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On the Productive Value of Biodiversity 

 

1. Introduction 

Since the development of food production some 10,000 years ago, agriculture has been in 

the business of using the earth ecosystem to satisfy man’s nutritional needs. In this context, 

agriculture has seen major improvements in technology (e.g., Boserup, 1975, 1981). Over the last 

century, growth in agricultural productivity has been large enough to allow the earth to feed its 

growing human population. But this has been associated with significant alterations in the earth 

environment, which have raised concerns about the sustainability of current agricultural practices. 

Since the number of cultivated plants remains relatively small (Heiser), the development of 

agriculture has implied a decline in biodiversity. Previous research has documented that 

biodiversity is an important component of ecological systems (e.g., Tilman and Downing; Tilman 

et al.; Heal; Wood and Lenne). There is empirical evidence that a loss of biodiversity can have 

adverse effects on the functioning of ecosystems (e.g., Laureau and Hector; Naeem et al.; Tilman 

and Downing; Tillman et al.). Yet, while the term biodiversity has acquired a positive 

connotation, its measurement and conceptualization remains difficult. A number of indices of 

biodiversity have proposed, including the Shannon index and the Simpson index (see Hill; Lande; 

May; Polasky and Solow; Simpson). These indices have been used extensively in the empirical 

analysis of biodiversity issues (e.g., Heisey et al.; Meng et al.; Priestley and Bayles; Smale et al., 

1998, 2002, 2003; Smale; Wood and Lenné). However, there is a debate on which diversity index 

is most appropriate (see Keylock; Routledge; Tsallis). At this point, it appears that no particular 

index is always superior. This is made clear when the value of biodiversity is found to depend on 

the presence and nature of complementary among services provided by an ecological system 

(e.g., Faith et al.; Justus and Sarkar; Loreau and Hector). Weitzman (1992, 1998) has proposed 

measuring biodiversity through a diversity function based on a measure of dissimilarity. 

Weitzman (1992) showed that this diversity function is one half of the Shannon index. However, 
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Brock and Xepapadeas have argued that a more diverse ecosystem can be much more valuable 

even when the increase in dissimilarity is almost zero. Using Bt-corn for motivation, they show 

that biodiversity can stimulate productivity by reducing pest populations. This reflects the 

complexity of ecosystems. It also suggests the need for further research on the characterization 

and valuation of biodiversity.   

The objective of this paper is to develop a general analysis of the productive value of 

biodiversity. The research focuses on the productive services provided by an ecological system. 

For example, in the context of agriculture, this would involve environmental goods (including 

ecological capital and environmental services) used in the production of food. The analysis 

applies under general conditions, allowing for non-convexity, lack of free-disposal in 

environmental goods, and dynamics. First, we propose a general measure of the productive value 

of biodiversity. The measure is designed to answer the question: is the value of an ecosystem 

“greater than the sum of its parts”? This involves a thought experiment where an ecosystem is 

split into separate sub-systems, holding technology and resource use constant.  The analysis 

makes use of Luenberger’s shortage function (Luenberger, 1995) as a representation of the 

underlying technology. Our proposed measure of the value of biodiversity has a monetary 

interpretation that applies even when environmental services are non-market goods. And when 

positive, the value of biodiversity means that the ecosystem is worth more than “the sum of its 

parts.”   

Second, we show that the value of diversity can be decomposed into four additive parts: 

one associated with complementarity, one with scale effects, one with convexity effects, and one 

with catalytic effects. Complementarity means that there is positive synergy across sub-systems, 

where some environmental goods have positive effects on the marginal productivity of others. 

The role of complementarity has been identified in previous research (e.g., Faith et al.; Justus and 

Sarkar; Loreau and Hector). Our analysis shows that complementarity is indeed an important 

component of the value of biodiversity. The scale component establishes linkages between the 
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scale of an ecosystem and its functioning. For example, under increasing returns to scale, we 

show how an ecosystem can be “too small” to function properly, thus contributing to a positive 

value of biodiversity. The convexity component reflects the role and nature of the underlying 

technology. It shows that diminishing marginal productivity contributes to a positive value of 

biodiversity. This identifies the role of resource scarcity in the valuation of biodiversity. Finally, 

the catalytic component measures the possible discontinuous effects of environmental goods 

around 0. This decomposition provides new information on the sources and determinants of 

biodiversity value.  

Third, the analysis is extended to apply under uncertainty. This is relevant since the 

future productivity of dynamic ecosystems is often imperfectly known. The role of risk and of 

downside-risk exposure and their effects on the value of biodiversity are explored. This provides 

useful insights on how management and policy decisions can affect the value of biodiversity.  

  

2. The Productive Value of Environmental Goods 

Consider an ecological system as a production process involving m private goods and n 

environmental goods. Let z = (z1, …, zm+n) = (za, zb), where za = (z1, …, zm) ∈ ℜm is the quantity 

of the m private goods, and zb = (zm+1, …, zm+n) ∈ ℜn is the quantity of the n environmental 

goods. Using the netput notation, quantities are defined to be negative for inputs (i.e., zi ≤ 0 when 

the i-th netput is an input) and positive for outputs (i.e., zi ≥ 0 when the i-th netput is an output). 

The underlying production technology is denoted by the set Z ⊂ ℜm+n, where z � (za, zb) ∈ Z 

means that private goods za can be feasibly produced in the presence of environmental goods zb. 

Throughout, we assume that the set Z is closed, and that it exhibits free disposal with respect to 

the private goods za (where free disposal in za means that, for any z ≡ (za, zb) ∈ Z, za' ≤ za implies 

that (za', zb) ∈ Z). However, we do not assume that the set Z is convex, or that it exhibits free 

disposal with respect to zb. Thus, our analysis applies under non-convexity and under scenarios 
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where the environmental goods zb do not exhibit free-disposal. Finally, when the netputs z take 

place in different time periods, our approach allows for general dynamics. To illustrate, letting z 

= (z1t, z1,t-1, z2t), the dynamics of the system can be represented by Z = {(z1t, z1,t-1, z2): z1t = h(z1,t-1, 

z2t), (z1t, z2t) ∈ Z’}, where z1t is a vector of state variables at time t (e.g., physical and ecological 

capital), z2t is a vector of control variables at time t, z1t = h(z1,t-1, z2t) is the state equation 

describing the evolution of the ecosystem over time, and Z’ is the feasible set for (z1t, z2t). In this 

context, the z’s can capture stock effects (e.g., the effects of ecological capital) as well as flow 

effects (e.g., food production). This means that our analysis applies to a very general technology 

characterizing the productivity of the ecological system.  

