The concerns about biodiversity provide a good example. Indeed, biodiversity issues typically
arise when it is believed that the value of an ecosystem is greater than the value of its parts. This
suggests the need to evaluate the value of environmental goods both for their "total value" and for
the “sum of their parts.” To address this issue, consider a thought experiment where the
ecological system is split into K separate sub-systems, keeping technology and the total amount
of resources constant. The key question is: is the original system more productive than the K sub-

systems?



To answer this question, denote by I, the set of environmental goods in z,, and consider a

partition of the set I, = {I,, Ino, ..., Ik}, with 2 <K <n. Let zy = {z;: i € I;«} denote the
environmental goods in the subset Iy, k =1, ..., K, with z, = (2, ..., Zyx). For a given z = (z,, z,)
€ Z, consider K situations where 7~ = (zak, zbk) #0fork=1, ..., K, and where 21[((:1 =z Using

the shortage function (1), we propose the following measure of diversity
D(z g) =X, S(z', 2) - S(z, 9), 5)
where z =, f;l z*. Equation (5) compares two situations involving netputs z: one where the

netputs z are involved in a single production process; and the other situation where there are K

separate production processes, with z; being the netputs used in the k-th production process. With

K . . . .
=2, 7~, it follows that, in each situation, the same aggregate amounts of resources are used to

produce the same aggregate netputs. In this context, equation (5) provides a measure of the
number of units of the reference bundle g that can be saved by producing z jointly (compared to
producing the same aggregate netputs z in K separate production processes). Intuitively, D(z, g) >
0 if there are productivity gains associated with a joint use of the netputs z. This reflects that D(z,
g) > 0 corresponds to situations where “the whole is worth more than the sum of the parts.” From
(5), this would be associated with the subadditivity of the shortage function.

To help further motivate (5), consider the case where p g = 1. Then, use equation (2) to

define Py = S(z,, 0, g)/K - S(zk, g) as measuring the value of the environmental goods in zk, k=1,
..., K, where > le zak = z,. Note that S(z,, 0, g) is divided by K to reflect the fact that the original

ecosystem is being evaluated in the context of K separate systems. Then, the value of the "sum of

the parts" across the K systems is
Y Pi=5(z.0,9) - X, S ),

= P(Za’ 0, Zy, g) - D(Z’ g)’



using (2') and (5). It follows that D(z, g) = P(z,, 0, z, g) - 2. le Px. This shows that the value of
diversity D(z, g) in (5) is indeed the difference between the total value of the environmental
goods z, P(z,, 0, 7y, g), and the value of the “sum of its parts”, 11521 P..

As indicated in proposition 1, when the reference bundle g is chosen such thatp g =1,
then D(z, g) in (5) provides a monetary measure of the value of diversity. As such, equation (5)

provides an absolute measure of diversity. However, it can be easily used to obtain a relative

measure. In situations where the total value P(z,, 0, 7, g) in (2') is non-zero, a relative measure of

diversity can be written as
Rp(z, g) = D(z, g)/P(z,, 0, 7, g)
=X S @) - Sz QNS(Za, 0, ©) - S(za 76, B)]. (6)
where z = (z,, zp) = 2, f:l z~ Rp(z, g) in (6) measures the value of diversity as a proportion of the

total value of z, given in (2'). In situations where z = (z,, z,) is on the upper bound of the feasible
set, then S(z., 7, g) = 0 and equation (6) reduces to

Ro(z g) =X S(Z", 2)/S(z., 0, g), 6)
showing that a ratio of shortage functions provides a simple relative measure of diversity.

Note that equation (5) defines diversity in the general context of the netputs z, which
include both the private goods z, and the environmental goods z,. Given our interest on
biodiversity, we want to focus our attention on diversity issues related only to environmental
goods. In this context, it will be useful to define = (zak, zbk) in (5) in a more specific way.

