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Abstract

The objective of this paper is to compare land use models based on three different
proxies for agricultural land rent: farmers’ revenues; land price and shadow price
of land derived from a mathematical programming model. We estimate a land use
shares model of France at the scale of a homogeneous grid (8 km x 8 km). We
consider five land use classes: (1) agriculture, (2) pasture, (3) forest, (4) urban and
(5) other uses. We investigate the determinants of the shares of land in alternative
uses using economic, physical and demographic explanatory variables. Data on land
use is derived from the remote sensing database Corine Land Cover. We model
spatial autocorrelation between grid cells and compare the prediction accuracy as
well as the estimated elasticities between different model specifications. Our results
show that the three rent proxies give similar results in terms of prediction quality
of different models. Our results also show that including spatial autocorrelation in
land use models improve the quality of prediction (RMSE indicators). One of our
econometric land use models is used to simulate the effects of a nitrogen tax as well
as to project land use changes in France under two IPCC climate scenarios.
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1 Introduction

Land use and land use change are the main human pressures on the environment (Foley
and al., 2005). Some land use changes such as deforestation or overturning of permanent
pastures may have adverse effects on the environment such as: the decline of biodiversity
(Sala and al., 2000), the release of carbon into the atmosphere (Rhemtulla et al., 2009),
alteration of water cycles (Stevenson and Sabater, 2010) and loss of ecosystem services
(Schroter and al., 2005). Other land use changes such as the establishment of permanent
grassland or afforestation can store carbon in the soil and thus contribute the reduction
of greenhouse gas (GHG) emissions and to the preservation of the environment.

The empirical economic literature on land use has had an important growth in recent
years. Although each study has its own purpose, its data set and estimation methods,
all studies are based on a common economic theory of land use which assumes profit
maximization of landowners. The differences in rents associated with each use determine
the optimal one that the landowner will choose for his land. According to this theory, these
rents vary depending on land characteristics, including fertility (Ricardo, 1817) and its
location (Von Thünen, 1966). However, other factors could affect the land use decision for
a given plot. These include socio-economic factors, such as prices of production, and policy
variables, such as taxes or subsidies. Econometric studies on land use generally examine
the relationship between land use choices and a set of explanatory variables, namely the
rents of different land uses or proxies such as input and output prices, subsidies, soil and
climatic variables (slope, altitude, soil quality, temperature, precipitation, etc.) The land
rent is a rather complex notion and several concepts of economic rents had been advanced
in the literature 1.

As usually land use rents are not directly observed, most studies in the literature use
proxies of these rents. These approximations of land use rents can vary greatly from
one study to another. In general, the most frequently used proxies for the agriculture
and forestry include producers’ revenues, agricultural land prices, outputs or input prices,
yields, land quality and government payments (e.g. Wu and Segerson, 1995, Plantinga,
1996, Stavins and Jaffe, 1990, Plantinga and Ahn, 2002). The objective of this paper is to
compare land use models based on three different proxies for land rent from agriculture.
These are: (i) farmers’ revenues; (ii) land price; and (iii) shadow price of land derived
from a mathematical programming model (AROPAj). The first one, "Farmers’ revenues",
is the most common in the literature. Often, the data on this proxy is directly observed or
derived from agricultural census or surveys (Stavins and Jaffe, 1990; Plantinga and Ahn,
2002; Lubowski et al., 2008; Chakir and Le Gallo, 2013). Our second proxy, "Land price"
is generally assumed to be the net present value (NPV) of future land rents (Ricardo,
1817). Evidences from the literature show that this is not always verified (Clark et al.,

1See Randall and Castle (1985) for a detailed presentation on the concept of land rent
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1993; Gutierrez et al., 2007; Karlsson and Nilsson, 2013). The standard NPV formula
ignores the possibility of converting agricultural land to other uses. Ay et al. (2014a) use
this property2 to approximate land rents in the econometric model of their study on the
impacts of climate change on land use and common birds in France. Concerning our third
proxy, "Land shadow price", to the best of our knowledge, it has never been used in econo-
metric land use shares models thus far. These shadow prices correspond to the marginal
productivity of land estimated by a mathematical programming model of the European
Union agriculture. The economic supply-side model AROPAj (for detailed description see
Jayet et al., 2015) is based on the Farm Accountancy Data Network (FADN).

In order to compare the impacts of different agricultural rent proxies, we estimate land
use share models at the resolution of a homogeneous grid with 8km x 8km cells covering
the territory of metropolitan France. The land use classes considered are five: agricul-
ture, pastures, forestry, urban and other. Data on land uses is derived from the remote
sensing database Corine Land Cover (CLC 3). We model the spatial correlations between
land uses in neighbour grid cells. Most studies in the literature assume spatial indepen-
dence of land use choices. Some recent exceptions include: Ay et al. (2014b); Chakir and
Le Gallo (2013); Li et al. (2013); Sidharthan and Bhat (2012); Ferdous and Bhat (2012);
Chakir and Parent (2009). Incorporating spatial autocorrelation into land use models im-
prove prediction accuracy but could raise several issues related to econometric estimation,
hypothesis testing and prediction (Anselin, 2007; Brady and Irwin, 2011).

2 The Model

2.1 Land use share model

Following the lead given in the literature on land use change, we estimate in this pa-
per a land use share model. Such models have been widely employed in the literature:
Lichtenberg (1989), Stavins and Jaffe (1990), Wu and Segerson (1995), Plantinga (1996),
Miller and Plantinga (1999). The first step of the modelling procedure assumes that the
landowner derive the optimal land allocation from his profit-maximization problem. We
focus this paper on the landowner’s decision to allocate land to five possible uses: agri-
culture, pastures, forest, urban and other uses. As in Plantinga (1996) and Stavins and
Jaffe (1990) landowners allocate land to the use providing the greatest present discounted
value of profits. In the second step, and following the literature, we aggregate the optimal
allocations by individual landowners to derive the observed share of land in the grid cell
i in use k, denoted yki.