This is illustrated in Figure 1, where m = 1, n = 1, and the upper bound of the feasible set 

Z is given by the line ABCDEFGH. In the region EFG both za and zb are considered as outputs. 

This would apply to a healthy ecosystem that allows for the production of valuable ecological 

services as well as private goods. In the region BCDE, the environmental good zb is an input in 

the production of za. This corresponds to situations where the ecological system is used mainly to 

produce private goods (e.g., agriculture using the ecological system to produce food). Region GH 

corresponds to a case of environmental enhancement where the private good za is an input into the 

production of the environmental good zb (e.g., protecting the ecological system that provides 

clean water for New York City). Finally, in the region AB, both za and zb are inputs. This would 

correspond to unproductive ecological systems where the production of private goods becomes 

impossible (e.g., on Mount Everest). Note that the technology Z in Figure 1 is not convex (e.g., 

the region CDEF). And it does not exhibit free disposal in the environmental good zb in the 

regions ABC and DEF.  

We are interested in providing a general representation of the frontier technology given 

by the boundary of Z. Such a representation is given by the shortage function proposed by 
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Luenberger. Let g ∈ ℜ m
+  be a reference bundle of private goods satisfying g ≥ 0, and g ≠ 0. For a 

given g, the shortage function S(z, g) evaluated at point z � (za, zb) is defined as  

S(z, g) = minα {α: (za - α g, zb) ∈ Z}, if there is an α such that (za - α g, zb) ∈ Z}, 

= +� otherwise. (1) 

The shortage function S(z, g) measures the number of units of the reference bundle g 

reflecting the distance between point z � (za, zb) and the frontier technology. It has some useful 

properties (see Luenberger): 

1. z ∈ Z implies S(z, g) ≤ 0,  

2. Under free disposal in za, Z = {z: S(z, g) ≤ 0}, 

3. Under free disposal in za, S(za, zb, g) is non-decreasing in za,  

4. S(za + α g, zb, g) = α + S(z, g), for any α.  

   

Property 1 shows that S(z, g) ≤ 0 is associated with the feasibility of the netputs z � (za, 

zb). Under free disposal in za, property 2 implies that S(z, g) ≤ 0 provides a complete 

characterization of the technology. In this case, S(z, g) = 0 if and only if z is on the upper bound 

of the feasible set Z, with S(z, g) = 0 providing a multi-input multi-output functional 

representation of the underlying frontier technology. Under free disposal in za, property 3 states 

that the shortage function S(za, zb, g) is non-decreasing in the private goods za. Note that, in 

general, S(za, zb, g) can be either increasing or decreasing in the environmental goods zb. As 

suggested by property 3, it would be non-decreasing in zb if the technology exhibited free 

disposal in zb. But it would be decreasing in zb in regions where free disposal in zb fails to hold. 

Finally, if S(za, zb, g) is twice differentiable in z, property 4 implies that 
a

ba

z
g),z,S(z

∂
∂

 g = 1 and 

that 
aba

ba
2

z)z,(z
g),z,S(z

∂∂
∂

 g = 0.  
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The shortage function is illustrated in Figure 1. Consider evaluating it at point J, where 

the private good za > 0 is an output (represented by the distance OK in Figure 1) and the 

environmental good zb < 0 is an input (where |zb| is given by the distance OL). Given the 

reference bundle g (represented by JM in Figure 1), the shortage function S(z, g) evaluated at 

point J is given by -JN/JM.  

As a further illustration, consider the case where g = (1, 0, …, 0). Then S(z, g) = minα {α: 

(z1 - α, z2, …, zm+n) ∈ Z} = z1 - G(zc) where zc = (z2, …, zm+n) and G(zc) = max {z1: (z1, zc) ∈ Z} 

is the largest possible z1 that can be obtained given other netputs zc. In this case, under 

differentiability, �S/�z1 = 1 and �S/�zc = -�G/�zc, implying that -�S/�zc can be interpreted as 

measuring the marginal product of zc.  

For a given z ≡ (za, zb), the shortage function S(z, g) in (1) provides a convenient basis for 

analyzing the productive value of the environmental goods zb. To see that, consider a change in 

environmental goods from zb
1 to zb

2. Then, define  

P(za, zb
1, zb

2, g) = S(za, zb
1, g) - S(za, zb

2, g). (2) 

Starting from the point z � (za, zb
1), P(za, zb

1, zb
2, g) in (2) measures the number of 

additional units of the reference bundle g that can be obtained from changing environmental 

goods from zb
1 to zb

2. To illustrate, consider the case where zb are inputs (with zb < 0) and (2) is 

evaluated under a technology exhibiting free disposal in zb. As suggested by property 3, S(za, zb, 

g) would be non-decreasing in zb. Then, with zb < 0, any increase in the environmental inputs 

from |zb
1| to |zb

2| would mean a decrease in zb, implying that P(za, zb
1, zb

2, g) ≥ 0 in (2). In this 

case, increasing environmental input zb can make it possible to produce more of the private goods 

za, with P(za, zb
1, zb

2, g) ≥ 0 measuring the additional number of units of the private goods g that 

can be produced.  

To note the role of free disposal for the environmental goods zb, consider the case of an 

increase in the environmental input from point J in Figure 1. With zb < 0, increasing the 
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environmental input |zb| means a decrease in zb from point J, implying an increase in the shortage 

function. This reflects the fact that free disposal in zb does not hold in the region BC of Figure 1, 

and that the shortage function S(za, zb, g) is now decreasing in zb in the neighborhood of point J. 

In this case, any increase in the environmental input |zb| implies that P(za, zb
1, zb

2, g) < 0 in (2). 

This illustrates that, without free disposal, increasing environmental input |zb| can reduce the 

ability to produce the private goods za, with P(za, zb
1, zb

2, g) < 0 measuring the associated 

reduction in the number of units of g that can be produced.  

In the case where the private goods za are also market goods with prices p, a monetary 

evaluation of P(za, zb
1, zb

2, g) in (2) is 

V(za, zb
1, zb

2, p, g) = P(za, zb
1, zb

2, g) (p g)  

= [S(za, zb
1, g) - S(za, zb

2, g)] (p g). (3) 

Starting from the point z � (za, zb
1), V(za, zb

1, zb
2, p, g) in (3) gives a monetary value of 

the private goods that can be obtained when environmental goods change from zb
1 to zb

2. Then, 

comparing (2) and (3) gives the following result. 