Consider choosing

zak =z/K, (7a)

and
=B zifie Iy, (7b)
=7z (1-B)/(K-1) if i € T,\Iy, (7¢)

10



k=1, ..., K, for some B € (1/K, 1]. First, note that equations (7a)-(7c) always satisfy z = 2. f:l 7z~
This guarantees that the same aggregate netputs are involved in both situations. Second, equation
(7a) divides the market goods z, equally among the K production processes. This imposes "no
diversity" in the use of the private goods z, across the K production processes. Third, equations
(7b)-(7c) establish the patterns of specialization for the environmental goods z,. The parameter 3
in (7b) represents the proportion of the original environmental netputs {z;: i € Iy} that are
produced in the k-th process. And from (7¢), B/(K-1) represents the proportion of the original

netputs {z;: i € I\l } produced in the k-th process. When 3 = 1, this corresponds to the case of

complete specialization where the k-th process relies exclusively on environmental netputs in the
subset I, (with zy = z;if 1 € I,) with z;, = 0 for i € I)\I,x. In such situations, each of the K

process is associated with a complete loss of biodiversity in environmental goods z, across

elements of the partition I = {Iy, Iy, ..., Ipk}. Alternatively, when € (1/K, 1), this allows for

partial specialization. Then, each of the K process is associated with a partial loss of biodiversity

in environmental goods z, across elements of the partition I, = {Iy, Iy, ..., I,k }. Thus, the
parameter § € (1/K, 1] allows for varying amount of specialization in the environmental netputs
among the K production processes. Alternatively stated, it allows for varying amount of loss of
biodiversity across the K processes. In general, the degree of specialization in each production
process increases with 3. This means that the loss in biodiversity in the K processes also increases
with B.

With z* = (zak, zbk) given in (7a)-(7c), equation (5) becomes

D(z B, 2) =X, S(Z g) - S(z, g), (8)

where B € (1/K, 1]. Equation (8) provides a measure of the value of biodiversity. It measures the

number of units of the reference bundle g that can be saved when the environmental goods z; are

part of a joint production process in the ecological system (compared to the case where the

11



environmental goods z, are part of K specialized production processes satisfying (7a)-(7c) and
producing the same aggregate netputs z). Using arguments similar to the ones presented in

Proposition 1 yields the following result.

Proposition 2: When the reference bundle g is chosen to have unit value (with p g = 1), then D(z,

B, g) in (8) is a monetary measure of the value of biodiversity.

4. A Decomposition

While equation (8) provides a basis to evaluate the value of biodiversity, it is of interest
to identify the sources of this value. In this section, we develop a general decomposition of the
benefits associated with biodiversity, thus providing new insights into thier sources.

Below, we consider the case where the shortage function S(z, g) is a smooth function of
z, except possibly at z = 0. We allow discontinuity at zero to reflect the possible presence of
catalytic effects where productivity can be very different when z moves away from zero. To
capture such effects, let S(z, g) = S(z, g) + Sz, g). This decomposes the shortage function S(z,
g) into a "variable function" S,(z, g) and a "fixed function" S¢(z, g). We assume that the variable
shortage function Sy(z, g) is continuous in z. The fixed shortage function S(z, g) is defined as a
step function satisfying S«(0, g) = 0, with possible discontinuities at z = 0. Thus, Sz, g) is
constant with respect to z as long as the set of non-zero netputs does not change. The jump-
discontinuities of S{z, g) (an hence S(z, g)) at z = 0 reflect the possible presence of catalytic
effects of z in the production process.

We start from the partition I, = {Iy,, ..., I,x}, where Iy denotes the environmental goods
that the k-th ecological process specializes in, k = 1, ..., K, with 2 <K <n. We use the following

notation. Let z, = {z: 1 € L}, zy = {zi: 1 € L}, 2o = (Zo1s -+ -5 Zok)s Zowk = (Zots «+ o5 Zok-1> Zbkels +- s

12



Zvk), and zy i = (Zbis Zbjis1s ---» Zbj-1, Zpj) fOr i1 <j. From equations (7), it follows that 7" = (z/K, B

Zok> (1-B) Zppk). Our main result is stated next. (See the proof in the Appendix).