There exists a large literature on econometric land use models estimated on aggregate
2Also known as Ricardian approach, following (Mendelsohn et al., 1994).
3For more information: http://land.copernicus.eu/pan-european/corine-land-cover .
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data: Lichtenberg (1989), Stavins and Jaffe (1990), Wu and Segerson (1995), Plantinga
(1996), and Miller and Plantinga (1999) are the most significant papers. The underlying
micro-economic theory is identical but individual choices are aggregated in order to esti-
mate land use shares models instead of individual discrete choice models. In this paper
we use grid-level data, where shares are defined as the percent of total grid area devoted
to given uses. The observed share of land use k (k = 1, ..., K) in grid cell i (i = 1, ..., I)
is expressed as:

yki = pki + εki ∀i = 1, . . . , I, ∀, k = 1, . . . , K, (1)

where pki is the expected share of land allocated to use k in grid cell i. The observed
land allocation yki may differ from the optimal allocation due to random factors such as
bad weather or unanticipated price changes. These random events are assumed to have a
zero mean.

As in Wu and Segerson (1995) and Plantinga et al. (1999), we assume a logistic4

specification for the share functions as follows:

pki =
eβ
′
kXi∑K

j=1 e
β
′
jXi

(2)

where Xi are explanatory variables and β ′k measure the effect of explanatory variables
on the expected shares.

Following Zellner and Lee (1965), the natural logarithm of each observed share nor-
malized on a common share (here yKi) is approximately equal to:

ỹki = ln(yki/yKi) = β
′

kXi + uki for ∀i = 1, . . . , I, ∀, k = 1, . . . , K, (3)

where uki is the transformed error term.

2.2 Spatial autocorrelation

In the context of aggregated land use share models, spatial autocorrelation could result
from a structural spatial relationship among values of the dependent variable or a spatial
autocorrelation among error terms. The former is viewed as a fundamental characteris-
tic of spatial processes, which are characterized by potentially complex interactions, and
dependent structures among neighbouring values. On the other hand, spatial autocor-
relation due to a spatially correlated error structure is essentially a data measurement
problem. For example, it may arise from data measurement errors, in which the bound-

4The logistic share models are mainly used for three reasons: (i) they ensure that the predicted share
functions (strictly) lie in the interior of the zero-one interval, (ii) they are parsimonious in parameters
and (iii) they are empirically tractable thanks to the so-called log-linear transformation.
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ary of the spatial phenomena differs from the boundaries used for measurement, or from
omitted variables that are spatially correlated5.

An econometric model that fails to include spatial autocorrelation when the DGP6 is
spatial could be adversely affected by its omission (bias in the regression coefficients, in-
consistency, inefficiency, masking effects of spillovers, prediction bias). Several procedures
exist to statistically test for the presence of spatial dependence against the null hypothe-
sis of spatial independence Anselin (1988). The most commonly used measure for spatial
autocorrelation is Moran’s I statistic Moran (1948) which indicates the degree of spatial
association reflected in the data. Considering spatial autocorrelation in an econometric
model could be done in different ways by including spatially lagged variables, namely
weighted averages of observations for the "neighbours" of a given observation (Anselin,
1988). These spatially lagged variables could be: the dependent variable (spatial auto-
regressive model), explanatory variables (spatial cross regressive model) and the error
terms (spatial error model) or the combination of any of these options which gives a wide
range of spatial models (Elhorst, 2010).

We consider in this paper two specifications for the spatial autocorrelation: as an
additional regressor in the form of a spatially lagged dependent variable (spatial autore-
gressive model, SAR) and in the error structure (spatial error model, SEM ). The spatial
autoregressive model is appropriate when the focus of interest is the assessment of the
existence and strength of spatial interaction. This is interpreted as substantive spatial
dependence in the sense of being directly related to a spatial model (e.g., a model that
incorporates spatial interaction, yardstick competition, etc.)

The SAR model can be described as follows Anselin (1988):

ỹi = f(ỹ1, ..., ỹi−1, ỹi+1..., ỹn) (4)

This provides the following equation:

ỹ = ρWỹ +Xβ + ε (5)

W is an n×n spatial weight matrix and ρ is the spatial autoregressive parameter that
expresses the magnitude of interaction between grids.

The SEM takes into account the interactions between non-observed factors that affect
the agricultural land use conversion decision. The interactions in error terms can be
expressed as follows:

εi = f(ε1, ..., εi−1, εi+1..., εn) (6)
5See LeSage and Pace (2009) who provide motivations for regression models that include spatial

autoregressive processes.
6Data generating process.
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where εi is the spatial residual in the grid i and ε1, ..., εi−1, εi+1..., εn are spatial resid-
uals in the other grids.

ỹ = Xβ + ε

ε = λWε+ u (7)

The parameter λ expresses the interaction between residuals and u is an iid7 error
term such that u ∼ iid(0, σ2I).

We estimate the spatial error model (SEM) and spatial autoregressive model (SAR)
using the R package spdep (Bivand et al., 2013; Bivand and Piras, 2015). The spatial
neighbourhood matrix is obtained by triangulation of the centroids of the grid cells and
its values are consequentially row-weighted.

3 Data presentation

3.1 Land use data

The land use data is derived from the Corine Land Cover (CLC) database on the European
Union at the scale of 100 m x 100 m (1 ha) grid and for 2000. Land cover classes are
aggregated in five categories: agriculture, pastures, forest, urban and other. Table 11) in
Appendix A summarizes the rules applied for the aggregation of the land use classes. The
resulting map is given in Figure 1. Then, we calculate the share of each land use class
for each grid cell (8 km x 8 km), knowing that in each cell there are at most 6400 ha.
Land use shares are expressed as the sum of hectares of the same land use class divided
by the surface of the grid cell. Although these cells are generated as homogeneous, they
are altered due to the intersection with the actual French borders. For instance, grid cells
on coastlines are restrained only to their part on dry land.

3.2 Agricultural and forestry rent proxies

General information and descriptive statistics of the variables used in the study are sum-
marized in Table 1.