 

Proposition 1: When the reference bundle g is chosen to have unit value (with p g = 1), P(za, zb
1, 

zb
2, g) in (2) gives a monetary value of changes in environmental goods from zb

1 to zb
2.  

 

This provides some guidance for choosing the reference bundle g. When g is chosen such 

that p g = 1, Proposition 1 shows that P(za, zb
1, zb

2, g) in (2) measures the monetary value of 

changes in environmental goods. This measure is attractive on several grounds: it allows the 

analysis of environmental goods as "non-market goods", (i.e., goods with no observable price); it 

allows for a general technology underlying the productivity implications of an ecological system; 

it does not require the technology to be convex; and it does not require that the environmental 

goods satisfy “free disposal.”  
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As shown in Proposition 1, equations (2) and (3) provide absolute measures of changes 

environmental goods. Note that these measures can be easily modified into relative measures. To 

see that, consider the case where zb
1 = 0 and zb

2 = zb. Then, equation (2) becomes 

 P(za, 0, zb, g) = S(za, 0, g) - S(za, zb, g),  (2') 

where P(za, 0, zb, g) measures the total value of the environmental goods zb when p g = 1. In 

situations where P(za, 0, zb, g) � 0, a relative measure of changes in environmental goods from zb
1 

to zb
2 can be written as 

R1(za, zb
1, zb

2, g) ≡ P(za, zb
1, zb

2, g)/P(za, 0, zb
2, g) 

= [S(za, zb
1, g) - S(za, zb

2, g)]/[S(za, 0, g) - S(za, zb
2, g)].  (4) 

R1(za, zb
1, zb, g) in (4) measures the value of the change from zb

1 to zb
2 as a proportion of 

the total value of zb
2 given in (2'). Finally, note that, in situations where (za, zb

2) is on the upper 

bound of the feasible set, then S(za, zb
2, g) = 0 and equation (4) reduces to  

R1(za, zb
1, zb

2, g) = S(za, zb
1, g)/S(za, 0, g),  (4') 

showing that a ratio of shortage functions provides a simple relative measure of environmental 

changes.  

    

3. The Value of Biodiversity 

Equations (2) and (3) measure the productive value associated with a change in 

environmental goods. However, it is often of interest to know more about the source of this value. 

The concerns about biodiversity provide a good example. Indeed, biodiversity issues typically 

arise when it is believed that the value of an ecosystem is greater than the value of its parts. This 

suggests the need to evaluate the value of environmental goods both for their "total value" and for 

the “sum of their parts.” To address this issue, consider a thought experiment where the 

ecological system is split into K separate sub-systems, keeping technology and the total amount 

of resources constant. The key question is: is the original system more productive than the K sub-

systems?  
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To answer this question, denote by Ib the set of environmental goods in zb, and consider a 

partition of the set Ib = {Ib1, Ib2, …, IbK}, with 2 � K � n. Let zbk = {zj: i ∈ Ibk} denote the 

environmental goods in the subset Ibk, k = 1, …, K, with zb = (zb1, …, zbK). For a given z ≡ (za, zb) 

∈ Z, consider K situations where zk  ≡ (za
k, zb

k) � 0 for k = 1, …, K, and where � K
1k= zk = z. Using 

the shortage function (1), we propose the following measure of diversity 

D(z, g) = � K
1k= S(zk, g) - S(z, g), (5) 

where z = � K
1k=  zk. Equation (5) compares two situations involving netputs z: one where the 

netputs z are involved in a single production process; and the other situation where there are K 

separate production processes, with zk being the netputs used in the k-th production process. With 

z = � K
1k=  zk, it follows that, in each situation, the same aggregate amounts of resources are used to 

produce the same aggregate netputs. In this context, equation (5) provides a measure of the 

number of units of the reference bundle g that can be saved by producing z jointly (compared to 

producing the same aggregate netputs z in K separate production processes). Intuitively, D(z, g) > 

0 if there are productivity gains associated with a joint use of the netputs z. This reflects that D(z, 

g) > 0 corresponds to situations where “the whole is worth more than the sum of the parts.” From 

(5), this would be associated with the subadditivity of the shortage function.  

To help further motivate (5), consider the case where p g = 1. Then, use equation (2) to 

define Pk = S(za, 0, g)/K - S(zk, g) as measuring the value of the environmental goods in zk, k = 1, 

..., K, where � K
1k= za

k = za. Note that S(za, 0, g) is divided by K to reflect the fact that the original 

ecosystem is being evaluated in the context of K separate systems. Then, the value of the "sum of 

the parts" across the K systems is  

� K
1k= Pk = S(za, 0, g) - � K

1k= S(zk, g),  

 = P(za, 0, zb, g) - D(z, g),  
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using (2') and (5). It follows that D(z, g) = P(za, 0, zb, g) - � K
1k= Pk. This shows that the value of 

diversity D(z, g) in (5) is indeed the difference between the total value of the environmental 

goods zb, P(za, 0, zb, g), and the value of the “sum of its parts”, � K
1k= Pk.  

As indicated in proposition 1, when the reference bundle g is chosen such that p g = 1, 

then D(z, g) in (5) provides a monetary measure of the value of diversity. As such, equation (5) 

provides an absolute measure of diversity. However, it can be easily used to obtain a relative 

measure. In situations where the total value P(za, 0, zb, g) in (2') is non-zero, a relative measure of 

diversity can be written as 

RD(z, g) ≡ D(z, g)/P(za, 0, zb, g) 

= [� K
1k=  S(zk, g) - S(z, g)]/[S(za, 0, g) - S(za, zb, g)].  (6) 

where z ≡ (za, zb) = � K
1k=  zk. RD(z, g) in (6) measures the value of diversity as  a proportion of the 

total value of zb given in (2'). In situations where z ≡ (za, zb) is on the upper bound of the feasible 

set, then S(za, zb, g) = 0 and equation (6) reduces to  

RD(z, g) = � K
1k=  S(zk, g)/S(za, 0, g),   (6') 

showing that a ratio of shortage functions provides a simple relative measure of diversity.  

Note that equation (5) defines diversity in the general context of the netputs z, which 

include both the private goods za and the environmental goods zb. Given our interest on 

biodiversity, we want to focus our attention on diversity issues related only to environmental 

goods. In this context, it will be useful to define zk � (za
k, zb

k) in (5) in a more specific way. 