Proposition 3: Given S(z, g) = S(z, g) + Sz, g), assume that S,(z, g) is continuously
differentiable in z, almost everywhere. Under equations (7), the value of biodiversity D(z, B ,

g) in (8) evaluated at netputs z = (z,, Z,) can be decomposed as follows

D =D¢ + Dg + Dy + Dy, 9)
where
De=Y X IB Sy 1IK. 2 A-BY(K-1), Y, Zoserx (1-BY(K-1), £) d
c= 2o 2, (=YY ay ol K, Zp 11 > V> Zok+1:K , 8)ay
[ e K e (B, 3 B ) dy) (102)
- 24, (1-BY(K-D) a’Y Z, > Zb,l:k»l - -1) Y9 Zb,k+l:K9 g Y > a
Dr=K S(Z/K, g) - S(z, g), (10b)
Dy = SzJ/K, B zv, £) + (K-1) SzJ/K, 2, (1-B)(K-1), g) - K S(Z/K, g), (10c)
and

Dy=2X Ezl SHz/K, B Zok, Zowk (1-B)/(K-1), g)

- S(z/K, B z, 8) - (K-1) S(z/K, z, (1-B)/(K-1), g). (10d)

Proposition 3 gives a decomposition of the value of biodiversity D(z, g) in (8) into four
additive terms: D¢ given in (10a), Dy given in (10b), Dy given in (10c), and D, given in (10d).
The term D¢ in (10a) depends on how z,y, affects the marginal shortage of zy,, k=1, ...,

K. It reflects the presence of complementarity among environmental netputs in z,. To see that,

consider the case where the shortage function is twice continuously differentiable in z,. Then,

equation (10a) can be written as

13



K-1 B zp ki1 Bk aZSV ,
| | (2/K, 7o, 151 (1-BYK-1), 71, V2, 2) dy; dya.(102)

DCE- _
e opien Jaape gy gy,

Equation (10a') makes it clear that the sign of D¢ depends on the sign of 9°S/0zy0Zpux, k
=1, ..., K. As discussed above, the marginal shortage can be interpreted as the negative of the

marginal product. In this context, define complementarity between z,, and zpyx as any situation

where the shortage function satisfies 0°S/0z,dzyx < 0. Indeed, with 6S/0zy reflecting the
negative of the marginal product of z,,, complementarity (with 8°S/02,zy < 0) means that z
has positive effects on the marginal product of zy,, implying positive synergies between z, and
Zpwk- Lhen, it is clear from (10a) that D¢ > O if the shortage function exhibits complementarity
between z,, and zyyy, k=1, ..., K. Thus, proposition 3 establishes that complementarity among
environmental netputs (as reflected by the term D) is one of the components of the value of
biodiversity. This is consistent with previous literature that has identified complementarity as an
important contributing factor to the value of biodiversity (e.g., Faith et al.; Justus and Sarkar;
Loreau and Hector).

To interpret the term Dy in (10b), we make use of lemma 1 in the Appendix. Given K >

< decreasing returns to scale (DRTS)
2, lemma 1 implies that K S(z/K, g) <=/ S(z, g) under { constant returns to scale (CRTS)
> increasing returns to scale (IRTS)
It follows that
< DRTS
Dr = O under < CRTS ;. (10b%)
> IRTS

Equation (10b’) implies that Dg vanishes under CRTS, but is positive (negative) under
IRTS (DRTS). Thus, the term Dy can be interpreted as capturing scale effects generated as the
netput vector z is produced in more specialized ways. Also, equation (10b’) shows that Dg > 0

under non-decreasing returns to scale. Intuitively, more specialized processes involve smaller
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scales of operation. Under IRTS, such processes (associated with lower biodiversity) would
appear less productive (their scale of operation is "too small"), implying that the scale effect
contributes positively to the value of biodiversity (Dg > 0). Alternatively, under DRTS, the
specialized processes would appear more productive (as the scale of operation of the integrated
process is "too large"), implying a negative scale effect (Dr < 0). Thus, proposition 3 establishes
how the scale of ecosystem and the nature of returns to scale for the underlying process (as
reflected by the term Dg) can affect the value of biodiversity.

The term Dy in (10c¢) reflects the effect of convexity. To show it, we make use of lemma

2 in the Appendix. Lemma 2 states that the shortage function S(z, g) is convex in z when the

feasible set Z is convex. It follows that, under the convexity of Z, the shortage function satisfies
Y5 687, 92 ST, 6,7, ) for § € [0, 1] satisfying T, 6;= 1. Choosing 6; = /K, z' =

(z/K, B 7, g) and 7' = (z,/K, z, (1-B)/(1-K), g) for j = 2, ..., K, it follows from (10c) that Dy > 0.
Thus, a convex technology is sufficient to imply that Dy > 0. Intuitively, a convex technology
means diminishing marginal productivity, a standard characterization of resource scarcity. This
suggests that the term Dy reflects the role of resource scarcity. In this context, proposition 3
shows that resource scarcity contributes positively to the value of biodiversity.

