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Abstract 

Using three waves of national representative household level panel data from Malawi, we 

examine two forms of adaptation to climate change: 1) adopting improved maize varieties and 2) 

adjusting input quantities and income sources. Our results indicate that climate change induces 

both forms of adaptation, though only the second appears relevant in determining climate change 

impacts on net revenue. Adverse trends in climate variables (increased temperature and rainfall 

variability, and reduced growing season rainfall) increase farmers’ reliance on income from 

subsistence maize production. Assets enhance a household’s capacity for adaptation to climate 

change by reducing reliance on maize-income.  
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Introduction 

Most scientists agree that the earth’s climate is changing, and the Intergovernmental Panel on 

Climate Change (IPCC) projects that sub-Saharan Africa (SSA) will be one of the most severely 

affected regions. Temperatures across SSA are projected to increase 3-4°  Celsius over the course 

of the 21st century, which isabout one and a half times greater than the expected global 

temperature increase (IPCC 2007). In addition, while rainfall projections are not uniform across 

the continent, southern Africa is expected to receive, on average, less precipitation and more 

rainfall variability in the future. The changing climate will have a major impact on rain-fed 

agriculture, which will in turn affect the welfare of hundreds of millions of people in SSA as up 

to 90% of the population in some countries is engaged in farming activities. 

Given the potential ramifications of climate change on human welfare, it is critical to 

precisely quantify its effects on agriculture, so that policy makers can understand the benefits of 

climate policies or, conversely, the cost of inaction. While there is a growing literature on how 

households may or may not adapt to climate change in developing countries, scientists’ 

understanding of adaptation mechanisms and the factors that facilitate or inhibit farmers’ ability 

to adapt remains limited.  

With these considerations in mind, the objective of the present study is to estimate 

smallholder farm households’ behavioral response to climate change and its resulting impact on 

households’ welfare, measured as net income. Moreover we measure the influence of a 

household’s assets on their adaptation capabilities, which is important to understand in a 

developing country context as financial constraints caused by market frictions and failure are 

prevalent. We do this by developing a structural model where farm households can adapt to 

climate change by adjusting i) maize varieties that they plant, ii) production inputs like inorganic 
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fertilizer and hired labor, and iii) income sources, by moving from on-farm to off-farm income 

generating activities and visa versa. The present study uses three waves of nationally 

representative farm household panel data from Malawi to estimate the impacts of climate change 

and the adaptation strategies prompted.  

  Malawi makes an excellent case study to measure the impact of farm household 

adaptation to climate change, because the majority of its population is engaged in subsistence 

agriculture, focused on maize production.  Furthermore, climate change is a major issue in 

Malawi, as Tadross et al. (2009) observe a substantial decrease in the duration of the growing 

season between 1960 and 2005 in that country, along with significant trends toward higher 

temperature, longer mean durations of dry spells1 and fewer rain days2 during the growing 

season.  

The present study makes three important contributions to the existing literature on 

climate change.  First we explicitly model input demands and output supplies to determine how 

adaptation takes place along the production frontier as well as the way in which that frontier is 

affected by major management practices and socio-economic factors. This results in estimation 

of climate change impacts, explicitly controlling for economic conditions that the household 

faces, such as prices for inputs and outputs. Second, we utilize panel data and consider 

continuous adaptation variables which allow for a richer description of adaptation behavior at the 

margin. Specifically, this combination permits accounting for the intensity of adaptation rather 

than treating adaptation as a binary outcome or a multinomial choice. In addition, using panel 

data with continuous measures of adaptation also allows us to estimate our models via household 

fixed-effects, where we can control for time-constant unobserved factors like farmer motivation 

and ability, which may affect both the household’s ability to adapt to climate change and their 
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welfare. Third, both adaptation avenues (adoption of a major management practice and 

reallocations of inputs and outputs along the frontier) are allowed to vary across asset levels 

incorporating inherent differences in adaptation possibilities across the wealth spectrum. 

Table 1 illustrates how the present study contributes to and builds upon the existing 

literature on climate change and adaption to it. To our knowledge, nearly all previous studies 

estimating the impact of climate change on household outcomes, measured as productivity or net 

income, can be broadly classified in three categories: i) agronomic, ii) Ricardian, and iii) 

structural Ricardian. The first column of table 1 displays the desirable methodological attributes 

that different classifications of previous studies possess, and the table compares the different 

approaches on the basis of these attributes. A plus (minus) sign indicates that a methodology 

does (does not) exhibit such attribute.  

The first segment of the existing literature approaches the estimation of climate change 

impacts on agricultural production from an agronomic point of view (Adams, 1989; Easterling et 

al., 1992; Rosenzweig and Parry, 1994; Schlenker and Roberts, 2006; Deschenes et al., 2007; 

Schlenker and Lobell, 2010; Di Falco et al., 2011; Di Falco and Veronesi, 2013).  With 

exceptions (Di Falco et al., 2011; Di Falco and Veronesi, 2013) these studies did not explicitly 

consider possible adaptation mechanisms which hinders assessment of potential barriers to 

adaptation that can be removed through policy.   

In an attempt to overcome these limitations, and following Mendelsohn et al. (1994), 

researchers have employed a Ricardian framework to estimate the welfare implications of long-

run climate change after farmers have adapted to such change (Sanghi and Mendelsohn, 2008; 

Wang et al., 2009). This approach does not reveal information about the adjustment process—

only the final outcome is observed; hence the negative sign for this approach in the “Adaptation” 
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row from table 1. More recently, a ‘structural Ricardian’ framework has been developed for the 

purposes of modeling adaptation explicitly (Seo and Mendelsohn, 2008; Seo 2010a; Seo 2010b; 

Hassan and Nhemachena, 2008; Deressa et al., 2009; Deressa et al., 2011; Fosu-Mensah et al., 

2012; Di Falco and Veronesi, 2013).  

While studies using the structural Ricardian approach have overcome some of the 

limitations of other approaches, they have not recognized the potential influence that climate 

change may have on more subtle, but equally important, adaptation mechanisms such as 

adjusting input quantities or reallocating time invested in alternative income sources. These 

readjustments in inputs and outputs may be more prevalent among disadvantaged farmers as they 

do not involve large investments.  Consequently, these adaptation measures are less likely to be 

limited by market barriers. These decisions are, in a structural sense, simultaneously made as 

inputs and outputs are typically non-separable in production. Moreover they may be conditional 

on other management practices, so appropriate identification of structural behavior requires 

modeling of price effects. Failure to control for changing economic conditions, such as input and 

output prices, increases the risk of omitted variable bias as prices may be correlated with right 

and left hand side variables.3 

The present study contributes to our understanding of adaptation by estimating a 

structural model of households’ behavioral response to climate change in Malawi. This model 

displays all of the desired attributes listed in Table 1. The rest of the article is organized as 

follows: the next section defines how we measure climate change adaptation and discusses the 

Malawian context.  This is followed by the conceptual framework and empirical model. 

Subsequent sections present the data, results and conclusions.   
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[Table 1 Here] 

 

Defining Climate Change  

The behavioral premise behind the choice and measurement of climate variables is that farmers’ 

form expectations of conditions in the upcoming growing season based on their perceptions of 

long term climate trends in the past. In turn, this expectation informs their production decisions. 

We measure climate using three variables, i) historical average growing season precipitation 

(GSP), ii) historical coefficient of variation of monthly growing season precipitation (CVMP), 

and iii) historical average growing season temperature (TEMP).4 Data for the climate change 

variables come from historical weather station data that is recorded across Malawi, and 

interpolated to match the location where the households reside (the source of the climate data is 

discussed in the data section). 