Consider choosing  

za
k = za/K,  (7a) 

and  

zi
k = β zi if i ∈ Ibk, (7b) 

  = zi (1-β)/(K-1) if i ∈ Ib\Ibk,   (7c) 



 11 

k = 1, …, K, for some β ∈ (1/K, 1]. First, note that equations (7a)-(7c) always satisfy z = � K
1k=  zk. 

This guarantees that the same aggregate netputs are involved in both situations. Second, equation 

(7a) divides the market goods za equally among the K production processes. This imposes "no 

diversity" in the use of the private goods za across the K production processes. Third, equations 

(7b)-(7c) establish the patterns of specialization for the environmental goods zb. The parameter β 

in (7b) represents the proportion of the original environmental netputs {zi: i ∈ Ibk} that are 

produced in the k-th process. And from (7c), β/(K-1) represents the proportion of the original 

netputs {zi: i ∈ Ib\Ibk} produced in the k-th process. When β = 1, this corresponds to the case of 

complete specialization where the k-th process relies exclusively on environmental netputs in the 

subset Ibk (with zik = zi if i ∈ Ibk) with zik = 0 for i ∈ Ib\Ibk. In such situations, each of the K 

process is associated with a complete loss of biodiversity in environmental goods zb across 

elements of the partition Ib = {Ib1, Ib2, …, IbK}. Alternatively, when β ∈ (1/K, 1), this allows for 

partial specialization. Then, each of the K process is associated with a partial loss of biodiversity 

in environmental goods zb across elements of the partition Ib = {Ib1, Ib2, …, IbK}. Thus, the 

parameter β ∈ (1/K, 1] allows for varying amount of specialization in the environmental netputs 

among the K production processes. Alternatively stated, it allows for varying amount of loss of 

biodiversity across the K processes. In general, the degree of specialization in each production 

process increases with β. This means that the loss in biodiversity in the K processes also increases 

with β.  

With zk � (za
k, zb

k) given in (7a)-(7c), equation (5) becomes 

D(z, β, g) = � K
1k= S(zk, g) - S(z, g),  (8) 

where β ∈ (1/K, 1]. Equation (8) provides a measure of the value of biodiversity. It measures the 

number of units of the reference bundle g that can be saved when the environmental goods zb are 

part of a joint production process in the ecological system (compared to the case where the 
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environmental goods zb are part of K specialized production processes satisfying (7a)-(7c) and 

producing the same aggregate netputs z). Using arguments similar to the ones presented in 

Proposition 1 yields the following result.  

 

Proposition 2: When the reference bundle g is chosen to have unit value (with p g = 1), then D(z, 

β, g) in (8) is a monetary measure of the value of biodiversity.  

 

4. A Decomposition 

While equation (8) provides a basis to evaluate the value of biodiversity, it is of interest 

to identify the sources of this value. In this section, we develop a general decomposition of the 

benefits associated with biodiversity, thus providing new insights into thier sources.   

Below, we consider the case where the shortage function S(z, g) is a smooth function of 

z, except possibly at z = 0. We allow discontinuity at zero to reflect the possible presence of 

catalytic effects where productivity can be very different when z moves away from zero. To 

capture such effects, let S(z, g) ≡ Sv(z, g) + Sf(z, g). This decomposes the shortage function S(z, 

g) into a "variable function" Sv(z, g) and a "fixed function" Sf(z, g). We assume that the variable 

shortage function Sv(z, g) is continuous in z. The fixed shortage function Sf(z, g) is defined as a 

step function satisfying Sf(0, g) = 0, with possible discontinuities at z = 0. Thus, Sf(z, g) is 

constant with respect to z as long as the set of non-zero netputs does not change. The jump-

discontinuities of Sf(z, g) (an hence S(z, g)) at z = 0 reflect the possible presence of catalytic 

effects of z in the production process.  

We start from the partition Ib = {Ib1, …, IbK}, where Ibk denotes the environmental goods 

that the k-th ecological process specializes in, k = 1, …, K, with 2 � K � n. We use the following 

notation. Let za = {zi: i ∈ Ia}, zbk = {zi: i ∈ Ibk}, zb = (zb1, …, zbK), zb\bk = (zb1, …, zb,k-1, zb,k+1, …, 
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zbK), and zb,i:j = (zbi, zb,i+1, …, zb,j-1, zbj) for i < j. From equations (7), it follows that zk = (za/K, β 

zbk, (1-β) zb\bk). Our main result is stated next. (See the proof in the Appendix).  

 

Proposition 3: Given S(z, g) ≡ Sv(z, g) + Sf(z, g), assume that Sv(z, g) is continuously 

differentiable in zb almost everywhere. Under equations (7), the value of biodiversity D(z, β , 

g) in (8) evaluated at netputs z = (za, zb) can be decomposed as follows   

D ≡ DC + DR + DV + DA,  (9) 

where  

DC ≡ � 1-K
1k = { � −

bk

bk

z �

1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, zb,k+1:K (1-β)/(K-1), g) dγ  

- � −

bk

bk

z �

1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, β zb,k+1:K, g) dγ},  (10a) 

DR ≡ K S(z/K, g) - S(z, g),  (10b) 

DV ≡ S(za/K, β zb, g) + (K-1) S(za/K, zb (1-β)/(K-1), g) - K S(z/K, g),  (10c) 

and 

DA ≡ � K
1k = Sf(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

- Sf(za/K, β zb, g) - (K-1) Sf(za/K, zb (1-β)/(K-1), g).  (10d) 

 

Proposition 3 gives a decomposition of the value of biodiversity D(z, g) in (8) into four 

additive terms: DC given in (10a), DR given in (10b), DV given in (10c), and DA given in (10d).  

The term DC in (10a) depends on how zb\bk affects the marginal shortage of zbk, k = 1, …, 

K. It reflects the presence of complementarity among environmental netputs in zb. To see that, 

consider the case where the shortage function is twice continuously differentiable in zb. Then, 

equation (10a) can be written as 
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DC ≡ -� 1-K
1k = �

+

+ −

K:1kb,

K:1kb,

z �

1)-�)/(K(1 z � −

bk

bk

z �

1)-�)(K(1 z
21

v
2

��

S
∂∂

∂
(za/K, zb,1:k-1 (1-β)/(K-1), γ1, γ2, g) dγ1 dγ2.(10a') 

Equation (10a') makes it clear that the sign of DC depends on the sign of ∂2S/∂zbk∂zb\bk, k 

= 1, …, K. As discussed above, the marginal shortage can be interpreted as the negative of the 

marginal product. In this context, define complementarity between zbk and zb\bk as any situation 

where the shortage function satisfies ∂2S/∂zbk∂zb\bk < 0. Indeed, with �S/�zbk reflecting the 

negative of the marginal product of zbk, complementarity (with ∂2S/∂zbk∂zb\bk < 0) means that zbk 

has positive effects on the marginal product of zb\bk, implying positive synergies between zbk and 

zb\bk. Then, it is clear from (10a) that DC > 0 if the shortage function exhibits complementarity 

between zbk and zb\bk, k = 1, …, K. Thus, proposition 3 establishes that complementarity among 

environmental netputs (as reflected by the term DC) is one of the components of the value of 

biodiversity. This is consistent with previous literature that has identified complementarity as an 

important contributing factor to the value of biodiversity (e.g., Faith et al.; Justus and Sarkar; 

Loreau and Hector).  