Finally, the term D, in (10d) reflects catalytic effects around z = 0. Indeed, in the absence
of discontinuity of the shortage function S(z, g), then S«(z, g) = 0 and thus D, = 0 in equation
(10d). When Sy is non-zero, note that D, can be positive, zero, or negative. Since S(z, g) is step
function with possible discontinuities only around z = 0, S{(z, g) is a constant as along as the set
of non-zero netputs does not change. Then, from equation (10d), B € (1/K, 1) implies D, = 0.
Alternatively, the fixed-netput component D, can be non-zero only when B = 1. It means that the
role of catalytic effects is relevant in the value of biodiversity only when = 1, i.e., only under
complete loss of biodiversity in environmental goods across elements of the partition I = {1y, Iy,

..., Ipk}. In the context where B = 1, from equation (10d), D, is positive if and only if
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ZE:I SH(z/K, Zuk, 0, g) > S{(z./K, 7z, g) + (K-1) S{(z./K, 0, g). Then, catalytic effects contribute to

the value of biodiversity. This corresponds to situations where a complete loss of biodiversity
generates a discontinuous decrease in the productivity of the specialized processes. Thus,
Proposition 3 shows how a complete loss of biodiversity can affect the value of biodiversity
through the catalytic component Da.

Proposition 3 provides useful information on conditions contributing to the value of

biodiversity. It generates the following result.

Corollary 1: Sufficient conditions for a positive value of biodiversity are:
1) there is complementarity between zy, and Zyy, k=1, ..., K, (D¢ > 0),
2) the technology exhibits non-decreasing returns to scale (Dg > 0),
3) the technology Z is convex (with Dy > 0), and

4) Dp20.

Thus, the value of biodiversity can arise from complementarity among environmental
goods in z, (D¢ > 0), from increasing returns to scale (Dg > 0), from a convex technology (Dy >
0), and/or from catalytic effects (when D4 = 0). This identifies the role of complementarity as an
important contributing factor to the value of biodiversity. However, it also shows that
complementarity is in general neither necessary nor sufficient to generate a positive value for
biodiversity. For example, under decreasing returns to scale (DRTS), equation (10b’) implies that
Dg < 0. This reflects the fact that, under DRTS, the smaller and more specialized processes
require fewer resources to produce the same aggregate outputs. When this scale effect dominates
the other components in (9), then D < 0, i.e. biodiversity would have a negative value even in the
presence of complementarity. Alternatively, By can become negative under a non-convex

technology. Again if this negative convexity effect dominates the other components in (9), then D
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< 0, and biodiversity would have a negative value even in the presence of complementarity.
Finally, we have shown that the catalytic effect Dy is present only under complete loss of
biodiversity in environmental goods across elements of the partition I, = {I;, Ly, ..., Iox}-
Scenarios where Dy is positive and large can arise when a complete loss of biodiversity is
associated with a large decline in the productivity of the specialized processes. In such cases, the
value of biodiversity can be positive even in the absence of complementarity. This illustrates the

usefulness of the decomposition provided in Proposition 3.

5. The Case of Uncertainty

Often, the productivity of an ecosystem is not known with certainty. This is particularly
relevant when the ecosystem involves significant dynamics. Then, the future productivity of the
ecosystem may depend on many factors that are not fully known. In this section, we investigate
the case where some elements of the underlying technology are uncertain. This is done by
considering that the feasible set Z depends on some factors denoted by the vector v, factors that
are not perfectly known at the present time. Then, the underlying technology is represented by
Z(v), where z € Z(v) means that netputs z are feasible given v. For example, v could represent
future weather patterns, where good (bad) weather would expand (contract) the feasible set Z.
Then, z = (z,, 7,) € Z(v) means that private netputs z, and environmental netputs z, can be
produced under conditions v. Given Z(v), the frontier technology can be represented by the
shortage function S(z, v, g) in (1), where feasibility means S(z, v, g) <0, and S(z, v, g) = 0 means
that netputs z are on the frontier technology given v.