Farmers’ revenues Data on farmers’ revenues is provided by the European Union Farm
Accountancy Data Network (FADN) at the European NUTS 2 scale level. We focus on
the revenues from crop production (cereals, oleaginous and other field crops) and animal
breeding. Revenues from viticulture, horticulture and other perennial crops are excluded
because of the high profits per hectare and their limited area (Table 12 in Appendix A).

7Independent and identically distributed random variable.
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Figure 1: Corine Land Cover (CLC) data aggregated in five land use classes for the year
2000.

For instance, viticulture in France is covering only 1.5% of the metropolitan territory but
provides about 15% of the value in the agricultural sector8.

Land price Land prices are generally assumed to be the net present value (NPV) of
future land rents (Ricardo, 1817). Evidences from the literature show that this could be a
strong assumption as the standard NPV formula ignores the possibility of land conversion
to other than the agricultural use (Clark et al., 1993; Gutierrez et al., 2007; Karlsson
and Nilsson, 2013). In order to address this issue, Guiling et al. (2009) extend the NPV
formula. The most profitable conversion is land development (switch to urban use). In the
case of France, Cavailhes and Wavresky (2003) find that the immediate proximity to cities
is resulting in high development premiums which fall sharply when distance increases. In
land use models land prices are often used in the context of the hedonic approach to
climate change impacts assessment otherwise known as the Ricardian method proposed
initially by Mendelsohn et al. (1994) and focused solely on the agricultural use. Ay et al.
(2014a) use the Ricardian approach in order to assess the effects of climate change on
land use in France and consequently on common birds. Annual data on land prices is
provided by the statistical department of the French Ministry of Agriculture (Agreste) at
the scale of the French small agricultural region.

8FranceAgriMer, www.franceagrimer.fr .
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Land shadow price In this study we test as a proxy the land shadow price which, to
our knowledge, has not been used in statistical land use shares models thus far. Shadow
prices can capture the non-market value that farmers attribute to their production. We
use the values estimated by a mathematical programming model of European Union
agriculture applied to France. The economic supply-side model AROPAj (for a detailed
description see Jayet et al., 2015) is based on the FADN data and accounts for the Common
Agricultural Policy.

The economic agents of the model are representative farms grouped in farm types
maximizing their gross margin (revenues minus variable costs). For each farmer the only
publicly available information concerning its location is the FADN region in which she
operates. In order to maximize their profits, farmers in the model allocate their land
to different crops while respecting a total area constraint. It is the Lagrange multiplier
associated with this constraint that we use in the comparative study of agricultural returns
proxies. From microeconomic theory, we know that at the optimum this shadow price (or
dual value) should be equal to the agricultural rent9.

Shadow prices are used when no proper market values are available or when the ex-
isting ones are not taking into account some particularity of the goods as in the case of
traditional maize varieties in Mexico (Arslan, 2011). In the case of France, land rental
prices are administered by public authorities10 and thus the shadow price and the observed
rental prices do not coincide (Dupraz and Temesgen, 2012). Furthermore, agriculture is
a complex system where some of the products are consumed on-farm11 and, thus, not
valued on the market.

The data on the agricultural rent proxies are available at different scales and for
different years. Some aggregations were necessary in order to have the data at the same
scale. Thus, the farmers’ revenues and the land prices are averaged over a five and a six
years periods, respectively12. When information on land prices lacks for a given small
agricultural region, the mean value for the French département is used. The data on land
shadow prices from the AROPAj model is considered at its original scale, namely the
FADN region (corresponding to the NUTS 2 level).

9Agricultural rent is the remuneration of land as a factor of production. The equality between the
Lagrange multiplier associated with the total land constraint and agricultural rent results from the
application of the duality theorem to the profit maximization problem. Following this approach the
profit maximization problem is equivalent to the cost minimization problem. For a general description
see McFadden (1978).

10French Rural Code, Article L411-11. In some regions this regulation is circumvented and new tenants
are often obliged to pay under-the-counter former ones in order to obtain rights on land.

11For instance, manure could be used as a fertilizer on crops while some of the biomass produced could
be destined for animal feeding.

12Inflation estimates for the period are provided by the World Bank, http://data.worldbank.org/
indicator/NY.GDP.DEFL.KD.ZG .
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Forestry rent is approximated by the expected returns estimated by the partial-equilibrium
model FFSM++ (Caurla and Delacote, 2012; Caurla et al., 2013; Lobianco et al., 2014)
developed by the Forestry Economics Laboratory at the French Agricultural Research
Institute (INRA) in Nancy. The expected returns are calculated for 2006 at the scale
of the French administrative region (NUTS2) and for coniferous and broadleaved forests.
We use an average of these two values.

Both the AROPAj and the FFSM++ models dispose of biological modules. AROPAj
is partly coupled with the generic crop model STICS (Brisson et al., 2003, 2009) while
FFSM++ uses parameters (mortality and growth of trees) derived from statistical data.
Through their biological modules the two models can take into account the effects of
climate change (Leclère et al., 2013). Furthermore, the economic components of the
models allow also to simulate different price and policy scenarios13. In this paper we
assess the land use changes induced by the introduction of a tax on the mineral nitrogen
fertilizers used by farmers (Section 4.3). We also evaluate the effects of the policy in
the context of climate change based on the estimates provided by the biological and
economical components of AROPAj and FFSM++ (Section 4.4).

3.3 Demography

The approximation of the urban rent is done through the population density (in terms
of number of households per ha) and households revenues. Both indicators are provided
by the French statistical institute (INSEE), revenues are available at the scale of the
commune while the number of households is given for a regular 200 m x 200 m grid14.

3.4 Physical data

In the study we use also data on relief and soils.

Soils are represented by the data provided by the Joint Research Centre (JRC Panagos
et al., 2012) at the scale of 1:1000000 and further aggregated at the grid cell level. The
indicator for soil quality that we retained is soils’ texture classified in 4 levels. The worst
quality, level 1, is used as referent.

Relief is derived (altitude and slope) from the digital elevation model (DEM) GTOPO
available at the scale of 30 arc seconds (approximately 1 km). Only slope is introduced
in the model because of the high correlation between the slope and altitude.

13For instance, an obligatory set-aside clause increases the demand for low quality land and consequently
its rent.