The timeframe based on which a farmer forms his or her climate expectation is adjusted 

by his or her age in this study. We reason that a household head’s memory is likely to include 

more than just the last few years, but will be weaker in the earliest years of his or her life.  As a 

result, our climate variables GSP, CVMP, and TEMP are defined over specific time-frames 

based on the age of the household head. In particular we assume a household head will have 

constructed expectations based on historical weather information going back to the time when he 

or she was 17 years old. However, a lower bound and an upper bound on households’ memory is 

put in place. If a household head is older than 37 years of age, a maximum memory of 20 years 

of weather history is allowed and used to construct the climate variable. If a household head is 

younger than 24 years old, a minimum of 7 years of weather memory is assumed and used to 

construct the climate variables.  
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For household’s whose head is 37 years of age or older at the time of the survey, we track 

the full climate history going back 20 years. For household’s whose head is 36 years of age at the 

time of the survey, we define the climate variable for that household going back 19 years. For 

households 35 years of age, the last 18 years are used to construct climate variables, and so forth. 

We proceed in this way for all households in which the age of the household head fell between 

24 and 36 at the time of the survey. For household heads aged 23 or less at the time of the 

survey, we define climate over the previous 7 growing seasons, giving every household at least 7 

years of growing season weather history.  

Establishing a maximum memory of 20 years allows us to incorporate a longer range of 

relevant information in the decision making process. Such information is, in addition, only 

relevant to the subsample of older farmers, whose decisions and well-being have been directly 

impacted by such climate history. Lowering the upper bound of maximum memory may result in 

artificial shrinking of the informational set of older farmers. Similarly, establishing a lower 

bound of 7 years to climate memory avoids artificially shrinking the informational set of younger 

farmers. We contend that allowing for a large informational set is an appropriate starting point 

for this analysis. Robustness of our results to memory truncation are discussed in the results 

section of the article.  

 

Defining Adaptation to Climate Change  

Adaptation measures that appear most frequently in previous studies and constitute responses to 

long-run changes in growing season conditions fall broadly into four categories: 1) switching 

crop varieties (Molua, 2002; Behnin, 2006; Maddison, 2007; Below et al., 2010), 2) diversifying 

production between on-farm and off-farm activities (Shewmake, 2008; Molua, 2011; Fosu-
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Mensah et al., 2012; Silvestri et al. 2012), 3) diversifying production between crop and livestock 

activities (Thomas et al. 2007; Hassan and Nhemachena, 2008; Seo, 2010a; Seo 2010b) and 4) 

diversifying among multiple crops (Dinar et al. 2008; Kurukulasuriya and Mendelsohn, 2008; 

Seo and Mendelsohn, 2008; Mertz et al., 2009). In the present article we concentrate our 

attention on changes in varieties and reallocations in production inputs and income sources.  

 Using adoption of improved maize seed varieties as a climate change adaptation strategy 

is extremely relevant in Malawi because these improved varieties generally mature more rapidly 

than local varieties, rendering them less vulnerable to dry growing season conditions (Smale and 

Jayne, 2009).5 Pauw et al. (2010) find that shifting 10% of cultivated area from local maize 

varieties to commercial varieties fully offsets the yield losses associated with a mild drought (a 

drought that would recur every five years on average) and partially offsets those associated with 

more severe droughts (those with return periods of 10 years or more). It is therefore reasonable 

to expect a shift from local varieties to improved varieties as Malawi’s climate becomes hotter 

and drier, provided that farmers have proper weather information and access to these improved 

seeds. 

Diversifying income sources away from subsistence maize production represents a 

second relevant climate change adaptation strategy for households in SSA.  Household may 

diversify into other crops.  For example, tobacco is the main cash crop for smallholders in 

Malawi. Raising livestock is another option for smallholders, although it is fairly limited in 

Malawi. Working off-farm, either by running or working for a micro-enterprise or working as an 

agricultural laborer on another farm is also an important income diversification source for 

smallholder households.  Agricultural labor income (called ganyu in Malawi) makes up 10.1 % 

of household income, while non-farm income makes up 25.6% of household income in 206/07 
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(Jayne et al., 2010, p. 34).  Therefore considering the decision to work in activities other than 

maize production is a very important adaptation strategy to model in our context.  

 Altering the intensity of input utilization constitutes a third means by which farmers 

reduce production risk in the face of climate change in Malawi. Downing et al. (1997) list 

‘incremental adjustment in inputs’ among potential response strategies to climate change in 

Africa. Specifically, Behnin (2006) find that farmers in South Africa increase the application of 

chemicals and manure in order to reduce soil moisture loss and maintain fertility.  

The adaptation mechanisms examined in this article are interdependent which calls for 

structural modeling of farmers’ behavior. First, the decision on the amount of time allocated to 

on-farm labor is taken simultaneously with the quantity of other inputs used in production which 

can be substitutes or complements to on-farm labor. Second, the marginal value product of 

production inputs may be influenced by the type of variety planted. Therefore we develop a 

structural model describing the sequential optimization problem solved by the farmer.  First the 

farmer decides on a management practice, such as area planted with improved maize varieties, 

and they then subsequently decide on the input/output combination as the marginal contribution 

of the latter to net revenue is conditioned by the variety planted. 

 

Conceptual Framework 

We start with a separable farm household model where net revenue (π) is maximized with 

respect to a vector of input demand and output supply equations. Decisions on inputs and outputs 

are a function of climate, prices ( ), a vector of other variables ( ), and adoption of improved 

maize variety ( ∗). This captures the sequential nature of the farmers’ decision making process 

(i.e. the choice of inputs and outputs during the growing season is conditional on the type of 
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variety planted). Moreover, the share of land planted to improved varieties is in part likely to be 

a response to the changing climate and economic conditions. Net revenue is also conditioned on 

exogenous short-run weather events. Therefore, the net revenue expression in (1) can be re-

written as: 

(1)  ∗ =   { ℎ , ∗[ , , , ∗( , , )]} 

Note that climate and weather are defined as different concepts. Climate refers to 

historical trends in rainfall and temperature, while weather is just an annual occurrence. 

Therefore climate does not enter the net revenue expression directly, but enters indirectly 

through its influence on behavior.  

We assume farmers are price-takers in input and output markets.  Therefore, 

differentiating  with respect to climate gives the change in net revenue for small changes in 

climate, which is composed of the indirect partial effect of climate on net revenue through 

adaptation behavior: 

(2)  
∗( ) = ∗∗  ×  ∗( ) + ∗∗  × ∗∗ × ∗( ) + ∗∗  ×  ∗( ) 

As previously noted, an important contribution of this study is to quantify the effect of 

climate on reallocations of inputs and outputs which are captured by the second and third terms 

of equation (2). While structural Ricardian models have estimated the effect described in the first 

term, the effect described by the other two terms has received little attention in the scholarly 

literature until now. These effects are implicitly captured in structural Ricardian models through 

changes in net revenue. However explicit modeling and estimation of these effects is informative 

for policy makers of the market-level impacts of climate change (e.g. the effect of climate 

change on labor supply, fertilizer demand, and maize supply). It is also informative of the 

relative importance of alternative adaptation mechanisms; major changes in management 
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practices which can shift the production frontier versus reallocations of inputs and outputs along 

the production frontier.  

Our empirical strategy consists of estimating ∗( , , ), then inserting that into 

the system ∗[ , , , ∗( , , )] which is derived by applying Hotelling’s lemma 

to a specified functional form for ∗in equation (1). The system ∗ and equation ∗ are estimated 

simultaneously so that theoretically consistent and efficient estimates of structural parameters are 

obtained.  Such estimation allows us to accurately identify the structure of equation (1) which, 

due to its differentiability permits estimation of (2).  