The vector v representing uncertainty can be treated as a vector of random variables.
Assume that v has a probability distribution reflecting the (possibly subjective) evaluation of the
uncertainty. In general, note that this distribution can depend on the netputs z. Then, being a

function of v, the shortage function S(z, v, g) is also random and has a probability distribution.
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Below, we explore the characterization of the distribution of S(z, v, g) using its moments
(e.g., Antle). For that purpose, assume that S(z, v, g) takes the following specification:

S(z, v, @) =fi(z, @) + [fx(z, g) - fx(z, ©°1" ex(v) + [f3(z, )] ex(v), (11)
where the random variables e,(v) and e;(v) are independently distributed and satisfy E[e,(v)] =
E[e;(v)] = 0, E[ex(v)’] = E[e3(v)’] = 1, E[ex(v)’] = 0, E[es(v)'] = 1, and E(-) denotes the
expectation operator based on the (subjective) probability distribution of v (distribution which can
depend on z). This means that the random variables e,(v) and e;(v) are normalized (i.e., they are
each distributed with mean zero and variance 1). In addition, e,(v) has zero skewness (E[ez(v)3] =
0) while the random variable e;(v) is asymmetrically distributed and has positive skewness

(E[e3(v)3] =1). It follows from (11) that

E[S(z, v, g)] = 1i(z, g), (12a)
E[(S(z, v, @) - f1(z, 2))°] = fx(z, @), (12b)
E[(S(z, v, @) - i(z, 2))’] = f3(z, @) (12c)

This shows that the specification (11) provides a convenient representation of the first
three central moments of the distribution of S(z, v, g). Indeed, from (12a), the first moment (the
mean) is given by f,(z, g). From (12b), the second central moment (the variance) is given by fy(z,
g) > 0. And from (12c), the third central moment (measuring skewness) is given by f3(z, g). Since
the functions fi(z, g), f>(z, g) and f3(z, g) can take any form, this provides a flexible representation
of the impacts of netputs z on the distribution of S under uncertainty. In addition, if we treat the
distribution of e,(v) and e;(v) as given, then the three moments f(z, g), f>(z, g) and f5(z, g) are
sufficient statistics for the distribution of S(z, v, g) in the specification (11).

Note that equation (11) can be interpreted as a standard regression model where f;(z, g) is
the regression line representing mean effects, and e, = {[f(z, g) - f5(z, g)2/ 1" e,(v) + [f5(z, g)]” 3
es(v)} is an error term with mean zero, variance f,(z, g) and skewness f3(z, g). By considering
explicitly skewness effects, it is a generalization of the standard Just-Pope mean-variance

specification for a stochastic technology (Just and Pope, 1978, 1979). The effects of netputs z on
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the variance of S can help determine whether the i-th netput is risk increasing (with of,(z, g)/0lzjl
> (), risk neutral (with ofy(z, g)/0lz;l = 0), or risk decreasing (with 0fx(z, g)/0lzil < 0),i=1, ....,
n+m. However, equation (11) goes beyond the Just-Pope mean-variance specification by allowing
for skewness effects. In situations where exposure to downside risk is relevant and skewness
effects are important (e.g., the case of catastrophic events), specification (11) provides a
framework to analyze such issues. It allows an assessment of the effects of netputs z on the
skewness of S. For example, in the case where g = (1, 0, ..., 0) and z, is an output, then S(z, v, g)
=71 -G(zy, ..., Zmsn, V), Where G(Zy, ..., Znw, V) = maXx, {z;: z € Z(v)} is a stochastic production
function. Then, given E[es(v)’] = 1 in (11), the i-th netput is said to be downside-risk increasing if
of3(z, g)/0lzil > 0, downside-risk neutral if 0f3(z, g)/0lz;l = 0, or downside-risk decreasing if Of;(z,
2)/0lz] < 0,1=2, ..., m+n. As such, the specification (11) provides a useful basis to investigate
how uncertainty affects the productivity of the ecosystem. And the effects of netputs z on the
mean, variance and skewness of S show how ecosystem management affects both its average
productivity and the associated risk (including downside risk exposure).

Using specification (11) provides additional information on the value of biodiversity.
From equation (8) and Proposition 2, the shortage function (11) gives a basis for evaluating the
value of biodiversity under uncertainty (given the random variables v)

D(z v.B. ) =X, SV, 8-SV, g, @)
where 7 = (zak, zbk) satisfies equations (7a)-(7¢c), k=1, ..., K.

