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Spatial Heterogeneity In Production Functions Models

Introduction

Although theory supports firms do not operate on a common production function (homogeneous

technology), in most empirical literature a global production function is proposed that assumes

production technology is invariant over space and across firms. As a matter of fact, especially in land

based industries such as agriculture, the analysis of production often needs to be more nuanced and

account for the variations in technology arising from local-specific solutions that satisfy, for example, the

environmental conditions within which farms operate (Mundlak, 2001). Assuming a common production

function encompassing every sample observation, i.e. failing to recognize variations in technology, leads

to biased estimates of the technological characteristics.

To account for heterogeneous technologies, different approaches can be followed. First, when it is

possible to classify the sample observations into categories defined on the basis of a priori sample

separation information, for example the location in different geographical or administrative regions, then

a production function can be estimated for each group of firms. These estimates can then be used for

example to build a meta-production function, which represents the envelope of the production points of

the most efficient groups (Hayami and Ruttan, 1971; Mundlak and Hellinghausen, 1982; Lau and

Yotopoulos, 1989; Battese and Rao, 2002). There are cases, though, in which the groups of firms sharing

a common technology and the boundaries of the areas in which they operate cannot be defined on the

basis of information known a priori. In this case it is possible to specify and test a latent class model, also

referred to as finite mixture model (Orea and Kumbakhar, 2004; Greene, 2005; O’Donnell and Griffith

2006; Alvarez and del Corral, 2010; Sauer and Morrison-Paul 2013), which treat heterogeneity in

technology as generated by a latent discrete distribution. As a matter of fact the data referring to the state

of nature are usually highly aggregated over space, hence of little use to discriminate between different

environments in which farms operate.

In this paper we extend to this latter stream of literature by taking explicitly into account the inherent

spatial heterogeneity in technologies. Spatial heterogeneity refers to those cases in which the same

stimulus provokes a different response in different parts of the study region due to differences in the

environment in which farms operate. For example sloping lands can hinder farm mechanization, soil

types and climate influence the choice of varieties grown, hence yields, as well as cultural practices.

Variations in relationship over space are referred to as a particular case of non-stationarity. If a spatial

non-stationary relationship is modeled using global models, possible wrong conclusions might be

drawn. In order to overcome the biasedness due to spatial heterogeneity, we propose an innovative

method, i.e. the Iterative Geographically Weighted Regression (IGWR), to identify spatial technology

clusters, i.e. groups of firms using a common technology. The IGWR method is based on an extension



of the standard GWR approach and utilizes the adaptive weights smoothing (AWS) procedure

proposed by Polzehl and Spokoiny (2000).

1. Methodology

In this section we briefly describe the Iterative Geographically Weighted Regression algorithm. In order

to account for local parameter estimates over space GWRs are typically used (Fotheringham et al., 2002).

The basic idea behind local geographical estimations is that simple linear functions may fit well for

observations close to site i, but they will probably be inappropriate when more distant observations are

included. In other words, this means that simple econometric models might provide a reasonable

approximation of the local estimate as long as we use the information in a group of observations close to

i. Therefore, simple linear functions can be written to account for local parameter estimates in the

following way

=ݕ +(ܺ⨂ߚ) ,ߝ (ܫଶߪ,0)ܸܰܯ~ߝ (2.1)

where ݕ is an ݊ -dimensional column vector, ߚ is an ݊ by ݇+ 1 matrix with i-th row

=ߚ ,ଶߚ,ଵߚ,ߚ) … '(ߚ, , ⨂ is a logical multiplication operator in which each element of ߚ is

multiplied by the corresponding element of the i-th row in ܺ, =ݔ ,ଶݔ,ଵݔ,ݔ) … ,(ݔ, is a (݇+ 1)-

dimentional column vector of ones, and isߝ an -݊dimensional column vector. Then, a geographically

weighted estimator for each observation is simply obtained by repeated Weighted Least Squares (WLS)

estimations

መߚ
ீௐ ோ = (ܺᇱܹ ܺ )ିଵܺᇱܹ ݕ, ݅= 1, …݊ (2.2)

where ܹ  is an n-by-n matrix whose off-diagonal elements are zero, while those along the diagonal

denote the geographical weights ൫ݓଵ,ݓଶ, … ,ݓ, … ൯ofݓ, each of the n observed data for regression

point i. We will therefore have n diagonal spatial weighting matrices and n sets of local parameter

estimates that correspond to the marginal effects.