 

Empirical Model 

Stage one: Linking climate and adoption of improved maize 

 Prior to estimating a household net income equation, we examine the relationship 

between climate and the share of cultivated land planted with improved maize varieties . 

Improved maize share is modeled as a function of long-run growing season rainfall (including 

means and variances), recent weather shocks, input and output prices, household landholding and 

value of livestock and durable assets.  

We construct the equation for household  at time  as follows: 

(3)  = +  +   ,   = 1, 2, 3 

Where  represents a column vector of observed household-specific factors that vary across 

time including climate variables (GSP, CVMP, and TEMP), while  is a row vector of 

parameters to be estimated. Time-invariant unobservable, household-specific fixed factors are 

represented by , while  represents unobservable household-specific shocks that vary across 

time. 
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We estimate equation (3) via household fixed-effects that de-means the data and removes 

 from the model.6 Doing so allows us to generate consistent estimates of  even if time-

invariant unobservable factors in  are correlated with covariates in  .7 This study assumes 

that  is distributed iid normal (0, ). Since farmers tend to be risk averse, we expect that the 

adoption of improved maize varieties will intensify as rainfall variability increases both within 

and across years. Moreover, since improved varieties are less vulnerable to dry and hot growing 

season conditions (Smale and Jayne, 2009), adoption may also raise in response to increases in 

GSP and TEMP.  

In addition, a recent occurrence of bad weather might induce the farmer to adopt a crop 

variety that is more resilient under unfavorable conditions. We account for this by including a 

binary variable equal to one if the household reported to be severely impacted by an extreme 

rainfall pattern in the past five years and zero otherwise. 

The real 2009 value of household livestock and durable assets are also included in  as 

a measure of household wealth.  The effect of wealth on the intensity of improved maize 

adoption could conceivably be positive or negative. If wealthier farmers engage in a more 

diverse portfolio of activities, they may devote a smaller share of their resources to crops and 

thus not be particularly concerned about minimizing climate risk in the domain of maize 

production (Kaliba et al., 2000). Conversely, household wealth might provide greater capacity to 

learn about and acquire new varieties and also serve as a safety net in case the new practices fail 

(Sserunkuuma, 2005; Bellon and Risopoulos, 2001; Langyintouo and Mungoma, 2008).  

  Farmers may perceive or experience changes in the marginal product of production 

inputs under different varieties. Therefore improved varieties may constitute substitutes or 

complements to conventional inputs. For instance, Nkonya et al. (1997) finds a positive and 



12 
 

significant correlation between fertilizer application and the area planted to improved maize 

varieties, lending credence to this hypothesis. Ogunlade et al. (2010) identify lack of access to 

fertilizer as a barrier to optimizing the benefits of improved maize varieties. To control for such 

links, input prices for commercially sold maize seed, commercially sold fertilizer, and 

agricultural wage rates along with output prices for maize are also included in .   

 Access to credit is also included in . We would expect credit access to help ease any 

liquidity constraints the household may face and thus enhance adaptive capacity. The vector  

also includes household landholding.  This variable is believed to be positively related to 

adaptive capacity because adopting new technology incurs fixed costs that are more easily 

absorbed by households with more land.   

It is also essential to consider the institutional and political factors that influence 

improved maize adoption in our model.  Malawi has implemented a large scale subsidy program 

for inorganic fertilizer and improved maize seed during the years of our study.  The subsidy was 

substantial during the second two waves of our survey in 2006/07 and 2008/09.  At that time 

more than half of the smallholder farm population was targeted to receive paper vouchers which 

entitled them to acquire inputs at a substantially reduced price. We control for the potential 

effects of the subsidy program by including the quantity of subsidized inorganic fertilizer that a 

household acquires and the quantity of subsidized improved maize seed that a household 

acquires as two separate additional covariates in .  Quantities instead of prices are included 

because they are regarded as quasi-fixed as a household could only obtain 100 kilograms of 

inorganic fertilizer at a 66-90% subsidy and 2-4 kilograms of maize seed for free if they were 

able to participate in the program.8 A complete list of regressors in equation (3) is included in 

Appendix A. 
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Stage two: Structural Model of Net Revenue 

Net household revenue ( ∗) is measured in Malawi Kwacha/year and is defined as total 

income from agricultural and non-agricultural sources minus expenditure on production inputs.9 

Income from agricultural sources include: (1) maize production; (2) non-maize income (e.g. 

tobacco, livestock sales, and livestock product sales), along with agricultural and non-

agricultural off-farm work (e.g. work in another farm, selling fire wood, trading, or fishing).  

Inputs to maize production include fertilizer and labor. The former is the total quantity of 

fertilizer acquired by the household from subsidized and commercial sources. Labor is the 

number of days of non-family labor that the household hires in to work on their farm. After input 

and output optimization, net revenue can be expressed as: 

(4) ∗ = ( ,  ,  , ), 

where  is the price of maize,  is the commercial price of inorganic fertilizer, 

 is the price of hired labor, and  is a vector of control variables.  

The vector of control variables includes the share of cultivated land planted with 

improved maize varieties. Instead of observed shares of improved maize we include predicted 

shares from the stage one model to represent the optimal level of adoption given climate history. 

This makes impact estimates more reliable because we account for optimal (though perhaps 

constrained) behavior with respect to improved maize adoption, while addressing the potential 

endogeneity of this variable.10  

 The mechanisms through which weather and climate variables affect net revenue are 

modeled through the interaction terms included in equation (4). Weather variables are included 

in equation (4) by themselves as opposed to interacted with prices. Subsequent application of 

Hotelling’s lemma eliminates weather from factor demands and output supplies which captures 
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two facts: 1) growing season conditions influence crop productivity and household income, and 

2) weather events such as rainfall occurs after production decisions are made and, thus, do not 

affect them.  Conversely, historical climatic patterns enter the net revenue equation through an 

interaction with input and output prices, and through a three way interaction with prices and 

assets. Climate variables then appear, as a corollary of Hotelling’s lemma, as explanatory 

variables of input demands and output supplies and their effects are allowed to depend upon the 

household’s asset holdings. 

We specify household net revenue as a translog function due to its flexibility and to the 

ease with which elasticity of net revenue with respect to climate variables can be calculated. We 

choose non-maize revenue as the numeraire and normalize all other prices by it. The system 

formed by the net revenue equation and derived demands and supplies are estimated via 

seemingly unrelated regression with household fixed effects. A full expression for the translog 

net revenue function is presented in Appendix B.  

 

Analysis of Climate Change Impacts 

The overall impact of climate change on households’ well-being is measured by the elasticity of 

net revenue with respect to climate variables. This can be directly calculated from the estimated 

translog net revenue function. Taking derivative of net revenue with respect to climate variables 

in the translog function also reveals the mechanisms through which climate affects households’ 

well-being. Long term climate trends can affect farmers’ fertilizer and labor demand, and maize 

supply both directly and through its effect on adoption of improved varieties. The parametric 

expressions for these marginal effects and their derivation can be found in Appendices C and D. 

Upon econometric estimation of parameters, elasticities are calculated by evaluating shares at 
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their sample medians. Note that valid standard errors are obtained via running all equations 

within a bootstrap procedure that accounts for the coefficient estimates being obtained through a 

multiple step estimation process.  