To interpret the term DR in (10b), we make use of lemma 1 in the Appendix. Given K ≥ 

2, lemma 1 implies that K S(z/K, g) 
�
�

�
�

�

�
�

�
�

	

>
=
<

 S(z, g) under 
�
�

�
�

�

�
�

�
�

	

(IRTS) scale  toreturns increasing
(CRTS) scale  toreturnsconstant 

(DRTS) scale  toreturns decreasing

. 

It follows that  

DR 
�
�

�
�

�

�
�

�
�

	

>
=
<

 0 under 
�
�

�
�

�

�
�

�
�

	

IRTS
CRTS

DRTS

.  (10b’)  

Equation (10b’) implies that DR vanishes under CRTS, but is positive (negative) under 

IRTS (DRTS). Thus, the term DR can be interpreted as capturing scale effects generated as the 

netput vector z is produced in more specialized ways. Also, equation (10b’) shows that DR � 0 

under non-decreasing returns to scale. Intuitively, more specialized processes involve smaller 
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scales of operation. Under IRTS, such processes (associated with lower biodiversity) would 

appear less productive (their scale of operation is "too small"), implying that the scale effect 

contributes positively to the value of biodiversity (DR > 0). Alternatively, under DRTS, the 

specialized processes would appear more productive (as the scale of operation of the integrated 

process is "too large"), implying a negative scale effect (DR < 0).  Thus, proposition 3 establishes 

how the scale of ecosystem and the nature of returns to scale for the underlying process (as 

reflected by the term DR) can affect the value of biodiversity.  

The term DV in (10c) reflects the effect of convexity. To show it, we make use of lemma 

2 in the Appendix. Lemma 2 states that the shortage function S(z, g) is convex in z when the 

feasible set Z is convex. It follows that, under the convexity of Z, the shortage function satisfies 

� K
1j=  θj S(zj, g) ≥  S(� K

1j=  θj zj, g) for θj ∈ [0, 1] satisfying � K
1j=  θj = 1. Choosing θj = 1/K, z1 = 

(za/K, β zb, g) and zj = (za/K, zb (1-β)/(1-K), g) for j = 2, …, K, it follows from (10c) that DV � 0. 

Thus, a convex technology is sufficient to imply that DV � 0. Intuitively, a convex technology 

means diminishing marginal productivity, a standard characterization of resource scarcity. This 

suggests that the term DV reflects the role of resource scarcity. In this context, proposition 3 

shows that resource scarcity contributes positively to the value of biodiversity.  

Finally, the term DA in (10d) reflects catalytic effects around z = 0. Indeed, in the absence 

of discontinuity of the shortage function S(z, g), then Sf(z, g) = 0 and thus DA = 0 in equation 

(10d). When Sf is non-zero, note that DA can be positive, zero, or negative. Since Sf(z, g) is step 

function with possible discontinuities only around z = 0, Sf(z, g) is a constant as along as the set 

of non-zero netputs does not change. Then, from equation (10d), β ∈ (1/K, 1) implies DA = 0. 

Alternatively, the fixed-netput component DA can be non-zero only when β = 1. It means that the 

role of catalytic effects is relevant in the value of biodiversity only when β = 1, i.e., only under 

complete loss of biodiversity in environmental goods across elements of the partition Ib = {Ib1, Ib2, 

…, IbK}. In the context where β = 1, from equation (10d), DA is positive if and only if 
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� K
1k = Sf(za/K, zbk, 0, g) > Sf(za/K, zb, g) + (K-1) Sf(za/K, 0, g). Then, catalytic effects contribute to 

the value of biodiversity. This corresponds to situations where a complete loss of biodiversity 

generates a discontinuous decrease in the productivity of the specialized processes. Thus, 

Proposition 3 shows how a complete loss of biodiversity can affect the value of biodiversity 

through the catalytic component DA.  

Proposition 3 provides useful information on conditions contributing to the value of 

biodiversity. It generates the following result.  

 

Corollary 1: Sufficient conditions for a positive value of biodiversity are:  

1) there is complementarity between zbk and zb\bk, k = 1, …, K, (DC > 0),  

2) the technology exhibits non-decreasing returns to scale (DR � 0),  

3) the technology Z is convex (with DV � 0), and  

4) DA ≥ 0.  

 

Thus, the value of biodiversity can arise from complementarity among environmental 

goods in zb (DC > 0), from increasing returns to scale (DR > 0), from a convex technology (DV � 

0), and/or from catalytic effects (when DA ≥ 0). This identifies the role of complementarity as an 

important contributing factor to the value of biodiversity. However, it also shows that 

complementarity is in general neither necessary nor sufficient to generate a positive value for 

biodiversity. For example, under decreasing returns to scale (DRTS), equation (10b’) implies that 

DR < 0. This reflects the fact that, under DRTS, the smaller and more specialized processes 

require fewer resources to produce the same aggregate outputs. When this scale effect dominates 

the other components in (9), then D < 0, i.e. biodiversity would have a negative value even in the 

presence of complementarity. Alternatively, BV can become negative under a non-convex 

technology. Again if this negative convexity effect dominates the other components in (9), then D 
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< 0, and biodiversity would have a negative value even in the presence of complementarity. 

Finally, we have shown that the catalytic effect DA is present only under complete loss of 

biodiversity in environmental goods across elements of the partition Ib = {Ib1, Ib2, …, IbK}. 

Scenarios where DA is positive and large can arise when a complete loss of biodiversity is 

associated with a large decline in the productivity of the specialized processes. In such cases, the 

value of biodiversity can be positive even in the absence of complementarity. This illustrates the 

usefulness of the decomposition provided in Proposition 3. 