Given our aim of identifying spatial clusters, that is subsamples of observations (farms in our case) in

which a single local econometric model is justified, we iteratively extend the GWR approach till when

all the observations with similar beta coefficients will belong to the same homogeneous cluster. This is

obtained by computing new weights in the main diagonal of ܹ  at each iteration (see Polzehl and

Spokoiny, 2000) and then comparing the estimated beta coefficients in (2.2) by using distance criteria.

During this procedure, it is important to provide enough observations for each group since those

characterized by a scarce quantity will be automatically excluded from the analysis due to identification

problems, and treat as outliers. This can be avoided by setting the number of observations sufficiently

larger than the number of parameters to be estimated. It is worth noting that the more the regressors, the

higher is the minimum number of observations required to construct the spatial clusters.

Given a production function

=ݕ +ߚ(ܺ) ߝ ఌߪ,0)ܸܰܯ~ߝ
ଶܫ) (2.3)



where ݕ is a n by 1 vector of the quantity produced , ܺ is an n by k matrix of inputs, ߚ is a k by 1 vector

of coefficient estimates, isߝ the column vector of independently and identically distributed normal error

terms, to iteratively identify spatial clusters of farms we need first to specify the diagonal matrix ܹ  in

(2.2). For this purpose we use the bi-square kernel weighting function for the initial weights and the

Gaussian kernel weighting function for the iterative procedure (i.e. to update the weights), which have

the following forms

ݓ
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ܾ
ൗ ൱

ଶ

ቍ
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൫݀ܫ  < ܾ൯; ݓ
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where ݓ is the weight given to observation j in constructing the estimate for observation i, ݀ is the

Euclidean distance between observations i and j, .)ܫ ) is the indicator function that equals 1 if the

condition in parenthesis holds and b is the so-called bandwidth. The choice of the bandwidth value is

crucial: nearby observations of i are defined by the value of b that, therefore, determines which

observations receive weight in constructing the estimate for observation i. Moreover, the value of b

determines how rapidly the weights decline with distance. In general, higher values of b put more weight

on distant observations leading to results similar to those obtained by OLS. To solve the problem of

choosing an optimal bandwidth value, b୭୮୲, a cross-validation (CV) method has been proposed and still

currently used, which minimizes the overall residual sum of squares obtained when observation ݅is

deleted in forming its own forecasted value

ܾ௧ = minܸܥ = min∑ ൫ݕ− )ොஷݕ )ܾ൯
ଶ

ୀଵ (2.5)

(Fotheringham et al., 2002). Another important issue is that the bandwidth value can be defined as fixed

or variable. A fixed bandwidth presumes a fixed distance in which all the observations located at lower-

distances are taken into account for the neighborhood definition. On the contrary, a variable or adaptive

bandwidth assumes a fixed number of neighboring observations, so defining a k-nearest neighbor

approach. In spatial economic analyses it has been suggested to use an adaptive bandwidth (McMillen

and Redfearn, 2010). Thus, in this article we adopt an adaptive bandwidth and we define, for the used

kernel weighting function, the optimal variable bandwidth (b୭୮୲) by using the minimizing CV criterion

in (2.5). The kernel function used to calculate the bandwidth value for each data set is the same kernel

chosen to define the initial weights (i.e. the bi-square function). Moreover, we define the distance

measure as a simple Euclid distance between farms in space1.

Once obtained initial GWR estimates we can start the iterative procedure. The IGWR algorithm is based

on different steps. The first step starts with the definition of a starting weighting vector, ݓ
 = ൫݀ܭ ;ܾ൯,

which is a Bisquare kernel function of the form in (2.4) based on both the distance between two units in

space, ݀, and the optimal bandwidth value obtained by the combination of the model in (2.3) with the

1 The package GWmodel in R (Lu et al., 2014) was useful to obtain the optimal bandwidth values. We needed
only to specify an Euclid distance matrix, the used kernel function for the initial weights and the same model as in
(2.3).



criterion in (2.5). The initial parameter and variance estimates, ൫ߚመ
,ߪොఌ

൯, are then calculated by using the

GWR model in (2.1) and the production function in (2.3). From the second step and until the condition

݉ ݓหݔܽ
ି ଵ− ݓ

ห< ߱ ∀݆݅,݅≠ ݆holds, with ω a fixed small value, updated weights ݓ
 are calculated

for each iteration ݈as follows. At the same iteration t݈he GWR parameter estimates ൫ߚመ
,ߚመ