 

Data 
Household Survey Data  

The data used in this study are drawn from three nationally representative household surveys 

conducted in Malawi during the 2000s. The first wave of surveys was administered as part of the 

Second Integrated Household Survey (IHS2) conducted by Malawi’s National Statistical Office 

(NSO) following the 2002/03 and 2003/04 growing seasons. The IHS2 covers 26 districts and 

11,280 households in Malawi.  The second wave of data comes from the 2007 Agricultural 

Inputs Support Survey (AISS1) conducted after the 2006/07 growing season by the NSO.  The 

budget for AISS1 was much smaller than the budget for IHHS2 and of the 11,280 households 

interviewed in IHHS2, only 3,485 of them lived in enumeration areas that were re-sampled in 

2007.  Of these 3,485 households, 2,968 were re-interviewed in 2007, which gives us an attrition 

rate of 14.8%.   

The third wave of data comes from the 2009 Agricultural Inputs Support Survey II 

(AISS2) conducted after the 2008/09 growing season by Wadonda Consult.  The AISS2 survey 

had a subsequently smaller budget than the AISS1 survey in 2007, so of the 2,968 households 

first sampled in 2003 and again in 2007, 1,642 of them lived in enumeration areas that were 

revisited in 2009.  Of the 1,642 households in revisited areas, 1,375 were found for re-interview 

in 2009, which gives us an attrition rate of 16.3% between 2007 and 2009.     

 The sample used in this analysis is based on the 2,968 households who were interviewed 

in wave 1 and wave 2, along with 1,375 households who were interviewed in all three waves.  
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The Data are considered nationally representative and give broad geographic coverage across 

Malawi.  After removing unrealistic outliers and the 185 observations who experienced negative 

net revenue, we end up with an unbalanced panel of 6,855 observations used in the analysis.   

 

Climate Data 

Locally interpolated time-series data on rainfall and temperature come from the 

University of East Anglia’s Climate Research unit (CRU)-TS 3.1 Climate Database (CRU, 2011; 

Mitchell and Jones, 2005). We match the household-level information in our dataset with 

monthly rainfall and temperature totals specified at 44 locations across Malawi. Households are 

assigned rainfall data according to their spatial proximity to these collection points. 

 

Controlling for Potential Attrition Bias 

The rate of attrition between each of the 3 survey waves is between 15-16%.  If the households 

in the survey attrite for non-random reasons, this could bias the coefficient estimates in our 

analysis.  Fortunately our estimation strategy should be robust to most types of attrition bias.  By 

using a household FE estimator we remove any correlation between time constant unobservable 

factors that affect attrition and the covariates in our model (Wooldridge 2010).  Even after 

running FE estimation we can also run a formal test for attrition to see if any of the unobservable 

time varying shocks that might affect attrition are correlated with the covariates in our model 

(Wooldridge 2010a, pg. 837-838).  Results of the test indicate that when all households that were 

surveyed in at least 2 waves are included there is no statistically significant evidence of attrition 

bias in stage 1 of our model (p-value on the selection indicator = 0.914 for the full sample).  This 

should negate concerns of attrition bias in this study.11 12     
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Results 
Table 2 presents the means and medians of the variables used in the analysis by survey wave.  

The table indicates that the mean share of area that households plant to improved varieties 

increases between waves 1 and 2 from 0.392 hectare to 0.45 hectare, then declines in wave 3 to 

0.385 hectares.  Median share of area planted to improved maize remains constant at 0.33 hectare 

in wave 1 and 2, then declines to 0.273 hectares in wave 3.  Mean maize output increases 

substantially from 580 kilograms in wave 1 to 703 kilograms in wave 2, then declines to 627 

kilograms in wave 3.  Median maize production increases throughout the survey ways but is 

substantially lower than the mean, at 327, 373, 410 kilograms per household in waves 1, 2, and 3 

respectively.   

[Table 2 Here] 

 

Adoption of Improved Maize Varieties 

Table 3 presents results regarding factors affecting share of area planted to improved maize 

varieties, estimated via household fixed effects. The table reveals that there is evidence of 

statistically significant relationships between climate variables and the share of land planted with 

improved maize varieties. This suggests that shifting area to improved maize is a relevant 

adaptation mechanism used by farmers. The coefficients on the linear, and the quadratic 

components of TEMP (age-adjusted historical mean temperature during the growing season) are 

positive and negative respectively, and both statistically significant. An evaluation of the 

derivative at median TEMP in the sample reveals that the share of area planted to improved 

maize varieties increases with temperature but also that temperature has a decreasing marginal 

effect on share of area planted to improved varieties.  
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Table 3 also shows the coefficients on the linear and squared measure of rainfall 

variability (CVMP) are negative and positive respectively, and both statistically significant. 

Evaluation of the derivative at median CVMP in the sample (0.6) reveals a positive effect on 

share of area planted to improved maize varieties. Such effect becomes substantially stronger 

when CVMP is evaluated at higher percentiles due to the strong convex nature of the effect of 

CVMP on planting decisions. These results suggest that as TEMP and CVMP increase, improved 

varieties become more attractive than local varieties for the majority of farmers in our sample. 

Moreover, results indicate that farmers’ adoption of improved varieties is more sensitive to long 

term changes in variability of monthly precipitation than they are to long term changes in the 

mean. This is consistent with analyses of past climatic trends in Malawi (Gama et al., 2014).  

 [Table 3 Here] 

Climate Change Impacts 

Results from the simultaneous equations estimation are reported in table E1 in Appendix E. 

Results in table E1 show that the share of land planted with improved varieties does not 

influence farmers’ choice of inputs and outputs revealing the homothetic nature of its impact (i.e. 

relative productivities are not affected by varieties). Therefore, we conclude that these adaptation 

strategies are “separable” decisions in production in the sense that improved maize share does 

not affect the expected marginal productivity of other inputs (or that is, at least, the perception of 

the farmers).  

Based on parameter estimates in table E1, we compute the elasticity of net revenue, 

maize supply, fertilizer demand, labor demand, and non-maize output supply, with respect to 

climate variables. Elasticities derived from the translog specification need to be evaluated at a 

given point with respect to the natural logarithm of prices and assets. The median is, in this case, 
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a more appropriate measure of central tendency due to the asymmetric nature of the logarithmic 

transformation and the strong positive skewness of the distribution of asset levels (Table 2).   

Table 4 presents these elasticity estimates along with bootstrapped p-values.13 Results 

from rows i), ii) and iii) of table 4 reveal that as growing seasons become drier (GSP), warmer 

(TEMP), and monthly rainfall becomes more volatile (CVMP), farmers’ net income is reduced.14 

Therefore, adverse climatic trends seem to have a sizable and negative effect on farmers’ well-

being. This is an important result, as it underscores the fact that, while farmers can and do 

respond to climate change, adaptation strategies can only partially alleviate its adverse effects. 

Results from table 4 confirm our expectations that reallocation of inputs and revenue 

sources are an important part of farmers’ response to changes in climate. Rows iv) – vii) show 

that a history of drier growing seasons induces farmers to reduce labor hiring. Farmers our also 

found to increase their application of inorganic fertilizer which is consistent with results in 

Behnin (2006). The additional fertilizer applied does not outweigh the reduction in labor, and 

maize production declines. Non-maize income also decreases as growing seasons get drier, and 

they do so more than proportionally to the reduction in maize income. This results in an 

increased reliance of the median farmer on maize production.  

Rows viii) – xi) of table 4 present the impacts of rainfall variability (CVMP) on farmers’ 

behavior. We find evidence that the median farmer reduces fertilizer and on-farm labor hiring 

(presumably due to reduced marginal productivity). Both maize and non-maize income are 

reduced by a higher rainfall variability. Subtracting the elasticity of net income with respect to 

CVMP from the elasticity of maize supply with respect to CVMP reveals that a one percent 

increase in CVMP increases the share of the median farmer’s income coming from maize 

production by 0.42%. By a similar calculation, it can be shown that the share of non-maize 
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outputs in the median farmer’s net income remains unchanged. Therefore the median farmer’s 

response to an increase in historical rainfall variability seems to result in increased reliance on 

maize income. Behavioral responses are not sufficient to completely offset the harming effects of 

increased rainfall variability, so net income is reduced.  