Note that Proposition 2 involves the condition: p g = 1. Under uncertainty, this can raise
questions in situations where some prices in p may be state-contingent (i.e., if they depend on the
random variables v). A simple way of avoiding this issue is to restrict the choice of the bundle g
to private goods that are chosen ex ante, i.e. before the random variables v become observed.
Then, if these goods are market goods, their prices would also be ex ante prices with two

desirable properties: 1/ they would not be state-contingent (i.e., they would not depend on v); and
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2/ they can be taken to be current prices that are readily observable. Thus, provided that one
restricts the bundle g to include only private goods that are chosen ex ante, Proposition 2 would
apply under uncertainty, with D(z, v, B, g) in (8') providing a monetary value of biodiversity (as
long as g is chosen such that p g =1).

To see the usefulness of the specification (11), consider substituting (11) into (8'). This

gives the following result.

Proposition 4: Given the specification (11) and assuming that p g = 1, the value of biodiversity

D(z, v, B, g) in (8') can be written as
D(z,v, B, 2) =X, fi(Z, @) - fi(z, g)
+ {2 [0 @) - 1325 @717 - [fa(z, @) - 3z, 971"} ea(V),
+{Z 0 (25 917 - [f3(z, 917} es(v), (13)
implying that
Di(z, B, 9 =E[D(z v, B, 91 =X fi(Z", o) - fi(z, ), (14a)
Da(z, B, g) = E[(D(z v, B, g) - D)’]
= (X [R(25 @) - 525, 971" - [z, ) - fa(z, *°1"*)?
+ {2 [ 91" - [z 917), (14b)

Ds(z, B, ) =EI(D(z, v, B, ©) - D)1 = (X, [f3(z", 91" - [f3(z, 21"} (14c)

Proposition 4 evaluates the effects of uncertainty on the value of biodiversity D. First,
equation (13) indicates how the uncertainty v affects D through the two random variables e,(v)
and e;(v). Second, equations (14a)-(14c) presents the first three central moments of the value of
biodiversity. The first moment (i.e., the mean) of D is given by D, in equation (14a): it depends

on the properties of the mean shortage function f(-, g). The second central moment (i.e., the
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variance) of D is given by D, in equation (14b). It depends on the properties of both the variance
and the skewness of the shortage function, f,(-, g) and f3(:, g). Finally, the third central moment
(i.e., the skewness) of D is given by Dj; in equation (14c) and depends on the properties of the
skewness function f3(-, g). Equations (14a)-(14c) provide a basis to evaluate how the netputs z =
(z,, 7,,) affect the distribution of the value of biodiversity.

In a way similar to Proposition 3, note that the mean value of diversity Dy(z, B, g) =
> le f 1(Zk, g) - fi(z, g) in (14a) can be decomposed. Consider the case where the function f,(z, g)

can be written as f(z, g) = {,(z, g) + fi(z, g). The function f},(z, g) is a "mean variable-shortage
function", assumed to be continuous in z and continuously differentiable in z, almost everywhere.
And the function fi«(z, g) is a "mean fixed-shortage function" reflecting possible catalytic effects:

it is a step function which satisfies 140, g) = 0 and can exhibit jump discontinuities around z = 0.

Proposition 5: Given p g = 1 and under equations (7), the mean value of biodiversity D, in (14a)

evaluated at netputs z = (z,, z,) can be written as

Di(z, B, g) =Dic + Digr + Dyy + Dya, (15)
where
By
Die=XC ] " % S /K B (KD, . s (LKD), ) dy
jﬁzbk M Lk 1-B)/(K-1), v, B d 16
- 24, (1-BY(K-D) a’Y (Za ) Zb,l:k-l ( - ) ( = )’ Y’ Zb,k+l:K’ g) Y}9 ( a)
Dr =K 1(z/K, g) - fi(z, 2), (16b)
Dy =f1(z/K, B 7, g8) + (K-1) fi(z/K, z, (1-B)/(K-1), g) - K fi(Z/K, g), (16¢)
and

Dia= Zle fi(z/K, B Zpks Zb\bk (1'3)/(K'1), g)

- fi(z/K, B zv, @) - (K-1) fi(z/K, z, (1-P)/(K-1), g). (16d)
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Proposition 5 gives a decomposition of the mean value of biodiversity D,(z, g) in (15)
into four additive terms: D¢ given in (16a), D given in (16b), D,y given in (16c), and D, given
in (16d). As discussed in Proposition 3, they reflect respectively complementarity effects, scale
effects, convexity effects, and catalytic effects with respect to the mean value of diversity D,(z, 3,
g). This provides useful insights on the sources and determinants of mean biodiversity value.