൯∀݆݅,݅≠ ݆

are compared by using the following quadratic forms
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where Σ୮ is the pooled variance-covariance matrix obtained as a weighted average of the two variance-

covariance matrices, i.e. Σ୮ = tൣr(W୧)Σ୧+ tr൫W୨൯Σ୨൧ tൣr(W୧) + tr൫W୨൯൧ൗ , and መߚ)
,ߚመ

) are (݇+ 1 )-

dimensional column vectors. The updated weights are then calculated as a product of the previous

weights with the updated ones,

ݓ
 = ൫݀ܭ 

 ;ܾ൯ܭ൫ܶ 
; ൯߬ (2.7)

where ݀
 = ݀ ݇/ in order to guarantee that further iterations do not decrease in the estimation

accuracy, whereas τ is a parameter that scales the value of ܶଶ


. In particular, the second factor in

equation (2.7) is equal to ܭ ቀܶ ଶ



; ቁ߬= ቀ−0.5൫ܶݔ݁ 
 ൯߬

ଶ
ቁ. The choice of τ is usually arbitrary and

depends on the weight given from researchers to the criteria in (2.6). The higher is the value of τ, the

higher is the sensitivity to structural changes and therefore the number of clusters over space. Generally,

a sensitivity analysis is required. Polzehl and Spokoiny (2004) found different default values by using

Monte Carlo simulations and showed that this value is a function of the α-value. Finally, in order to

stabilize the convergence procedure, the weights ݓ
 are then re-updated by averaging them with those

obtained in the previous step

෭ݓ
 = (1 − ෭ݓ(ߟ

ି ଵ + ݓߟ
 (2.8)

where ∋ߟ (0,1) is a control parameter (also called memory parameter in Polzehl and Spokoiny, 2004)

which is equal to 0.5.

2. An application to olive farms in Italy

We use the above technique to examine the production of olives in Italy. In the Mediterranean area, Italy

represents the central point of olive production, either in terms of history and environmental conditions,

and it ranks second in the world after Spain for olive-oil production. The Italian olive sector is still

characterized by a large number of small operations, more in detail Italy has the highest number of

holdings (776 000) with the smallest average size (1.3 ha) in the EU Mediterranean countries. Over time

the different microclimate conditions, soil formations and elevation have led to natural or man assisted

modifications (breeding and selection) of the olive tree into many location-specific varieties, each with

different productivity, agronomic needs and adaptability to irrigation and mechanization.2 While in the

2 Two main methods of olive growing can be distinguished: traditional processes, generally used in mountainous
or hilly areas which are not irrigated, and modern processes which involve elevated planting density, irrigation and
mechanization. Over the last 30 years, the Italian olive growers have moved from traditional olive groves to new (i)



case of arable crops, e.g. maize and oil seeds, local varieties have been widely substituted by industrial

global varieties, whose production response does not vary much over space, on the contrary in the case

of olive tree the local-specific varieties are still largely in use. The territorial anchorage of the production

of location-specific olive varieties is further enforced by social and marketing considerations since,

similarly to the case of wine and grapes, farmers choose the varieties to grow not only on the basis of

their agronomic characteristics (disease resistance, climate preferences, high productivity, etc.) but also

for their aptitude to preserve local knowledge (flavor, suitability for curing, etc.) and guarantee the

production of high quality oil.

From all these considerations it follows that the technology sets available to farms depend on the

characteristics of the physical, social and economic environment in which production takes place. In

other words, the underlying production technology is not the same for all olive growing farms, rather it is

location specific, and the group of farms sharing the same technology can be defined as local technology

cluster. The local olive production function followed by farmers operating in a territory results from the

choice of the locally-optimal technology from a given menu of technologies, as a consequence of a

process of localized technological change (Stiglitz and Atkinson, 1969; Nelson and Winter, 1982;

Antonelli, 2008; Acemoglu, 2015). This view is consistent with the evolutionary theories (Nelson and

Winter 1987, Dosi, 1988) according to which firms cannot be taken to operate on a single common

production function. These theories explain why permanent asymmetries exist across firms, in terms of

production technologies and quality of products (Dosi, 1988). External inputs and past accumulation of

skills and knowledge guide the creation of technological knowledge. The technology prevailing in the

local technology cluster is the efficient solution to the specific techno-economic problems experienced

by the firms operating in the cluster. This solution consists in specific families of recipes and routines,

and it is based on highly selected principles derived from natural sciences, jointly with specific rules

aimed at acquiring related new knowledge (Dosi and Nelson, 2013).