 

5. The Case of Uncertainty 

Often, the productivity of an ecosystem is not known with certainty. This is particularly 

relevant when the ecosystem involves significant dynamics. Then, the future productivity of the 

ecosystem may depend on many factors that are not fully known. In this section, we investigate 

the case where some elements of the underlying technology are uncertain. This is done by 

considering that the feasible set Z depends on some factors denoted by the vector v, factors that 

are not perfectly known at the present time. Then, the underlying technology is represented by 

Z(v), where z ∈ Z(v) means that netputs z are feasible given v. For example, v could represent 

future weather patterns, where good (bad) weather would expand (contract) the feasible set Z. 

Then, z ≡ (za, zb) ∈ Z(v) means that private netputs za and environmental netputs zb can be 

produced under conditions v. Given Z(v), the frontier technology can be represented by the 

shortage function S(z, v, g) in (1), where feasibility means S(z, v, g) ≤ 0, and S(z, v, g) = 0 means 

that netputs z are on the frontier technology given v.  

The vector v representing uncertainty can be treated as a vector of random variables. 

Assume that v has a probability distribution reflecting the (possibly subjective) evaluation of the 

uncertainty. In general, note that this distribution can depend on the netputs z. Then, being a 

function of v, the shortage function S(z, v, g) is also random and has a probability distribution.  
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Below, we explore the characterization of the distribution of S(z, v, g) using its moments 

(e.g., Antle). For that purpose, assume that S(z, v, g) takes the following specification: 

S(z, v, g) = f1(z, g) + [f2(z, g) - f3(z, g)2/3]1/2 e2(v) + [f3(z, g)]1/3 e3(v), (11) 

where the random variables e2(v) and e3(v) are independently distributed and satisfy E[e2(v)] = 

E[e3(v)] = 0, E[e2(v)2] = E[e3(v)2] = 1, E[e2(v)3] = 0, E[e3(v)3] = 1, and E(⋅) denotes the 

expectation operator based on the (subjective) probability distribution of v (distribution which can 

depend on z). This means that the random variables e2(v) and e3(v) are normalized (i.e., they are 

each distributed with mean zero and variance 1). In addition, e2(v) has zero skewness (E[e2(v)3] = 

0) while the random variable e3(v) is asymmetrically distributed and has positive skewness 

(E[e3(v)3] = 1). It follows from (11) that  

E[S(z, v, g)] = f1(z, g),  (12a) 

E[(S(z, v, g) - f1(z, g))2] = f2(z, g),  (12b) 

E[(S(z, v, g) - f1(z, g))3] = f3(z, g). (12c) 

This shows that the specification (11) provides a convenient representation of the first 

three central moments of the distribution of S(z, v, g). Indeed, from (12a), the first moment (the 

mean) is given by f1(z, g). From (12b), the second central moment (the variance) is given by f2(z, 

g) � 0. And from (12c), the third central moment (measuring skewness) is given by f3(z, g). Since 

the functions f1(z, g), f2(z, g) and f3(z, g) can take any form, this provides a flexible representation 

of the impacts of netputs z on the distribution of S under uncertainty. In addition, if we treat the 

distribution of e2(v) and e3(v) as given, then the three moments f1(z, g), f2(z, g) and f3(z, g) are 

sufficient statistics for the distribution of S(z, v, g) in the specification (11). 

Note that equation (11) can be interpreted as a standard regression model where f1(z, g) is 

the regression line representing mean effects, and e1 � {[f2(z, g) - f3(z, g)2/3]1/2 e2(v) + [f3(z, g)]1/3 

e3(v)} is an error term with mean zero, variance f2(z, g) and skewness f3(z, g). By considering 

explicitly skewness effects, it is a generalization of the standard Just-Pope mean-variance 

specification for a stochastic technology (Just and Pope, 1978, 1979). The effects of netputs z on 
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the variance of S can help determine whether the i-th netput is risk increasing (with �f2(z, g)/�|zi| 

> 0), risk neutral (with �f2(z, g)/�|zi| = 0), or risk decreasing (with �f2(z, g)/�|zi| < 0), i = 1, …., 

n+m. However, equation (11) goes beyond the Just-Pope mean-variance specification by allowing 

for skewness effects. In situations where exposure to downside risk is relevant and skewness 

effects are important (e.g., the case of catastrophic events), specification (11) provides a 

framework to analyze such issues. It allows an assessment of the effects of netputs z on the 

skewness of S. For example, in the case where g = (1, 0, …, 0) and z1 is an output, then S(z, v, g) 

= z1 - G(z2, …, zm+n, v), where G(z2, …, zm+n, v) = maxz1 {z1: z ∈ Z(v)} is a stochastic production 

function. Then, given E[e3(v)3] = 1 in (11), the i-th netput is said to be downside-risk increasing if 

�f3(z, g)/�|zi| > 0, downside-risk neutral if �f3(z, g)/�|zi| = 0, or downside-risk decreasing if �f3(z, 

g)/�|zi| < 0, i = 2, …, m+n. As such, the specification (11) provides a useful basis to investigate 

how uncertainty affects the productivity of the ecosystem. And the effects of netputs z on the 

mean, variance and skewness of S show how ecosystem management affects both its average 

productivity and the associated risk (including downside risk exposure).  

Using specification (11) provides additional information on the value of biodiversity.  

From equation (8) and Proposition 2, the shortage function (11) gives a basis for evaluating the 

value of biodiversity under uncertainty (given the random variables v)  

D(z, v, β, g) = � K
1k=  S(zk, v, g) - S(z, v, g),  (8') 

where zk � (za
k, zb

k) satisfies equations (7a)-(7c), k = 1, …, K.  

Note that Proposition 2 involves the condition: p g = 1. Under uncertainty, this can raise 

questions in situations where some prices in p may be state-contingent (i.e., if they depend on the 

random variables v). A simple way of avoiding this issue is to restrict the choice of the bundle g 

to private goods that are chosen ex ante, i.e. before the random variables v become observed. 

Then, if these goods are market goods, their prices would also be ex ante prices with two 

desirable properties: 1/ they would not be state-contingent (i.e., they would not depend on v); and 
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2/ they can be taken to be current prices that are readily observable. Thus, provided that one 

restricts the bundle g to include only private goods that are chosen ex ante, Proposition 2 would 

apply under uncertainty, with D(z, v, β, g) in (8') providing a monetary value of biodiversity (as 

long as g is chosen such that p g = 1).  

To see the usefulness of the specification (11), consider substituting (11) into (8'). This 

gives the following result.    