Note that the variance and skewness of biodiversity given in equations (14b) and (14c)
are more complex than (14a). Yet, they provide a basis for evaluating the effects of netputs z on
the distribution of biodiversity value. This would be important in situations where decision
makers are risk averse (meaning that a higher variance makes them worse off) and downside-risk
averse (meaning that a more negative skewness makes them worse off; see Menezes et al.). Then,
the identification of the effects of z; on D, in (14b) and D; in (14c) is of special interest. Indeed,
assuming differentiability, finding that dD,/dlz| < 0 (> 0) mean that the i-th netput is reducing
(increasing) the variance of the value of biodiversity. And finding that 0Ds/dlz;] > 0 would imply
that the i-th netput is increasing the skewness of D. This means reducing the probability of a
disastrous decline in the value of biodiversity. To the extent that such situations can be associated
with improved resilience of the ecological system (see Holling), this can provide useful insights
into the economics and management/policy implications of ecosystem resilience. This illustrates
how management decisions (involving the choice of netputs z) can affect the mean, variance as

well as skewness of the value of biodiversity.

6. Concluding Remarks
We have presented an analysis of the value of biodiversity in an ecosystem. This is
particularly relevant in the context of agriculture, where the ecosystem involves environmental

goods (including ecological capital and environmental services) being used in the production of

22



food. The analysis applies under general conditions, allowing for non-convexities, lack of free
disposal in environmental goods, and dynamics. In this context, we relied on Luenberger's
shortage function to provide a measure of the productive value of biodiversity. When positive,
this value reflects the fact that an ecosystem is worth more than the “sum of its parts.” We
showed that this value can be decomposed into four additive components, reflecting
complementarity effects, scale effects, convexity effects, and catalytic effects. While the
identification of these components indicates that biodiversity value can be complex, our analysis
provides new and useful information on its sources and determinants. We also examined the
effects of uncertainty on the value of biodiversity. This is relevant since the future productivity of
ecosystems is often imperfectly known. In this context, we showed how management decisions
can affect the mean, variance as well as skewness of the value of biodiversity. This should help
guide empirical research investigating the importance of biodiversity and its implications for
ecosystem management.

While our investigation focused on the productive value of biodiversity, we should keep
in mind that this value is only a part of the total value of an ecosystem. This indicates the need to
place the analysis in the broader context of ecological-economic interactions. This would include
the value of biodiversity to consumers. Under uncertainty, this means examining the role of risk
preferences and their implications for the design and implementation of risk management
schemes. And in a dynamic context, this would include addressing the issue of how new
information that becomes available over time is used in ecosystem management. These appear to

be good topics for future research.
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Appendix

Proof of Proposition 3:

From equation (8), the value of biodiversity is
D= ZE:I S(z/K, B Zoks Zowk (1-)/(K-1), g) - S(z, g) > 0. (A1)
Define
d; = S(z/K, B zb1, Zow1 (1-B)/(K-1), g) + S(z/K, 71 (1-B)/(K-1), B Zpp1, £)-
And letting zy, ;i = (Zvi, Zbis15 ---» Zbj-1, Zpj) fOr 1 <j, define
dy = S(z/K, B Zok, Zowk (1-B)/(K-1), g)
+ Su(zo/K, 75,16 (1-B)/(K-1), B Zoxs1x, &)
- Sy(2z/K, zp 1501 (1PY(K-1), B zo ke, 2)s
fork=2,...,K-1. Using dy, ..., dg_i, and given S(z, g) = S\(z, g) + S(z, g), expression (Al) can
be alternatively written as
D=3, di + Sz/K, B 2ok, zowk (1-B)(K-1), @) - S(z, 2). (A2)
When S,(z, g) is continuous in z, everywhere and continuously differentiable in z, almost
everywhere, note that d, can be alternatively written as
d; = S(z/K, B zp1, Zowr (1-)/(K-1), g) + Sy(z/K, 71 (1-B)/(K-1), B Zpp1» &)
- Su(z/K, B z, g) + Su(z/K, B 7, £)
- S\(z/K, z, (1-P)/(K-1), ) + Su(z/K, z, (1-B)/(K-1), g),