14INSEE, http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&
page=donnees-detaillees/donnees-carroyees/donnees_carroyees_diffusion.htm .
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Variable Description Mean St. dev. Min Max
Land use

sag Share of agricultural use 0.438 0.276 0 1
spa Share of pastures 0.181 0.181 0 0.94
sfo Share of forests 0.262 0.22 0 0.989
sur Share of urban 0.053 0.097 0 0.99
sot Share of other uses 0.065 0.133 0 1

Source: CLC 2000
Scale: aggregated at 8 km x 8 km

Shadow price Land shadow price (ke/ha) 0.576 0.197 0 1.029
Source: AROPAj v.2 (2002)
Scale: NUTS 2

Agri revenue Farmers’ revenues (ke/ha) 0.651 0.153 0.19 0.975
Source: FADN, mean 1995-1999
Scale: NUTS 2 scale

Land price Price for arable land (ke/ha) 3.035 1.485 0 20.256
Source: Agreste, mean 1995-2000
Scale: French small agricultural re-
gion or département

For revenue Forestry revenues (e/ha) 65.295 34.279 0 133.915
Source: FFSM++, 2006
Scale: NUTS 2 scale

Pop revenues Households’ revenues (ke/ year/
household)

12.424 3.213 0 44.642

Source: INSEE, 2000
Scale: French commune

Pop density Households density (households/
ha)

5.541 2.973 2.75 140.131

Source: INSEE, 2010
Scale: 200 m x 200 m grid

Slope Slope (%) 4.363 6.211 0 44.2
Source: GTOPO 30
Scale: 30 arc sec ∼ 1 km

TEXT Soils’ texture classes 1 2 3 4
Number of cells 1180 4258 2859 525
Source: JRC, Panagos et al. (2012)
Scale: 1:1000000

Table 1: Summary statistics of land use shares and the explanatory variables.

10



4 Estimation results

In order to compare the estimations and to evaluate the gains associated with different
spatial autocorrelation specifications, three estimators are considered for each land use
shares model:

1. The pooled OLS which ignores spatial autocorrelation.

2. The SEM (Spatial Error Model) estimator which takes into account the autoregres-
sive spatial error autocorrelation

3. The SAR (Spatial Auto-Regressive model) which takes into account the autoregres-
sive spatial autocorrelation

We begin by estimating an Ordinary Least Squares (OLS) model. We, then, estimate
a Spatial Error Model (SEM) and Spatial Autoregressive Model (SAR). Each specification
(OLS, SEM, SAR) is estimated for the three proxies of agricultural land rents considered
(i) shadow price, (ii) farmers’ revenues, and (iii) prices of arable land and pastures. The
results are presented in Tables 13, 14 and 15. For each of the OLS models the Moran’s I
score is significant meaning that we reject the null hypothesis of no spatial autocorrelation.
The estimated spatial autocorrelation, λ for the SEM models and ρ for the SAR models,
are also significant.

The log-likelihood function value of the OLS models increases when the SEM or SAR
models are estimated. This is true for all land use equations and for all agricultural rent
considered. In order to decide whether it is the SAR or the SEM model that better
describes the data we use the classic LM-tests proposed by Anselin (1988) as well as the
robust LM-tests proposed by Anselin et al. (1996). Results of these tests are provided in
Table 16. Using the classic tests, both the hypothesis of no spatially lagged dependent
variable and the hypothesis of no spatially autocorrelated error term are rejected at five
per cent significance for all models. The robust LM test results show that both SAR and
SEM specifications are relevant for ln(pst/oth) and ln(agr/oth). Concerning the forest
land share, on the basis of robust LM tests the SAR model is more appropriate. For
urban use the SEM is more appropriate for the specifications with Land Prices and Agri
Revenue.

As for the OLS specification, the Agricultural vs Other use and the Urban vs Other
use models perform better in terms of explained variance with R2 close or superior to
40%. The other two models, Forest vs Other use and Pastures vs Other use, score
not as good, the R2 coefficients is lower than 20%. Population density and revenues are
significant and have the expected signs (positive) for the Urban vs Other model regardless
of the agricultural rent proxy employed and the model specification. Furthermore, the
coefficients for these two explanatory variables remain stable. These two findings are
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valid for the forestry revenues in the Forest vs Other use models. The SEM and SAR
specifications are notably improving the coefficients of determination and their results are
close. Thus, for the Agriculture vs Other use model, the R2 increases with about 25%,
for the Forest vs Other use and Pastures vs Other use models the increase is of more than
40% and for the Urban vs Other use the score is up with some 20%. In addition, the
results for these models seem to be independent of the agricultural proxy employed.

As regards the Agriculture vs Other use models, the parameters associated with land
shadow price is significant for all specifications.The parameter associated with agricultural
revenue is positive but only significant for the OLS model.Arable land prices’ impact on
the agricultural share is reported significant at the 10% confidence level for the OLS and
SEM models and at the 1% confidence level for the SAR model. The three proxies are
reported to have negative impact on the pastures’ share which is also significant for all
model specifications.

4.1 Elasticities

We calculate the elasticities for agricultural land share with respect to the agricultural
rent following the Equation 8. More details on the calculus of the elasticities’ Equation 8
are provided in Appendix B.

∂sag
∂Agr rent

∗ Agr rent
sag

= βagr_rent ∗ Agr rent (8)

Agr rent Model Min. 1st Qu. Median Mean 3rd Qu. Max St.Dev
Shadow price OLS 0 0.3166 0.3558 0.4183 0.4949 0.7478 0.143
Shadow price SEM 0 0.3766 0.4232 0.4975 0.5886 0.8895 0.170
Shadow price SAR 0 0.2164 0.2432 0.2859 0.3382 0.5111 0.098

Land price OLS 0 0.0976 0.1255 0.1381 0.168 0.8198 0.065
Land price SEM 0 0.1676 0.2156 0.2372 0.2884 1.408 0.111
Land price SAR 0 0.2835 0.3647 0.4014 0.488 2.382 0.188

Agri revenue OLS 0.07943 0.2338 0.2563 0.2715 0.3161 0.407 0.064
Agri revenue SEM 0.09455 0.2783 0.3051 0.3232 0.3763 0.4846 0.076
Agri revenue SAR 0.01576 0.04639 0.05085 0.05387 0.06272 0.08076 0.013

Table 2: Elasticities of agricultural land with respect to different agricultural rent proxies.