For example, in the case of olive trees farmers grow different cultivars that have different yields, aptitude

to the mechanization of the harvesting and input needs. As we mentioned before the decision to grow a

low-yielding or higher cost variety, is partly connected to the characteristics of the local natural

environment (climate, water, soils, etc.) and partly to the preservation of the local cultural heritage

(flavor and quality of oil, landscape, etc.). Under these circumstances it is very difficult, when not

impossible, to collect all the information needed to define the boundaries of the area within which a

specific technology results efficient. Since areas, hence groups, within which farms use the same

production technology, are not known a priori, then the meta-production function is no more useful. A

solution is offered by the application of the IGWR method, which allows us to identify local technology

clusters of farms, that is groups of farms that follow a similar local production econometric model, by

taking unobserved spatial heterogeneity explicitly into account.

medium-density plantation, adapted for mechanical harvesting; and (ii) high-density plantation adapted for full
mechanization and especially for continuous harvesting using straddle machines. In both models (traditional and
modern), the selection of varieties is fundamental to obtain the maximum productivity.



3. Data

This study relies on cross-sectional data collected by the 2012 Italian Farm Accountancy Data Network

(FADN) survey. The FADN sample is stratified according to criteria of geographical region, economic

size and type of farm. The field of observation is the total of commercial farms.3 The survey gathers

physical and structural data (i.e. location, crop areas, livestock numbers, labor force, etc.) and the

economic and financial data needed for the determination of incomes and business analysis of

agricultural holdings. It is worth noting that, starting from year 2009, the Italian FADN collects the

geographic longitude and latitude of the farm, in this way allowing us to use spatial econometric models

and, in our specific case, to account for farm spatial heterogeneity. Another advantage of the Italian

FADN is that the information on input use and production results are collected by activity. As a

consequence, differently from most of the previous SFA studies4, we do not need rely on data referred to

the whole farm production, hence we do not need to focus on farms highly specialized in olive growing.

The advantage of using information of farms either specialized and not specialized in olive growing is

that the regional samples are large enough to perform separate regional analysis.

The study focuses on three samples of olive-growing farms located respectively in the Marche (268)

region, Apulia (270) and Tuscany (317). The dependent variable in the production function is the olive

production measured in kilograms. The inputs included as explanatory variables are (a) land (measured

in hectares), including only the share of utilized agricultural area devoted to olive-tree cultivation; (b)

labor, comprising hired (permanent and casual) and family labor, measured in working hours; (c) capital,

proxied by the hours of mechanical work employed in olive growing and harvesting; (d) other

intermediate inputs including expenses for water, fertilizers, pesticides, fuel and electric power and other

miscellaneous expenses, measured in euros, augmented with the expenses for contract work.

4. Empirical results

Here we present the results of the application of the IGWR approach to three samples of olive growing

farms, the first referred to the Marche region, the second one to Tuscany and the third to Apulia.

We use the Cobb–Douglas (CD) functional form since the coefficients of this production function are

easy to interpret. Furthermore, the use of the CD function avoids the multicollinearity problem that arises

with more flexible functional forms such as the translog and the Fourier functional forms. In addition to

this, since our coefficients are local specific, flexibility is not an issue in our case.

For each regional sample we estimate a global model, a spatial global model, a model with spatially

varying parameters (IGWR) and a model with spatially varying parameters and spatial autocorrelation.

The optimal bandwidth values suggested by the Cross-validation (CV) criterion in (2.7) and used to fit

the models with spatially varying parameters are 174 for Marche, 261 for Tuscany and 78 for Apulia,

whereas the values of τ suggested by the sensitivity analysis performed on each sample of observations

3 In the FADN a commercial farm is defined as a farm that is large enough to provide a main activity for the
farmer and a level of income sufficient to support his or her family.

4 For example, in the case of olive production see Dinar et al. (2007) and Karagiannis (2009).



are 0.1, 0.01 and 0.001 for the Marche region, Tuscany and Apulia respectively. The fitted results are

reported in table 1-3, while the spatial technology clusters of olive growing farms identified by applying

the IGWR approach are mapped in figure 1. The method identified 7 clusters in the Marche region

(figure 1a), 4 in Apulia (figure 1c) and 2 in Tuscany (figure 1b).