 

Proposition 4: Given the specification (11) and assuming that p g = 1, the value of biodiversity 

D(z, v, β, g) in (8') can be written as 

 D(z, v, β, g) = � K
1k= f1(zk, g) - f1(z, g) 

+ {� K
1k= [f2(zk, g) - f3(zk, g)2/3]1/2 - [f2(z, g) - f3(z, g)2/3]1/2} e2(v), 

+ {� K
1k= [f3(zk, g)]1/3 - [f3(z, g)]1/3} e3(v),  (13) 

implying that 

D1(z, β, g) ≡ E[D(z, v, β, g)] = � K
1k= f1(zk, g) - f1(z, g),  (14a) 

D2(z, β, g) ≡ E[(D(z, v, β, g) - D1)2]  

= {� K
1k= [f2(zk, g) - f3(zk, g)2/3]1/2 - [f2(z, g) - f3(z, g)2/3]1/2}2  

+ {� K
1k= [f3(zk, g)]1/3 - [f3(z, g)]1/3}2,  (14b) 

D3(z, β, g) ≡ E[(D(z, v, β, g) - D1)3] = {� K
1k= [f3(zk, g)]1/3 - [f3(z, g)]1/3}3.  (14c) 

 

Proposition 4 evaluates the effects of uncertainty on the value of biodiversity D. First, 

equation (13) indicates how the uncertainty v affects D through the two random variables e2(v) 

and e3(v). Second, equations (14a)-(14c) presents the first three central moments of the value of 

biodiversity. The first moment (i.e., the mean) of D is given by D1 in equation (14a): it depends 

on the properties of the mean shortage function f1(⋅, g). The second central moment (i.e., the 
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variance) of D is given by D2 in equation (14b). It depends on the properties of both the variance 

and the skewness of the shortage function, f2(⋅, g) and f3(⋅, g). Finally, the third central moment 

(i.e., the skewness) of D is given by D3 in equation (14c) and depends on the properties of the 

skewness function f3(⋅, g). Equations (14a)-(14c) provide a basis to evaluate how the netputs z ≡ 

(za, zb) affect the distribution of the value of biodiversity.  

In a way similar to Proposition 3, note that the mean value of diversity D1(z, β, g) = 

� K
1k= f1(zk, g) - f1(z, g) in (14a) can be decomposed. Consider the case where the function f1(z, g) 

can be written as f1(z, g) ≡ f1v(z, g) + f1f(z, g). The function f1v(z, g) is a "mean variable-shortage 

function", assumed to be continuous in z and continuously differentiable in zb almost everywhere. 

And the function f1f(z, g) is a "mean fixed-shortage function" reflecting possible catalytic effects: 

it is a step function which satisfies f1f(0, g) = 0 and can exhibit jump discontinuities around z = 0.  

 

Proposition 5: Given p g = 1 and under equations (7), the mean value of biodiversity D1 in (14a) 

evaluated at netputs z = (za, zb) can be written as 

D1(z, β, g) ≡ D1C + D1R + D1V + D1A,  (15) 

where 

D1C ≡ � 1-K
1k = { � −

bk

bk

z �

1)-�)/(K(1 z �

f1v

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, zb,k+1:K (1-β)/(K-1), g) dγ  

- � −

bk

bk

z �

1)-�)/(K(1 z �

f1v

∂
∂

 (za/K, zb,1:k-1 (1-β)/(K-1), γ, β zb,k+1:K, g) dγ},  (16a) 

D1R ≡ K f1(z/K, g) - f1(z, g),  (16b) 

D1V ≡ f1(za/K, β zb, g) + (K-1) f1(za/K, zb (1-β)/(K-1), g) - K f1(z/K, g),  (16c) 

and 

D1A ≡ � K
1k = f1f(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

- f1f(za/K, β zb, g) - (K-1) f1f(za/K, zb (1-β)/(K-1), g).  (16d) 
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Proposition 5 gives a decomposition of the mean value of biodiversity D1(z, g) in (15) 

into four additive terms: D1C given in (16a), D1R given in (16b), D1V given in (16c), and D1A given 

in (16d). As discussed in Proposition 3, they reflect respectively complementarity effects, scale 

effects, convexity effects, and catalytic effects with respect to the mean value of diversity D1(z, β, 

g). This provides useful insights on the sources and determinants of mean biodiversity value.  

Note that the variance and skewness of biodiversity given in equations (14b) and (14c) 

are more complex than (14a). Yet, they provide a basis for evaluating the effects of netputs z on 

the distribution of biodiversity value. This would be important in situations where decision 

makers are risk averse (meaning that a higher variance makes them worse off) and downside-risk 

averse (meaning that a more negative skewness makes them worse off; see Menezes et al.). Then, 

the identification of the effects of zi on D2 in (14b) and D3 in (14c) is of special interest. Indeed, 

assuming differentiability, finding that ∂D2/∂|zi| < 0 (> 0) mean that the i-th netput is reducing 

(increasing) the variance of the value of biodiversity. And finding that ∂D3/∂|zi| > 0 would imply 

that the i-th netput is increasing the skewness of D. This means reducing the probability of a 

disastrous decline in the value of biodiversity. To the extent that such situations can be associated 

with improved resilience of the ecological system (see Holling), this can provide useful insights 

into the economics and management/policy implications of ecosystem resilience. This illustrates 

how management decisions (involving the choice of netputs z) can affect the mean, variance as 

well as skewness of the value of biodiversity.  

 

6. Concluding Remarks 

We have presented an analysis of the value of biodiversity in an ecosystem. This is 

particularly relevant in the context of agriculture, where the ecosystem involves environmental 

goods (including ecological capital and environmental services) being used in the production of 
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food. The analysis applies under general conditions, allowing for non-convexities, lack of free 

disposal in environmental goods, and dynamics. In this context, we relied on Luenberger's 

shortage function to provide a measure of the productive value of biodiversity. When positive, 

this value reflects the fact that an ecosystem is worth more than the “sum of its parts.” We 

showed that this value can be decomposed into four additive components, reflecting 

complementarity effects, scale effects, convexity effects, and catalytic effects. While the 

identification of these components indicates that biodiversity value can be complex, our analysis 

provides new and useful information on its sources and determinants. We also examined the 

effects of uncertainty on the value of biodiversity. This is relevant since the future productivity of 

ecosystems is often imperfectly known. In this context, we showed how management decisions 

can affect the mean, variance as well as skewness of the value of biodiversity. This should help 

guide empirical research investigating the importance of biodiversity and its implications for 

ecosystem management.  