4.2 Predictions

The fitted values used in the models SEM and SAR are obtained thanks to the R package
spdep package. These estimates are made using the response variables which are available
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(Equations 5 and 7). As these variables are unknown when predictions are established,
we use Equations 10, 11 and 12. From a technical point of view, the point of departure
is Equation 3:

ỹk = β
′

kXk + uk ∀k = 1, . . . , K (9)

For the models ignoring spatial autocorrelation, estimated by OLS, the predictor for
the ith cell for equation k is simply:

ˆ̃y
OLS

ik = Xikβ̂k,OLS (10)

where Xik is the matrix of data for observation i in equation k and β̂k,OLS is the pooled
OLS estimator obtained for equation k.

In case of the SEM model allowing for spatial autocorrelation of error terms, the
predictor is similar as follows:

ˆ̃y
SEM

ik = Xikβ̂k,SEM (11)

where β̂k,SEM is the SEM estimator obtained for equation k.
In case of the SAR model the predictor is as follows:

ˆ̃y
SAR

ik = (I − ρ̂kW )−1Xikβ̂k,SAR (12)

where β̂k,SAR is the SAR estimator and ρ̂k is the estimated autocorrelation coefficient for
equation k.

Land Shadow price Land price Agri revenue
use OLS SEM SAR OLS SEM SAR OLS SEM SAR

1 s_ag 0.2265 0.1221 0.1268 0.2223 0.1206 0.1252 0.2232 0.1215 0.1260
2 s_fo 0.1891 0.1125 0.1169 0.1872 0.1116 0.1155 0.1911 0.1125 0.1168
3 s_ot 0.0978 0.0647 0.0643 0.0995 0.0647 0.0646 0.0998 0.0648 0.0646
4 s_pa 0.1906 0.0885 0.0884 0.1888 0.0876 0.0882 0.1909 0.0882 0.0886
5 s_ur 0.0632 0.0470 0.0504 0.0624 0.0474 0.0504 0.0614 0.0470 0.0503

Table 3: Normalized root-mean-square error for the different proxies and the three model
specifications.

4.3 Environmental policy simulations: nitrogen pollution from

agriculture

Since the Second World War, agricultural intensification has led to a significant increase in
food production in developed countries. Nevertheless, the high quantities of fertilizers and
pesticides employed are also sources of environmental issues namely soil erosion, water
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and air pollution, loss of biodiversity, etc. For instance, the use of fertilizers results in
three types of nitrogen pollution: (i) nitrate pollution of soils and water; (ii) nitrous oxide;
and (iii) ammonia atmospheric emissions (Bourgeois et al., 2014). Given the high nitrate
concentrations observed in French water bodies, a tax on nitrogen fertilizers can be used
as an instrument of environmental policies aiming at reducing the anthropogenic pressure
on the water resources. Furthermore, fertilizers are also associated with greenhouse gas
emissions (nitrous oxide) and, thus, can be targeted for the mitigation of climate change.

One of the major interests of mathematical programming models of agriculture is
the possibility to introduce different public policy scenarios as a set of parameters or
constrains. The model AROPAj, for instance, is taking into account the major animal
and crop activities observed in the European Union. These activities are parametrized
in details. For eight of the major crops15 dose-response functions are estimated (Leclère
et al., 2013) thanks to the crop model STICS (Brisson et al., 2003, 2009). These functions
define the response to nitrogen of the crops and serve as production functions. STICS
is also evaluating the nitrogen pollutants emissions so that pollution functions are fitted
and introduced in AROPAj (Bourgeois et al., 2014). This methodology allows us to test
the reaction of farmers in terms of quantity of nitrogen fertilizer used and the resulting
pollutant emissions when there is a price shock. If a tax per unit of nitrogen is set up this
could be regarded as a price shock.

Assuming a price of about 1 Euro per kg of nitrogen content in fertilizers, we test two
nitrogen tax policies. In the first case we increase the price by 50% and in the second one
by 100%16. Such a policy is reducing the profitability of agriculture (ceteris paribus, no
price feedback is considered) and consequently the land’s shadow price (Figure 2). Using
the econometric land use models presented above, we can evaluate the effects of the tax in
terms of land use change (LUC). The results are summarized in Tables 5, 6, 7 and maps
are provided in the Appendix E. In Table 4 we present the emission abatement per ha and
the change in agricultural area following the introduction of the taxation policies (OLS
estimates). As the results show, the impact of the policy is reinforced because not only
the pollutants emissions per ha are reduced (intensive margin) but also the total number
of ha in agricultural use (extensive margin). The coefficient associated with the shadow
price of land for the urban use under the SAR specification is negative and significant.
For this model, the estimated land use share for urban is greatly increased at the expense
of the other uses.

15Durum and common wheat, maize, barley, soybean, rapeseed, potatoes and sugar beet.
16Jayet and Petsakos (2013) simulate numerous tax levels and Common Agricultural Policy scenarios

using the AROPAj model
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Figure 2: Land shadow price in the BAU case and under nitrogen taxation policy schemes.

Policy scenario Nitrates Nitrous oxide Agr. area (%)
per ha (%) per ha (%) OLS SEM SAR

BAU 100.00% 100.00% 100.00% 100.00% 100.00%
Tax 50% 86.39% 75.06% 97.42% 98.07% 93.92%
Tax 100% 77.22% 59.23% 95.39% 96.53% 89.25%

Table 4: Emission abatement and change in agricultural area.