We have computed the AIC statistics in order to select the model that fit the data best. The best model is

the one with the lowest AIC. Both in Marche and Tuscany the model with spatially varying coefficient

fits the data best, while in Apulia even if we find no evidence of spatial dependence the best fitting

model is the spatial model with spatially varying parameters. These results give rise to the hypothesis

that the effects of farm localization on production are mainly represented by heterogeneity in technology,

and not by the presence of spatial autocorrelation.

These results allow us to conclude that accounting for unobserved spatial heterogeneity is an important

issue when modeling the production function of olive growing farms. It is interesting to note that in all

three regions the parameter estimates for all inputs are statistically significant in the global model, while

in the model with spatially varying coefficients this is no longer true. For example, in the Marche region

the coefficient estimate associated with labor is statistically significant only in one cluster, while changes

in levels of labor do not have a statistically significant impact on olive production in the remaining

clusters. As for the other inputs, according to the global model a 1% increase in their use leads to

approximately a 0.18% increase in output, while the results of the IGWR model show that in three

clusters the output elasticity of other inputs is greater than 0.20%, while in other two clusters it is not

statistically different from zero. In other word the results of the global model provide misleading signals

since they fails to recognize the geographical variation in production technology.

Finally, in order to test the validity of our results, we overlaid the regional maps of the identified

technological clusters to the maps of olive varieties obtained on the basis of a priori information

available at the territorial level. It is very interesting to note that there is a high degree of overlapping

between these two map types. The results of this cross-validation test show that farm geographic

longitude and latitude can be used to proxy soil types, climate and variety variations, hence to account

for the spatial heterogeneity in technologies arising from the adaptation of production techniques to

variables that are not usually gathered by agricultural surveys at the farm level.

Conclusions

The article presents an empirical analysis of production function within the framework of heterogeneous

technology with specific attention to the role of spatial non-stationarity in the identification of the

production function and its impact on the choice of estimators. We suggest a new approach for the

simultaneous estimation and stationary test of the regression models, to see whether or not the model

parameters show to be spatially clustered and thus locally homogeneous.

The proposed partitioning algorithm is based on an iterative version of the geographically weighted

regression methods to identify groups of farms, which obey a common production function. The

proposed IGWR procedure explicitly allow for local parameter heterogeneity.



The framework is applied to estimate the production functions of olives on geocoded individual farm

data as collected by the FADN sample survey in 2012 in 3 Italian Regions. The empirical results

confirmed the existence of local technology clusters of farms, i.e. groups of farms that follow a similar

local production econometric model; therefore empirical analysis that fails to incorporate parameter

heterogeneity can produce misleading results. In our empirical analyses we always identify at least two

clusters of farms with significantly different regression parameters. Once partitioned the study area, we

observed that the spatial interaction between farms belonging the same cluster is not anymore significant,

giving rise to the hypothesis that the effects of farm localization on production technology are mainly

represented by heterogeneity, and not by the presence of spatial autocorrelation. The presence of these

different local production regimes is related to the existence of some latent, not observed factors that are

closely related to the spatial position of the observed farms as climate, soil types, varieties. A specific

feature of these factors is that they are locally approximately homogeneous, but they rapidly change as

soon as a natural, social or economic border is crossed. These findings are interesting since they show

the proposed IGWR method is able to capture the spatial heterogeneity in technologies arising from the

adaptation of production techniques to variables (e.g. the variety grown) that are not usually available at

the farm level.

The results are encouraging even if some additional research is needed. In particular, the conditions

under which the proposed partitions imply a better fit of the regression model, should be better

investigated. Finally, the proposed strategy performs very well with large datasets, but we need to

explore the computational burden when huge sample sizes are used.
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Figure 1. Spatial technology clusters of olive growing farms

Note: Bisquare kernel function for initial weights and Gaussian kernel function for the updated ones are

used. Adaptive bandwidths are based on the CV criterion: (a) ܾ
 = 174, (b) ܾ

 = 261, (c) ܾ
 =

78.