While our investigation focused on the productive value of biodiversity, we should keep 

in mind that this value is only a part of the total value of an ecosystem. This indicates the need to 

place the analysis in the broader context of ecological-economic interactions. This would include 

the value of biodiversity to consumers. Under uncertainty, this means examining the role of risk 

preferences and their implications for the design and implementation of risk management 

schemes. And in a dynamic context, this would include addressing the issue of how new 

information that becomes available over time is used in ecosystem management. These appear to 

be good topics for future research.  
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Appendix 

Proof of Proposition 3:  

From equation (8), the value of biodiversity is  

D ≡ � K
1k=  S(za/K, β zbk, zb\bk (1-β)/(K-1), g) - S(z, g) >  0. (A1) 

Define 

d1 ≡ S(za/K, β zb1, zb\b1 (1-β)/(K-1), g) + Sv(za/K, zb1 (1-β)/(K-1), β zb\b1, g).  

And letting zb,i:j = (zbi, zb,i+1, …, zb,j-1, zbj) for i < j, define  

dk ≡ S(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

+ Sv(za/K, zb,1:k (1-β)/(K-1), β zb,k+1:K, g)  

- Sv(za/K, zb,1:k-1 (1-β)/(K-1), β zb,k:K, g), 

for k = 2, …, K-1. Using d1, …, dK-1, and given S(z, g) = Sv(z, g) + Sf(z, g), expression  (A1) can 

be alternatively written as 

D ≡ � 1-K
1k = dk + Sf(za/K, β zb,K, zb\bK (1-β)/(K-1), g) - S(z, g).  (A2) 

When Sv(z, g) is continuous in zb everywhere and continuously differentiable in zb almost 

everywhere, note that d1 can be alternatively written as 

d1 = S(za/K, β zb1, zb\b1 (1-β)/(K-1), g) + Sv(za/K, zb1 (1-β)/(K-1), β zb\b1, g)   

- Sv(za/K, β zb, g) + Sv(za/K, β zb, g) 

- Sv(za/K, zb (1-β)/(K-1), g) + Sv(za/K, zb (1-β)/(K-1), g), 

   = Sf(za/K, β zb1, zb\b1 (1-β)/(K-1), g)  

+ � −

b1

b1

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, γ, zb\b1 (1-β)/(K-1), g) dγ 

- � −

b1

b1

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, γ, β zb\b1, g) dγ  

+ Sv(za/K, β zb, g) + Sv(za/K, zb (1-β)/(K-1), g). (A3) 

Similarly, dk can be alternatively written as 
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dk ≡ S(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

+ Sv(za/K, zb,1:k (1-β)/(K-1), β zb,k+1:K, g)  

- Sv(za/K, zb,1:k-1 (1-β)/(K-1), β zb,k:K, g) 

- Sv(za/K, zb (1-β)/(K-1), g) + Sv(za/K, zb (1-β)/(K-1), g), 

= Sf(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

+ � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, zb,k+1:K (1-β)/(K-1), g) dγ   

- � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, β zb,k+1:K, g) dγ   

+ Sv(za/K, zb (1-β)/(K-1), g),  (A4) 

k = 2, …, K-1. Substituting (A3) and (A4) into (A2) yields 

D ≡ Sv(za/K, β zb, g) + (K-1) Sv(za/K, zb (1-β)/(K-1), g) 

+ � K
1k = Sf(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

+ � 1-K
1k = { � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, zb,k+1:K (1-β)/(K-1), g) dγ   

- � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, β zb,k+1:K, g) dγ}   

- S(z, g).  (A5) 

Given Sv(z, g) = S(z, g) - Sf(z, g), it follows that (A5) can be written as 

D ≡ DC + DR + DV + DA,  

where  

DC ≡ � 1-K
1k = { � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, zb,k+1:K (1-β)/(K-1), g) dγ  

- � −

bk

bk

z �

 1)-�)/(K(1 z �

Sv

∂
∂

(za/K, zb,1:k-1 (1-β)/(K-1), γ, β zb,k+1:K, g) dγ},  

DR ≡ K S(z/K, g) - S(z, g),  
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DV ≡ S(za/K, β zb, g) + (K-1) S(za/K, zb (1-β)/(K-1), g) - K S(z/K, g),  

and  

DA = � K
1k = Sf(za/K, β zbk, zb\bk (1-β)/(K-1), g)  

- Sf(za/K, β zb, g) - (K-1) Sf(za/K, zb (1-β)/(K-1), g).  

 

Lemma 1: For any k ∈ (0, 1),  

S(k z, g) 
�
�

�
�

�

�
�

�
�

	

>
=
<

 k S(z, g) under 
�
�

�
�

�

�
�

�
�

	

IRTS
CRTS

DRTS

.  

Proof: By definition, the technology Z exhibits increasing returns to scale (IRTS), constant 

returns to scale (CRTS) or decreasing returns to scale (DRTS) if α Z ⊂ Z, α Z = Z, or α 

Z ⊃ Z, respectively, for all α > 1. Let k ∈ (0, 1). Consider the case where there is a γ 

satisfying (k za - γ g, k zb) ∈ Z. Then 

S(k z, g) = minγ {γ: (k za - γ g, k zb) ∈ Z},  

= k minδ {δ: (za - δ g, zb) ∈ (1/k) Z}, where δ = γ/k,  

�
�

�
�

�

�
�

�
�

	

>
=
<

 k S(z, g) when (1/k) Z 
�
�

�
�

�

�
�

�
�

	

⊂
=
⊃

 Z, i.e., under 
�
�

�
�

�

�
�

�
�

	

IRTS
CRTS

DRTS

.  

 

Lemma 2: If the set Z is convex, the shortage function S(z, g) is convex in z.  

Proof: Consider any two netput vectors z ∈ Rn+m and z’ ∈ Rn+m. First assume that S(z, g) and S(z’, 

g) are finite. It follows that (z - S(z, g) g) ∈ Z and (z’ - S(z’, g) g) ∈ Z. Let z” = θ z + (1-

θ) z’, for any scalar θ ∈ [0, 1]. If the set Z is convex, it follows that 

[z” - θ S(z, g) g - (1-θ) S(z’, g) g] ∈ Z. 

The shortage function being defined as a minimum in (1), this yields 
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S(z”, g) = S(θ z + (1-θ) z’, g) � θ S(z, g) + (1-θ) S(z’, g). 

Second, consider the case where S(z, g) and/or S(z’, g) are infinite. Then, the above 

inequality always holds. Thus, the function S(z, g) is convex in z.  
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Figure 1: An illustration of the technology 
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