4.4 Adaptation and mitigation of climate change

Land use change is one of major sources of greenhouse gases with 12.2% of the total
emissions in 2005 (Herzog, 2009) and as such it is one of the causes for climate change.
Nevertheless, land use change can also result from climate change as means of economic
adaptation. The methodology proposed for the study of the climate induced land use
change is summarized in Figure 3. The biological modules of the two mathematical mod-
els, AROPAj and FFSM++, allow the simulation of climate change scenarios where the
switch to other crops and tree species is taken into account. We evaluate here two IPCC
emissions scenarios A2 (pessimistic) and B1 (optimistic). For the land shadow price we
use the results from Leclère et al. (2013) based on the ECHAM5 model17. Concerning for-
est rents they are based on the simulations from the ARPEGE Model of Meteo-France18.
The projections of the population and revenues are from INSEE (2010) and Center for
International Earth Science Information Network (CIESIN, 2002). We also evaluate the
effects of two climate change mitigation policies, namely the two nitrogen input tax levels
presented in Section 4.3, in the context of the IPCC SRES scenarios.

The predicted impacts of climate change on land use using the OLS model are reported
in Table 8. We present the impacts of climate change on the land use changes in ha as
well as in percent. Results show that the impacts of CC on agriculture, pasture and forest
are almost similar for A2 and B1 scenarios. Under the two scenarios agricultural land use
share increases by 20%, pastures decrease by 50% and forests decrease by 22% to 25%.
Results for urban land are contrasted as there is an increase in urban area by 7.6% under
A2 scenario and a decrease by 4% under B1 scenario. Results also show that a tax on

17http://www.mpimet.mpg.de/en/wissenschaft/modelle/echam/echam5.html
18http://www.cnrm-game.fr/spip.php?article124&lang=en
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Tax=+50%
Land share changes
ag -0.04 -0.018 -0.014 -0.014 -0.01 0.126
pa -0.046 0.004 0.007 0.008 0.011 0.031
fo -0.073 0.004 0.006 0.006 0.008 0.029
ur -0.003 0 0 0.001 0.001 0.015
ot -0.02 0 0 0 0 0.007

Land use change in ha
ag -255.3 -115.1 -89.53 -87.41 -57.61 25.33
pa -10.14 25.57 44.74 48.33 69.76 197.9
fo -51.01 25.57 38.29 38.11 51.17 185.1
ur -19.2 0 0 3.499 6.372 95.96
ot -127.7 0 0 -2.796 0 19.15

Tax=+100%
Land share changes
ag -0.077 -0.033 -0.026 -0.025 -0.018 0.12
pa -0.044 0.007 0.013 0.014 0.019 0.055
fo -0.069 0.007 0.01 0.011 0.014 0.054
ur -0.006 0 0 0.001 0.001 0.026
ot -0.037 0 0 -0.001 0 0.006

Land use change in ha
ag -491.4 -204.9 -160 -156.4 -108.8 24.12
pa -8.844 44.75 76.82 87.62 121.6 351.5
fo -95.86 44.78 63.96 67.23 89.42 344.6
ur -31.98 0 0 6.139 6.398 166.3
ot -236.3 0 0 -4.975 0 38.3

Table 5: Nitrogen tax simulations (OLS estimates).

nitrogen allows to mitigate the impacts of CC on land use change. A tax that implies a
100% increase in the price of fertilizers leads to a lesser reduction in forest area (15% to
18% instead of 22% and 25%).

The estimates of the SEM and SAR model (Tables 9 and 10) are both predicting and
increase in cropland are by some 34% while pastures and forests are reduced by 62% and
24-28% respectively.

The spatial dimension of our land use model allows us to present more precisely the
geographical impacts of CC. See Figures 10, 13 and 16.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Tax=+50%
Land share changes
ag -0.026 -0.014 -0.011 -0.011 -0.008 0.115
pa -0.088 0.006 0.009 0.009 0.011 0.027
fo -0.02 0.001 0.002 0.001 0.003 0.048
ur -0.003 0 0 0.001 0.001 0.013
ot -0.006 0 0 0 0 0.006

Land use change in ha
ag -165.9 -89.43 -70.33 -66.77 -44.83 23.12
pa -18.98 38.38 51.22 54.49 70.36 172.6
fo -127.7 5.607 12.77 6.013 19.15 57.5
ur -12.8 0 0 3.774 6.386 83.11
ot -6.398 0 0 1.283 0 31.92

Tax=+100%
Land share changes
ag -0.051 -0.025 -0.021 -0.019 -0.015 0.11
pa -0.084 0.011 0.016 0.016 0.02 0.053
fo -0.04 0.001 0.003 0.002 0.005 0.043
ur -0.004 0 0 0.001 0.001 0.022
ot -0.005 0 0 0 0.001 0.012

Land use change in ha
ag -325.5 -153.6 -127.9 -119.7 -89.6 22.11
pa -16.9 70.24 96.22 99.28 128 338.7
fo -255.4 6.396 19.19 9.626 25.62 102.2
ur -25.6 0 0 7.029 6.401 140.7
ot -12.78 0 0 3.043 6.388 57.45

Table 6: Nitrogen tax simulations (SEM estimates).
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Tax=+50%
Land share changes
ag -0.113 -0.028 -0.013 -0.017 -0.001 0.116
pa -0.001 0 0 0.003 0.001 0.111
fo -0.049 0 0 0 0 0.021
ur -0.115 0.002 0.012 0.015 0.024 0.079
ot -0.065 0 0 -0.001 0 0.001

Land use change in ha
ag -721.3 -179 -76.79 -109 -6.398 31.8
pa -0.26 0 0 16.43 6.392 710.2
fo -312.4 0 0 1.264 0 134.2
ur -274.2 6.402 70.37 95.9 153.5 504.3
ot -415.5 0 0 -4.879 0 6.397

Tax=+100%
Land share changes
ag -0.201 -0.051 -0.022 -0.031 -0.002 0.094
pa 0 0 0 0.005 0.001 0.202
fo -0.091 0 0 0 0 0.037
ur -0.094 0.003 0.02 0.027 0.044 0.149
ot -0.122 0 0 -0.001 0 0.002

Land use change in ha
ag -1283 -320.1 -134.4 -192.8 -12.78 18.89
pa 0 0 0 31.55 6.404 1289
fo -580.2 0 0 2.283 0 236.5
ur -510.2 12.8 121.6 167.5 275.2 951.2
ot -779.8 0 0 -8.805 0 12.79

Table 7: Nitrogen tax simulations (SAR estimates).
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Bio-ecologic models:

Crops and forestry response to climate change in
terms of yields, forest productivity and mortality

Economic models: AROPAj and FFSM++

Estimate of the agricultural and forestry
rents, crops and species land allocation

Econometric estimation of climate induced land use change

Links different land uses: pastures,
agriculture, forestry, urban and other

Figure 3: Methodology for the assessment of the climate induced land use change.