Table 1. Marginal Effects – Marche Region

Global Model
Model with spatially

varying parameters

Spatial Global

Model

Spatial Model with

spatially varying

parameters

Intercept -0.519*** - -0.086 -

Intercept (1) - -0.856** - -0.322

Intercept (2) - 0.257 - 0.270

Intercept (3) - -0.547 - -0.544

Intercept (4) - 0.440 - 0.471

Intercept (5) - 0.444 - 0.486

Intercept (6) - 0.776˙ - 0.771˙

Intercept (7) - 0.267 - 0.412

Land 0.433*** - 0.429*** -

Land (1) - 0.515*** - 0.500***

Land (2) - 0.499*** - 0.500***

Land (3) - 0.210* - 0.220**

Land (4) - 0.373*** - 0.372***

Land (5) - 0.882** - 0.870***

Land (6) - 0.729*** - 0.719***

Land (7) - 0.297*** - 0.298***

Labour 0.089* - 0.094* -

Labour (1) - -0.061 - -0.056

Labour (2) - 0.016 - 0.021

Labour (3) - 0.395** - 0.411***

Labour (4) - 0.064 - 0.065

Labour (5) - -0.113 - -0.101

Labour (6) - 0.172 - 0.160

Labour (7) - 0.029 - 0.007

Capital 0.062˙ - 0.064˙ -

Capital (1) - 0.144 - 0.154˙

Capital (2) - 0.125 - 0.120

Capital (3) - -0.089 - -0.094

Capital (4) - 0.098 - 0.096

Capital (5) - 0.069 - 0.063

Capital (6) - -0.230 - -0.209

Capital (7) - 0.164 - 0.180˙

Other inputs 0.179*** - 0.180*** -

Other inputs (1) - 0.230*** - 0.240***

Other inputs (2) - 0.187* - 0.185**

Other inputs (3) - 0.360** - 0.341**

Other inputs (4) - 0.186** - 0.185**

Other inputs (5) - 0.039 - 0.032

Other inputs (6) - -0.024 - -0.022

Other inputs (7) - 0.311*** - 0.311***

rho - - -0.168 -0.213

lambda - - 0.453˙ -0.442

AIC 290.215 279.002 292.169 282.016

Note: Asterisks ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.



Table 2. Marginal Effects – Tuscany Region
Global Model Model with spatially

varying parameters
Spatial Global
Model

Spatial Model with
spatially varying
parameters

Intercept -1.641*** - -1.478*** -
Intercept (1) - -2.791*** - -3.229***
Intercept (2) - 1.304* - 1.380**
Land 0.167*** - 0.168*** -
Land (1) - 0.108 - 0.119
Land (2) - 0.175*** - 0.166***
Labour 0.273*** - 0.281*** -
Labour (1) - 0.277* - 0.244
Labour (2) - 0.309*** - 0.327***
Capital 0.179*** - 0.176*** -
Capital (1) - 0.182˙ - 0.173˙
Capital (2) - 0.168** - 0.153**
Other inputs 0.337*** - 0.336*** -
Other inputs (1) - 0.570*** - 0.595***
Other inputs (2) - 0.281*** - 0.275***
rho - - -0.056 0.120
lambda - - -0.028 -0.974
AIC 565.735 560.494 569.472 562.319

Note: Asterisks ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Table 3. Marginal Effects – Apulia Region

Global Model Model with spatially
varying parameters

Spatial Global
Model

Spatial Model with
spatially varying
parameters

Intercept -1.318*** - 0.428 -
Intercept (1) - -2.230*** - 1.784
Intercept (2) - 0.836 - 0.905˙
Intercept (3) - 1.332* - 1.349*
Intercept (4) - 1.081 - 1.442*
Land 0.056˙ - 0.059˙ -
Land (1) - -0.033 - -0.031
Land (2) - 0.140˙ - 0.089
Land (3) - 0.033 - 0.047
Land (4) - -0.075 - -0.097
Labour 0.378*** - 0.412*** -
Labour (1) - 0.503*** - 0.509***
Labour (2) - 0.405** - 0.422*
Labour (3) - 0.236 - 0.235˙
Labour (4) - 0.564* - 0.399˙
Capital 0.217*** - 0.192*** -
Capital (1) - 0.009 - 0.013
Capital (2) - 0.297˙ - 0.324*
Capital (3) - 0.278* - 0.290**
Capital (4) - 0.153 - 0.081
Other inputs 0.346*** - 0.346*** -
Other inputs (1) - 0.582*** - 0.566***
Other inputs (2) - 0.221*** - 0.222***
Other inputs (3) - 0.373*** - 0.359***
Other inputs (4) - 0.319* - 0.543***
rho - - -0.369˙ -0.812
lambda - - 0.203 -2.005
AIC 524.231 514.591 524.947 504.679

Note: Asterisks ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.