Rows xii) – xv) in table 4 present the impacts of growing season temperature (TEMP) on 

output supply and input demand.  The response of the median farmer to warmer growing seasons 

are the largest in magnitude. In response to increased temperature, the median farmer reduces 

both fertilizer use and hiring of on-farm labor. Both maize and non-maize income sources are 

reduced revealing an overall reduction in productivity and income opportunities.  

High elasticities of input demands and income sources with respect to climate variables 

also reveal that farmers do tend to use these subtle, yet critical, simultaneous changes in inputs 

and outputs as a mechanism to protect their income from the adverse effects of climate change. 

This is a very important result given the fact that these mechanisms have been overlooked by 

much of the previous literature. Failure to at least implicitly account for this behavioral responses 

(such as in the agronomic approach cited in Table 1) may result in overestimation of damages 

from climate change. Failure to explicitly account for behavioral responses (as in the Ricardian 

approaches depicted in Table 1) precludes quantification of the relative importance of different 

adaptation mechanisms which hinders our ability to design policy aimed at reducing barriers to 

adaptation. It also limits our capacity to anticipate market-level effects of climate change. 

 

Relationship between climate change impacts and wealth 

Computation of net revenue, input demand and output supply elasticities in response to 

climate change for the median farmer may disguise a substantial degree of heterogeneity in 
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farmers’ ability to adapt and mitigate the effect of climate change on net revenue across the 

wealth spectrum. We hypothesize that richer farmers, measured as those who have a higher value 

of livestock and durable assets, have greater adaptation capabilities which allows them to better 

protect their income against the harming effects of climate change.  

While assets do not have a statistically significant influence on the adoption of improved 

maize varieties, they do influence farmers’ choice of production inputs and income sources. 

Coefficient estimates reported in table E.1 reveal interesting insights in regards to the link 

between asset ownership, adaptation capabilities, and the resilience of net income to climate 

change. The interaction of assets and temperature has a negative and significant coefficient in the 

fertilizer demand equation; coefficient is -0.28 with a p-value of 0.05. This indicates that the 

negative impact of temperature on farmers’ fertilizer demand is smaller for wealthier farmers. 

Since labor supplied to activities other than maize production is calculated residually from the 

SUR system including fertilizer demand, our results also show a smaller effect of temperature on 

non-maize products supply for wealthier farmers.15 

Figure 1 shows how assets shape the effect of temperature on net revenue. This 

relationship is calculated by simulating equation (C.1) in Appendix C for a range of asset values. 

This figure reveals that the magnitude of temperature-induced income loss is inversely related to 

asset levels. The absolute value of the temperature effect gets smaller as the value of household 

assets increases. Figure 2 illustrates the main mechanism behind this negative relationship. The 

relationship plotted in Figure 2 is obtained by simulating equation (D.5) in Appendix D for a 

range of asset values. Relatively richer farmers reduce non-maize supply but to a lesser extent. 

Therefore we observe that the tendency to concentrate incomes in maize production as 

temperature increases is weaker for households with greater asset stocks. This finding suggests 
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that well-endowed households have access to mechanisms for income diversification not 

available to poorly-endowed households, and these alternative income sources are particularly 

important in shaping the welfare impact associated with higher temperature.  

[Figure 1 here] 

The statistically insignificant effect of assets on adoption of improved varieties jointly 

with its significant and quantitatively relevant effect on input/output allocations and net revenue, 

underscores the importance of our structural modeling approach. Relatively wealthier farmers are 

better able to adapt to changes in climate. This, however, is not attained through adoption of new 

management practices (represented here by planting improved maize varieties) but by a less 

constrained readjustment of inputs and revenue sources. 

[Figure 2 here] 

Previous studies (Rao et al., 2011) have suggested that 10 years may be a more 

appropriate bound for maximum memory. Upon examination of the robustness of our results to a 

change in maximum memory, we find that results with the 10-year model are generally 

consistent with those of the 20-year model. Both the 10 and 20-year models suggest a similar 

behavioral response to climate change. The only coefficient that changes sign at the median in 

Table 4 is on-farm labor demand. Despite this small difference, our main insights are robust to 

changing climate recall from 20 to 10 years.  Net revenue is still negatively affected by adverse 

climatic trends, and farmers (especially so poor farmers) rely more on maize income. Results of 

the 10-year recall specification are available upon request. 

Our results point to the need for further investigation into the mechanisms by which 

assets steer behavioral responses and welfare outcomes. Our data set is not sufficiently detailed 

to determine the exact nature of these mechanisms, though we offer two possible explanations of 
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how this might occur. First, the ownership of assets may signify a higher degree of market 

access, including opportunities to earn income outside of the agricultural sector that would allow 

the household to increase participation in less climate sensitive activities. Greater access to 

alternative income sources through diversification of maize and non-maize labor supply 

allocation would make households better able to minimize the damages associated with climate 

variability.  

Second, since our household income variable includes income derived from sales of 

livestock or livestock products (captured in our net household income variable, though not 

explicitly modeled in production due to the lack of price information) assets may represent a 

direct source of income or consumption that is not so dependent on weather outcomes. More 

detailed examination of the role of livestock and off-farm income opportunities as a buffer 

against climate variability would be required to identify promising policy alternatives in this 

area. Understanding the characteristics of these specific activities would facilitate a more precise 

estimate of the relevance of these barriers to climate change adaptation. 

The results of our study have three other caveats. First, the use of a linear model to 

describe changes in the share of cultivated land planted with improved maize varieties generates 

some predicted values outside the zero-one interval. A logistic curve would have been more 

appropriate for modeling a limited dependent variable such as improved maize share.  However, 

it is impossible to compute predicted values from a non-linear estimator and include the 

predicted values in the second stage structural model. Second, while we believe that the use of 

panel data is a substantial improvement over cross-sectional methods, longer time-series data 

sets would greatly enhance the reliability of the relationships we uncovered between long-run 

characteristics of growing season rainfall and net revenue. Third, our rainfall data includes only 
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monthly totals, and the performance of maize is highly dependent on the timing of rainfall 

relative to its phase in the growing cycle (Tadross et al. 2009). The coarseness of the rainfall data 

prevents us from drawing any conclusions about these agronomic issues. 

 

Conclusion 

Much of the research on climate change considers adaptation in terms of the introduction of 

entirely new farm practices (e.g., switching crop varieties, adopting water conservation 

techniques, planting trees, etc.). Little quantitative work has been undertaken to determine the 

relevance of simpler methods of adaptation such as adjusting the use of existing inputs or 

reallocating production among existing activities. Employing a structural adaptation model, we 

test for the relevance of this adaptation mechanism and examine the importance of assets in 

facilitating these types of adjustments. 

 First, we find that climate change induces behavioral responses from farmers, causing 

them to plant a larger share of land to improved maize varieties, reallocate fertilizer and labor 

inputs, and change income sources. This confirms our a priori expectation that these are all 

important climate change adaptation mechanism that should not be ignored in future work on 

climate change adaptation and impacts.  

 Second, all adverse climatic trends considered here (higher temperatures, higher 

precipitation variability, and lower mean rainfall) have a significant and negative effect on 

smallholder net revenue, as we would expect ex ante. Climate variables affect the share of land 

planted to improved varieties, but shifting varieties does not in itself affect farmers’ choice of 

inputs and income sources.  Conversely, climate change has a significant direct effect on 

farmers’ input and output decisions. While the impact of mean rainfall and rainfall variability on 
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net revenue, and input and output decisions are considerable, the effect of temperature is 

quantitatively much larger.  