Scenario s_ag s_pa s_fo s_ur s_ot

Land use change in %
CC=A2 20 % -50.7 % -25.2 % 7.6 % 46 %
CC=A2, t=50% 16.8 % -45.4 % -21.4 % 10.9 % 44.5 %
CC=A2, t=100% 14.3 % -40.8 % -18.3 % 13.4 % 42.8 %

CC=B1 19.8 % -50.2 % -21.8 % -4.2 % 36.3 %
CC=B1, t=50% 16.8 % -45 % -18.2 % -1.5 % 34.5 %
CC=B1, t=100% 14.4 % -40.4 % -15.2 % 0.6 % 32.8 %

Land use change in 1000 ha
CC=A2 5979 -3477 -3431 187 742
CC=A2, t=50% 5038 -3115 -2908 269 716
CC=A2, t=100% 4268 -2797 -2492 331 690

CC=B1 5936 -3448 -2969 -104 585
CC=B1, t=50% 5040 -3088 -2471 -37 556
CC=B1, t=100% 4302 -2770 -2073 14 528

Table 8: Simulations of climate change and nitrogen tax (OLS estimates).
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Scenario s_ag s_pa s_fo s_ur s_ot

Land use change in %
CC=A2 33.9 % -62 % -28.3 % 11.2 % 7.2 %
CC=A2, t=50% 30.4 % -57.9 % -24.6 % 14.7 % 6 %
CC=A2, t=100% 27.6 % -54.3 % -21.7 % 17.3 % 4.8 %

CC=B1 33.8 % -61.6 % -25 % -1 % 0 %
CC=B1, t=50% 30.4 % -57.6 % -21.5 % 1.8 % -1.3 %
CC=B1, t=100% 27.7 % -54 % -18.7 % 4 % -2.6 %

Land use change in 1000 ha
CC=A2 9104 -5513 -4015 268 157
CC=A2, t=50% 8162 -5151 -3493 350 132
CC=A2, t=100% 7393 -4833 -3076 412 105

CC=B1 9061 -5484 -3553 -23 0
CC=B1, t=50% 8164 -5124 -3055 44 -29
CC=B1, t=100% 7426 -4806 -2658 95 -57

Table 9: Simulations of climate change and nitrogen tax (SEM estimates).

Scenario s_ag s_pa s_fo s_ur s_ot

Land use change in %
CC=A2 34.3 % -62.2 % -27.4 % 9.1 % 1.2 %
CC=A2, t=50% 30.8 % -58.2 % -23.7 % 12.5 % 0.1 %
CC=A2, t=100% 27.9 % -54.6 % -20.7 % 15.1 % -1 %

CC=B1 34.1 % -61.9 % -24.1 % -2.8 % -5.6 %
CC=B1, t=50% 30.8 % -57.9 % -20.6 % -0.1 % -6.8 %
CC=B1, t=100% 28 % -54.3 % -17.7 % 2 % -8 %

Land use change in 1000 ha
CC=A2 9172 -5580 -3842 222 28
CC=A2, t=50% 8231 -5218 -3320 304 2
CC=A2, t=100% 7461 -4900 -2903 366 -24

CC=B1 9129 -5551 -3380 -69 -129
CC=B1, t=50% 8233 -5190 -2882 -2 -158
CC=B1, t=100% 7494 -4873 -2485 49 -186

Table 10: Simulations of climate change and nitrogen tax (SAR estimates).
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5 Conclusion and perspectives

The objective of this paper was to compare land use models based on three different
proxies for agricultural land rent: farmers’ revenues; land price and shadow price of land
derived from a mathematical programming model. We estimated a land use shares model
of France at the scale of a homogeneous grid (8 km x 8 km). We consider five land
use classes: (1) agriculture, (2) pasture, (3) forest, (4) urban and (5) other uses. We
investigated the determinants of the shares of land in alternative uses using economic,
pedoclimatic and demographic explanatory variables. We model spatial autocorrelation
between the grid cells and compare the prediction accuracy as well as the estimated
elasticities between different model specifications.

Our results show that the three rent proxies give similar results in terms of prediction
quality of different models. Our results also show that including spatial autocorrelation
in land use models improve the quality of prediction (RMSE indicators). We use the
estimated models to simulate the impact of an input-based tax on fertilizers in terms of
land use change. We simulate two tax levels: increase in nitrogen price by 50% and by
100%. Results show very heterogeneous regional disparities with a national decrease of
agricultural area by 0.77 millions hectare and 1.4 million hectares and an increase of 0.42
million hectares and 0.77 million ha in pasture for the 50% tax and 100% respectively19.

We also used our econometric land use models to project land use in France under
two IPCC climate change scenarios (A2, B1). Results show that under climate change
cropland area is mostly influenced, increasing by 6 million hectares under both A2 and
B1 scenarios. Pasture areas fall by 3.4 million under both scenarios while forest areas
decrease by 2.9 million under B1 and by 3.4 million hectare under A2. Our methodology
allows us to take into account the autonomous adaptation capacity of farmers and forest
managers in terms of possible switch in crops, tree species and management practices.

19OLS estimates.
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Appendix A Data

Land Cover class CLC value LU class
1 Artificial Surfaces 1, ..., 11 Urban
2 Agricultural Areas 12, ..., 17 Agriculture

and 19, ..., 22
2.3 Pastures 18 Pastures
3 Forest and Semi Natural Areas 23, 24 and 25 Forest
3.2.1 Natural grasslands 26 Pastures
3.2.2 Moors and heathland 27 Other
3.2.3 Sclerophyllous vegetation 28 Other
3.2.4 Transitional woodland-shrub 29 Other
3.3 Open spaces with little or no vegetation 30, ..., 34 Other
4 Wetlands 35, ..., 39 Other
5 Water bodies 40, ..., 44 Other

Table 11: Extract from the CLC classification and the corresponding LU aggregation.