= SH(z/K, B zo1, Zow1 (1-B)/(K-1), g)

Bz aS,
¥ I 2y (HBYIKD (2K, ¥, zowr (1-B)/(K-1), g) dy

b 3s,
) -[ 2y (-PYKD (2K, Y, B Zoo1, g) dy

+ Su(z/K, B 7, 8) + S\(z/K, 7, (1-B)/(K-1), g). (A3)

Similarly, di can be alternatively written as
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di = S/K, B Zok, Zowk (1-B)(K-1), 2)
+ Su(z/K, zo1x (1-BY(K-1), B zb i1, 8)
- Su(@z/K, zo,151 (1-PY(K-1), B ok, 2)
- Su(z/K, zp (1-B)/(K-1), @) + Su(z/K, 2 (1-B)/(K-1), g),

= SH(z/K, B Zok, Zowk (1-B)/(K-1), g)

Bz BSV
S 5y (/K 2ot (BVICD, % 2o (1B, ) dy

/K, zy 151 (1-B)/(K-1), ¥, B Zp 1% &) dY

i J'ﬁzbk BSV

2 (I-BY(K-1) ay

+Su(z/K, z, (1-B)/(K-1), g),
k=2, ..., K-1. Substituting (A3) and (A4) into (A2) yields

D = Sy(z/K, B z, g) + (K-1) S\(z/K, z, (1-)/(K-1), g)

+ 2 o SHz/K, B 2ok, Zoww (1-B)/(K-1), g)

ot >, /K Znie (LBYD, % 2 (LD, ) 0y

zyy (1I-P)K-1)

Bz aSV
o . 3y (/K 2o (LKD), 1 B zosc. ) d)

-S(z, g).
Given Sy(z, g) = S(z, g) - S{(z, g), it follows that (AS) can be written as

D =Dc + Dg + Dy + Dy,

where

De=x([ ™ >, /K i (1BYD, . 2o (1-BIK-), ) dy

2k (I-BY(K-1)

24, (1-BY(K-D) a'yv (Za/K’ Zb,l:k-l (I_B)/(K_l)v ’Ya B Zb,k+l:K’ g) d’Y}’

i .[l?’zbk oS

Dr=K S(Z/K, g) - S(z, g),

(A4)

(AS5)
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Dy = S(z/K, B z, g) + (K-1) S(z/K, z, (1-B)/(K-1), g) - K S(z/K, g),

and
Dy=2 11((:1 Si(z./K, [3 Zbks Zb\bk (1-6)/(K-1), 2)

- S(z/K, B z, ) - (K-1) S(z/K, z, (1-B)/(K-1), g).

Lemma 1: For any k € (0, 1),

< DRTS
S(k z, g) 4+=¢ k S(z, g) under { CRTS ;.
> IRTS

Proof: By definition, the technology Z exhibits increasing returns to scale (IRTS), constant
returns to scale (CRTS) or decreasing returns to scale (DRTS)if aZcZ, uZ =7, or o
Z > Z, respectively, for all o > 1. Let k € (0, 1). Consider the case where there is a 'y
satisfying (k z, -y g, k zy) € Z. Then
S(kz g) = min, {Y: (kz, -y g kz) € Z},
=k ming {0: (z, - 8 g, z,) € (1/k) Z}, where & = y/k,

< D DRTS
k S(z, g) when (1/k) Z { =¢ Z, i.e., under { CRTS ;.
IRTS

\
N

Lemma 2: If the set Z is convex, the shortage function S(z, g) is convex in z.
Proof: Consider any two netput vectors z€ R™™ and z” € R™™. First assume that S(z, g) and S(z’,
g) are finite. It follows that (z- S(z,g) g) € Zand (z’ - S(z’, g) g) € Z. Let 2z’ =0z + (1-
0) z’, for any scalar 0 € [0, 1]. If the set Z is convex, it follows that
[27-0S(z, g) g-(1-8) S(z", g) gl € Z.

The shortage function being defined as a minimum in (1), this yields
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Sz, 2)=SOz+(1-0)7",2) <0 S(z, g) + (1-6) S(z’, g).
Second, consider the case where S(z, g) and/or S(z’, g) are infinite. Then, the above

inequality always holds. Thus, the function S(z, g) is convex in z.
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Figure 1: An illustration of the technology
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