 Finally, our results are consistent with the presence of market barriers to adaptation as the 

elasticity of net revenue with respect to temperature is sensitive to asset ownership. Interestingly, 

households with lower asset levels tend to rely more on maize related income than wealthier 

farmers as temperature increases. This result suggests that wealthier farmers have access to a 

greater diversity of earning opportunities as crop production becomes riskier. A more limited set 

of opportunities seem to prompt poorer farmers into maize production perhaps in an attempt to 

ensure their own food security. 

 Our finding that households tend to intensify maize production (at the expense of other 

activities) in response to adverse changes in climate suggests the need for further research into 

high-yielding maize that produces stable yields under inconsistent moisture and high temperature 

conditions. This is consistent with other climate policy analyses that call for investment in the 

development of improved maize cultivars (e.g. Kurukulasuriya and Mendelsohn, 

2008).  Knowing that households, and especially less endowed farmers, may shift toward 

subsistence maize production on their own farm as climate changes indicates that increasing 

maize productivity may represent the primary mechanism through which adverse climate 

impacts can be mitigated.     

 

Appendix A 

Regressors in equation (3) include wealth as measured by the value of livestock and durable 

goods owned by the household, growing season precipitation (GSP), GSP squared, temperature 

(TEMP), TEMP squared, coefficient of variation of monthly precipitation (CVMP), CVMP 

squared, a binary variable equal to one if the household reported to be severely impacted by an 
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extreme rainfall pattern in the past five years and zero otherwise, the previous year’s maize price, 

the price of commercial fertilizer in the current year, the amount of subsidized fertilizer acquired 

by the household in the current year, the wage rate for off-farm agricultural labor in the current 

year, a binary variable equal to one if the household purchased inputs with credit during the 

growing season and zero otherwise, a binary variable equal to one if the household head is 

female and zero otherwise, household size as measured by adult-equivalent, household 

landholding, a binary variable equal to one if the household reported to have received useful 

advice on new seed varieties, the price of improved maize seed, assets interacted with GSP, 

assets interacted with GSP squared, assets interacted with CVMP, assets interacted with CVMP 

squared, assets interacted with TEMP, assets interacted with TEMP squared, landholding 

interacted with GSP, landholding interacted with GSP squared, landholding interacted with 

CVMP, landholding interacted with CVMP squared, landholding interacted with TEMP, 

landholding interacted with TEMP squared, the number of improved maize seed dealers in the 

village, the quantity of subsidized maize seed acquired by the household, the number of fertilizer 

dealers in the village, a binary variable equal to one if the observation corresponds to the 2003-

2004 growing season, a binary variable equal to one if the observation corresponds to the 2006-

2007 growing season, and a binary variable equal to one if the observation corresponds to the 

2008-2009 growing season. 

 

Appendix B 

The translog net revenue function is:   ln = + ∑ ln + ∑ ∑ ln ln + ∑ ∑ ln ln +
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∑ ∑ ∑ ln ln ln + ∑ ln + ∑ ∑ ln ln + ∑ +∑ ∑ ln + ∑ ∑ ln        (B.1) 
where  denotes normalized net revenue and  denotes normalized prices for maize (  = 1),  

fertilizer ( =2), and labor ( =3). We impose symmetry of net revenue by forcing =  for all 

 and ℎ. Year dummies are denoted by , where s indicates the growing season (2003-04, 2006-

07, or 2008-09) treating the 2002-03 growing season as the base year. The vector of exogenous 

variables, , includes the predicted share of land planted with improved maize variety, the 

cumulative growing season precipitation, the coefficient of variation of monthly precipitation, 

the value of durable goods and livestock owned, total landholding, the quantity of subsidized 

fertilizer acquired, GSP, CVMP, TEMP. We derive the share of the th netput on net revenue by 

differentiating (B.1) with respect to ln  (and taking the negative of the derivative for inputs): = + ln + 0.5 ∑ ln + ∑ ln + ∑ ∑ ln ln + ∑  (B.2) 
 = + ln + 0.5 ∑ ln + ∑ ln + ∑ ∑ ln ln + ∑  (B.3) 
 = + ln + 0.5 ∑ ln + ∑ ln + ∑ ∑ ln ln + ∑  (B.4) 

We estimate the parameters in (B.1)-(B.4) using a seemingly unrelated regression. 
 
 
Appendix C  

Differentiating (B.1) with respect to the log of our climate variables results in a parametric 

expression describing the effect of climate change on net revenue: =
+ ∑ ln + 2 ln ln + ∑ ∑ ln ln + ln +  ∑ ln +

∑ ln + ∑ ln [ ( )][ ]  +  [ ( )][ ]   + ∑ ln [ ( )][ ] +
∑ [ ( )][ ]                  ∈ { , ,  }  (C.1) 
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where  [ ( )][ ]  =  and the second factor in this expression is directly obtained from the 

equation estimated in stage one. 

 
Appendix D 

Differentiating (B.2)-(B.4) with respect to the log of our climate variables results in a parametric 

expression describing the effect of climate change on, respectively, maize, fertilizer, and labor 

demand:  

1∗ = 1 +∑ 1 ln +2 1 ln
,   ∈ { , ,  }   (D.1) 

2∗ = 2 +∑ 2 ln +2 2 ln
,   ∈ { , ,  }   (D.2) 

3∗ = 3 +∑ 3 ln +2 3 ln
,   ∈ { , ,  }   (D.3) 

 
Let us denote non-maize income by ∗. The derivation of the elasticity of ∗ with respect to 

climate proceeds as follows. Since non-maize income is the normalizing factor and given that 

input and output shares sum to 1 by definition, non-maize supply is given by: 

∗ = ∗ 1 − ∗∗ − ∗∗ − ∗∗         (D.4) 

Computation of this elasticity is conducted by evaluating ∗ ∗⁄  at their sample medians. 

The elasticity of non-maize supply with respect to climate is conducted by taking logarithm on 

both sides of (D.4) and deriving the resulting expression by : 

∗ = 1 − ∗∗ − ∗∗ − ∗∗        (D.5) 

 
Appendix E 

Table E.1 Estimation of net revenue, inputs, and income sources equations 
log (net household income) Coefficient p-value 

log(maize price) 14.147 0.424 
log(fertilizer price) -22.198 0.251 
log(labor price) 2.421 0.838 
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log(maize price)*log(maize price) -0.041 0.533 
log(maize price)*log(fertilizer price) 0.068 0.477 
log(maize price)*log(labor price) 0.011 0.777 
log(fertilizer price)*log(fertilizer price) 0.005 0.931 
log(fertilizer price)*log(labor price) -0.002 0.955 
log(labor price)*log(labor price) -0.007 0.265 
log(maize price)*log(improved maize share) 0.002 0.939 
log(maize price)*log(growing season precipitation, current 
year) 0.711** 0.030 

log(maize price)*log(growing season degree days, current 
year) -0.996 0.698 

log(maize price)*log(cv month grow. season precipitation, 
current year) -0.921*** 0.002 

log(maize price)*log(assets) -1.522 0.137 
log(maize price)*log(landholding) -0.643 0.818 
log(maize price)*log(subsidized fertilizer quantity) -0.007 0.112 
log(maize price)*log(GSP) -1.410** 0.052 
log(maize price)*log(TEMP) 0.146 0.960 
log(maize price)*log(CVMP) 1.600** 0.030 
log(fertilizer price)*log(improved maize share) 0.008 0.694 
log(fertilizer price)*log(growing season precipitation) -0.774** 0.017 
log(fertilizer price)*log(grow season degree days, current year) -5.995** 0.018 
log(fertilizer price)*log(cv mo growing season precipitation) 0.876*** 0.008 
log(fertilizer price)*log(assets) 3.668** 0.022 
log(fertilizer price)*log(landholding) -4.964 0.323 
log(fertilizer price)*log(subsidized fertilizer quantity) 0.009* 0.068 
log(fertilizer price)*log(GSP) 1.861* 0.083 
log(fertilizer price)*log(TEMP) 7.518** 0.025 
log(fertilizer price)*log(CVMP) -1.474 0.243 
log(labor price)*log(improved maize share) -0.006 0.579 
log(labor price)*log(growing season precipitation) 0.008 0.907 
log(labor price)*log(growing season degree days, current year) 0.136 0.781 
log(labor price)*log(cv mo growing season precipitation) -0.020 0.776 
log(labor price)*log(assets) -1.012 0.196 
log(labor price)*log(landholding) -0.651 0.448 
log(labor price)*log(subsidized fertilizer quantity) -0.001 0.613 
log(labor price)*log(GSP) 0.165 0.732 
log(labor price)*log(TEMP) -0.649 0.643 
log(labor price)*log(CVMP) -0.433 0.568 
log(maize price)*log(GSP)*log(assets) 0.042 0.542 
log(maize price)*log(GSP)*log(landholding) -0.042 0.811 
log(maize price)*log(TEMP)*log(assets) 0.133* 0.103 
log(maize price)*log(TEMP)*log(landholding) 0.123 0.534 
log(maize price)*log(CVMP)*log(assets) -0.106* 0.104 
log(maize price)*log(CVMP)*log(landholding) 0.100 0.512 
log(fertilizer price)*log(GSP)*log(assets) -0.102 0.311 



30 
 

log(fertilizer price)*log(GSP)*log(landholding) 0.226 0.385 
log(fertilizer price)*log(TEMP)*log(assets) -0.328*** 0.009 
log(fertilizer price)*log(TEMP)*log(landholding) 0.379 0.334 
log(fertilizer price)*log(CVMP)*log(assets) 0.121 0.368 
log(fertilizer price)*log(CVMP)*log(landholding) 0.245 0.428 
log(labor price)*log(GSP)*log(assets) 0.009 0.844 
log(labor price)*log(GSP)*log(landholding) 0.056 0.256 
log(labor price)*log(TEMP)*log(assets) 0.116 0.112 
log(labor price)*log(TEMP)*log(landholding) 0.013 0.853 
log(labor price)*log(CVMP)*log(assets) 0.024 0.762 
log(labor price)*log(CVMP)*log(landholding) -0.068 0.292 
log(improved maize share) -0.120 0.832 
log(growing season precipitation, current year) 1.387*** 0.005 
log(growing season degree days, current year) -2.912 0.563 
log(cv monthly growing season precipitation, current year) -1.199*** 0.002 
log(assets) 0.179*** 0.000 
log(landholding) 0.067 0.202 
log(subsidized fertilizer quantity) 0.004 0.528 
yr2003_04 0.051 0.491 
yr2006_07 -0.432*** 0.000 
yr2008_09 -0.023 0.786 

maize output supply     
log(maize price) -0.082 0.533 
log(fertilizer price) 0.068 0.477 
log(labor price) 0.011 0.777 
log(improved maize share) 0.002 0.939 
log(growing season precipitation, current year) 0.711** 0.030 
log(growing season degree days, current year) -0.996 0.698 
log(cv growing season precipitation, current year) -0.921*** 0.002 
log(assets) -1.522 0.137 
log(landholding) -0.643 0.818 
log(subsidized fertilizer quantity) -0.007 0.112 
log(GSP) -1.410** 0.052 
log(TEMP) 0.146 0.960 
log(CVMP) 1.600** 0.030 
log(GSP)*log(assets) 0.042 0.542 
log(GSP)*log(landholding) -0.042 0.811 
log(TEMP)*log(assets) 0.133* 0.103 
log(TEMP)*log(landholding) 0.123 0.534 
log(CVMP)*log(assets) -0.106* 0.104 
log(CVMP)*log(landholding) 0.100 0.512 

fertilizer input demand     
log(maize price) 0.068 0.477 
log(fertilizer price) 0.009 0.931 
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log(labor price) -0.002 0.955 
log(improved maize share) 0.008 0.694 
log(growing season precipitation, current year) -0.774** 0.017 
log(growing season degree days, current year) -5.995** 0.018 
log(cv growing season precipitation, current year) 0.876*** 0.008 
log(assets) 3.668** 0.022 
log(landholding) -4.964 0.323 
log(subsidized fertilizer quantity) 0.009* 0.068 
log(GSP) 1.861* 0.083 
log(TEMP) 7.518** 0.025 
log(CVMP) -1.474 0.243 
log(GSP)*log(assets) -0.102 0.311 
log(GSP)*log(landholding) 0.226 0.385 
log(TEMP)*log(assets) -0.328*** 0.009 
log(TEMP)*log(landholding) 0.379 0.334 
log(CVMP)*log(assets) 0.121 0.368 
log(CVMP)*log(landholding) 0.245 0.428 

labor input demand     
log(maize price) 0.011 0.777 
log(fertilizer price) -0.002 0.955 
log(labor price) -0.014 0.265 
log(improved maize share) -0.006 0.579 
log(growing season precipitation, current year) 0.008 0.907 
log(growing season degree days, current year) 0.136 0.781 
log(cv growing season precipitation, current year) -0.020 0.776 
log(assets) -1.012 0.196 
log(landholding) -0.651 0.448 
log(subsidized fertilizer quantity) -0.001 0.613 
log(GSP) 0.165 0.732 
log(TEMP) -0.649 0.643 
log(CVMP) -0.433 0.568 
log(GSP)*log(assets) 0.009 0.844 
log(GSP)*log(landholding) 0.056 0.256 
log(TEMP)*log(assets) 0.116 0.112 
log(TEMP)*log(landholding) 0.013 0.853 
log(CVMP)*log(assets) 0.024 0.762 
log(CVMP)*log(landholding) -0.068 0.292 
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Table 1. Attributes of methodological approaches in climate adaption literature 

Methodological approach 

 

Desired model attributes 

Agronomic
Ricardian Structural 

Ricardian The 
Present 
Study Land 

price 
Net 

revenue 
Land 
price 

Net 
revenue 

Adaptation 

Management 
practices 

+ - - + + + 

Inputs’ 
applications and 
reallocation of 
income sources 

-  - - - - + 

Welfare -  + + + + + 

Controlling for Fixed Effects -/+ - - -/+ -/+ + 

Incorporating price effects - - - - - + 

Allowing for “partial” 
adaptation 

- - - - - + 

Heterogeneity in adaptation 
(e.g. the role of wealth on 

adaptation behavior) 
- -/+ -/+ -/+ -/+ + 

Note: -/+ indicates that some studies using the particular approach have the attribute while others 
do not.   
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Table 2: Descriptive Statistics of Variables Used in the Analysis.   

 
Wave 1 

(2002/3 & 003/04) 
Wave 2 

(2006/07) 
Wave 3 

(2008/09) 
variable mean median mean median  mean median 
Age-adjusted historical average growing season 
precipitation in cm (GSP) 9,730 9,455 9,483 9,275 9,919 9,696
Age-adjusted average growing season 
temperature in degrees Celsius (TEMP) 3,411 3,386 3,426 3,394 3,378 3,292
Age-adjusted average growing season coefficient 
of variation of monthly precipitation (CVMP) 0.659 0.667 0.652 0.658 0.657 0.673
Share of area planted to improved maize 0.392 0.333 0.450 0.333 0.385 0.273
Maize output household level in kg 580 327 703 373 627 410
Real farm-gate maize price 21 20 14 13 28 30
Real total household income 49,815 26,454 31,239 14,793 67,518 39,813
Days of agricultural labor hired in 14.06 0.00 5.49 0.00 5.13 0.00
Days of agricultural labor hired out 43.05 5.00 10.89 0.00 25.15 0.00
Real value of livestock and durable assets in MK 33,326 10,771 47,300 10,434 56,297 13,600
Household landholding, in Ha 1.32 0.86 1.06 0.81 1.08 0.81
=1 if household experienced a bad weather shock 
in the past 5 years 0.736 - 0.270 - 0.307 -
Previous year's real retail maize price in Mk/Kg 23 22 22 22 40 40
Real commercial fertilizer price in Mk/Kg 62 61 81 80 139 133
Real off-farm wage rate, in Mk/Day 179 184 207 208 282 278
Quantity of subsidized fertilizer acquired in Kg 12.55 0.00 62.42 50.00 56.15 50.00
Quantity of subsidized improved maize seed 
acquired in Kg 0.74 0.00 2.81 0.00 2.02 0.00
=1 if household secured a loan for purchasing 
inputs 0.06 - 0.07 - 0.11 -

Real prices are in 2008/09 Malawi Kwacha (MK); US $1.00 = 140 Malawi Kwacha during 
2008/09. 
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Table 3. Factors Affecting Share of Area Planted to Improved Maize Varieties 
Dependent variable: Share of total area planted to improved maize 
Covariates      

 
Coefficient 

 
p-value 

Historical average growing season precipitation in cm (GSP) 6.12E-05 (0.876) 

GSP squared 1.06E-08 (0.493) 

Historical average growing season temperature in degrees Celsius (TEMP) 0.022** (0.011) 

TEMP squared -2.55E-06* (0.054) 

Historical average growing season CV of monthly precipitation (CVMP) -20.22* (0.051) 

CVMP squared 15.08* (0.073) 

=1 if household experienced a bad weather shock in the past 5 years -0.00421 (0.799) 

Value of livestock and durable assets in MK 3.49E-08 (0.178) 

Household landholding, in Ha -0.008 (0.166) 

=1 if household secured a loan for purchasing inputs 0.039 (0.281) 

Previous year real retail maize price in Mk/Kg 0.003 (0.257) 

Real commercial fertilizer price in Mk/Kg -0.001 (0.044) 

Real off-farm wage rate, in Mk/Day -3E-05 (0.001) 

Quantity of subsidized fertilizer acquired in Kg 0.0002 (0.116) 

Quantity of subsidized improved maize seed acquired in Kg 4.77E-05 (0.515) 

Number of observations  6,855 

R-squared (within) 0.05 

Note: *, **, *** indicate that the corresponding coefficient is statistically significant at the 10%, 
5% and 1% level respectively.  Model includes year dummies and a constant that are not shown.  
standard errors clustered at household level. 
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Table 4. Partial effects of climate on net-revenue, output supply, and input demand 
 
Partial Effect 

 
Coefficient 

 
p-value 

 
Net Revenue 

  

i) ( )
 

1.72*** (0.00) 

ii) ( )
 

-9.75*** (0.00) 

iii) ( )
 

-0.61*** (0.00) 

 
Growing Season Rainfall (GSP)  

  

iv) ( )
 

0.44*** (0.00) 

v) ( )
 

-0.38*** (0.00) 

vi) ( − ) 1.32*** (0.00) 

vii) ( − )
 

0.92*** (0.00) 

 
CV of Growing Season Rainfall (CVMP) 

  

viii) ( )
 

-0.19*** (0.00) 

ix) ( )
 

-0.44*** (0.00) 

x) ( − ) -0.40*** (0.00) 

xi) ( − )
 

-0.61*** (0.00) 

 
Growing Season Temperature (TEMP) 

  

xii) ( )
 

-7.86*** (0.00) 

xiii) ( )
 

-16.86*** (0.00) 

xiv) ( − ) -10.94*** (0.00) 
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Note: p-values obtained via bootstrapping at 200 repetitions. 
 
Figure Titles 
 
Figure 1. Relationship between assets and the impact of temperature on net revenue 
 
Figure 2. Relationship between assets and the impact of temperature on non-maize income 
 
 

                                                            
1 The duration of a ‘dry spell’ is defined as the number of consecutive days with less than 2mm rainfall.  

2 Days in which rainfall exceeds 2mm are considered ‘rain days.’ 

3 It should be noted that some limitations of previous studies are not inherent to their methodology but are typically 

associated with data availability. 

4 There was too little variation in the volatility of temperature during our sample period to have any influence in 

production and consumption decisions. Therefore our regression does not include a variable for the coefficient of 

variation in temperature. 

5 In this study improved maize seeds are defined as hybrid varieties and open pollinated varieties (OPV).  Although 

smallholder farm households in Malawi report that more than 95% of the improved maize seed they acquire is 

hybrid, anecdotal evidence from Malawi indicates that most farmers refer to any improved seed as hybrid. 

6 Time-constant household characteristics such as age of the household head in the first survey and education of the 

household head are controlled in the fixed effects regression. 

7 Equation 3 is estimated as a linear model rather than a non-linear fractional probit even though the dependent 

variable is share of area planted to improved varieties.  The reason for this choice is  1) linear estimation allows us to 

use fixed effects making the analysis less prone to omitted variable bias from unobservable time-constant factors; 2) 

we can obtain predicted values of share of area planted to improved maize varieties that can be used as a covariate in 

subsequent models that estimate output supply and net revenue; 3) linear panel methods do not make the restrictive 

assumption that unobservables are linearly related to the time de-meaned household-level variables (Schlenker and 

Lobell, 2010).  

xv) ( − )
 

-26.52*** (0.00) 
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8 Participation in the input subsidy program is not random, and this could lead to inconsistent coefficient estimates if 

unobservable factors affecting improved seed adoption are related to acquisition of subsidized inputs.  The most like 

source of this endogeneity is from an omitted variable(s), for example more able farmers may be targeted to receive 

subsidized inputs. Mason and Ricker-Gilbert (2013) used the same dataset as the current study and found that 

endogeneity of subsidized fertilizer and seed is not an issue after controlling for time-constant unobserved factors.  

This indicates that in our context it is reasonable to assume that subsidized inputs are uncorrelated with  in 

equation (3) when household fixed effects is used to estimate the equation. 

9 Input costs in agricultural production activities include fertilizer, seed, hired labor, and land rental costs.  

Households are asked to quantify input costs in livestock and other agricultural activities as well as in non-

agricultural activities. 

10 Since we employed a linear model in stage one, 33% of predicted values fall below zero and about 40% exceed 

one. The mean share is 0.41, while the median share is 0.42, suggesting that the predicted share estimates are not 

highly skewed. 

11 Inverse probability weights are not valid with FE estimation (Wooldridge, 2010).   

12 Recent studies by Mason and Ricker-Gilbert (2013), use the same dataset as the present study, and both found 

little or no evidence of attrition bias after controlling for time-constant unobserved factors.   

13 Bootstrapping is necessary as elasticity estimates are constructed based on predicted adoption of maize varieties. 

This is where the sequential adoption of adaptation strategies comes into play.   

14 Increase rainfall variability means that dry spells become more frequent and lengthy and events of heavy rainfall 

also become more common. 

15 Coefficients on assets for other climate variables have not been found to be statistically significant so we focus 

our attention on temperature. 
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