Appendix B Elasticities

Calculus for the elasticities.
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Agricultural activity Profit before tax Average farm surface
(1000 euros) (ha)

Cereals and protein crops 24.1 68
Horticulture 30.7 7
Wine under geographical label 52,9 12∗
Other wine 13.1 12∗
Fruits and others 10.5 13
Bovine (milk) 28.8 58
Bovine (meat) 24.2 46
Bovine (mixed) 33.1 75
Sheep and other 17.6 25
Pig, poultry and other 36.6 34
Mixed farming 27.0 48
∗ Average for viticulture in general

Table 12: Average farmers’ profits for 2005 per agricultural activity. The data on farms’
size in hectares is for 2000. Source: Agreste, French Ministry of agriculture.
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Appendix C Models estimates

Tables 13, 14 and 15 present the estimated parameters for the three agricultural rent
proxies under the different model specifications.
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Table 13: Regional dual

Dependent variable:

ln(pst/oth) ln(agr/oth) ln(for/oth) ln(urb/oth)

OLS spatial spatial OLS spatial spatial OLS spatial spatial OLS spatial spatial
error autoregressive error autoregressive error autoregressive error autoregressive

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 1.928∗∗∗ 2.207∗∗∗ 0.508∗∗∗ 1.504∗∗∗ 2.339∗∗∗ 0.477∗∗∗ 2.536∗∗∗ 1.896∗∗∗ 0.739∗∗∗ −4.919∗∗∗ −4.180∗∗∗ −2.342∗∗∗
(0.254) (0.493) (0.178) (0.215) (0.408) (0.166) (0.204) (0.377) (0.161) (0.215) (0.375) (0.185)

rdual02_me −1.138∗∗∗ −1.029∗∗ −1.147∗∗∗ 0.727∗∗∗ 0.864∗∗ 0.497∗∗∗ −0.434∗∗ 0.307 −0.297∗∗ 0.086 0.299 −0.404∗∗∗
(0.214) (0.514) (0.150) (0.181) (0.416) (0.144) (0.172) (0.382) (0.133) (0.181) (0.369) (0.147)

revfor_mean 0.027∗∗∗ 0.018∗∗∗ 0.023∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.007∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.014∗∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.015∗∗∗
(0.001) (0.003) (0.001) (0.001) (0.003) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

men_ha −0.134∗∗∗ −0.094∗∗∗ −0.307∗∗∗ −0.139∗∗∗ −0.099∗∗∗ −0.274∗∗∗ −0.173∗∗∗ −0.117∗∗∗ −0.324∗∗∗ 0.081∗∗∗ 0.122∗∗∗ 0.150∗∗∗
(0.014) (0.012) (0.009) (0.011) (0.012) (0.009) (0.011) (0.011) (0.008) (0.011) (0.012) (0.010)

rev00_mean −0.122∗∗∗ −0.021 −0.098∗∗∗ 0.091∗∗∗ 0.075∗∗∗ 0.161∗∗∗ 0.058∗∗∗ 0.051∗∗∗ 0.122∗∗∗ 0.315∗∗∗ 0.279∗∗∗ 0.403∗∗∗
(0.013) (0.016) (0.009) (0.011) (0.014) (0.008) (0.010) (0.014) (0.008) (0.011) (0.015) (0.009)

slope −0.056∗∗∗ −0.062∗∗∗ −0.066∗∗∗ −0.292∗∗∗ −0.258∗∗∗ −0.341∗∗∗ −0.058∗∗∗ −0.033∗∗∗ −0.053∗∗∗ −0.218∗∗∗ −0.217∗∗∗ −0.244∗∗∗
(0.007) (0.013) (0.005) (0.006) (0.011) (0.005) (0.006) (0.010) (0.004) (0.006) (0.010) (0.005)

TEXT2 1.563∗∗∗ 0.428∗∗∗ 2.035∗∗∗ 1.696∗∗∗ 0.635∗∗∗ 2.232∗∗∗ 0.021 0.053 0.030 1.011∗∗∗ 0.462∗∗∗ 1.323∗∗∗
(0.118) (0.111) (0.081) (0.100) (0.104) (0.077) (0.095) (0.099) (0.028) (0.100) (0.110) (0.084)

TEXT3 2.479∗∗∗ 0.817∗∗∗ 3.393∗∗∗ 2.647∗∗∗ 1.168∗∗∗ 3.470∗∗∗ 0.721∗∗∗ 0.290∗∗ 0.911∗∗∗ 1.683∗∗∗ 0.827∗∗∗ 2.036∗∗∗
(0.125) (0.129) (0.086) (0.106) (0.120) (0.083) (0.100) (0.114) (0.058) (0.106) (0.126) (0.089)

TEXT4 2.934∗∗∗ 1.044∗∗∗ 4.317∗∗∗ 2.883∗∗∗ 1.403∗∗∗ 4.063∗∗∗ 0.669∗∗∗ 0.197 0.649∗∗∗ 1.516∗∗∗ 0.570∗∗∗ 1.583∗∗∗
(0.188) (0.177) (0.128) (0.159) (0.166) (0.122) (0.151) (0.158) (0.108) (0.159) (0.175) (0.133)

Moran’s I 0.567∗∗∗ 0.456∗∗∗ 0.458∗∗∗
λ 0.792∗∗∗ 0.731∗∗∗ 0.714∗∗∗ 0.644∗∗∗
ρ 0.779∗∗∗ 0.704∗∗∗ 0.705∗∗∗ 0.612∗∗∗

N 8822
R2 0.182 0.629 0.63 0.403 0.657 0.657 0.133 0.491 0.493 0.38 0.578 0.57
Log Lik. -23704.86 -20892.41 -20848.63 -22230.67 -20325.95 -20285.2 -21752.48 -19910.07 -19878.68 -22223.33 -20923.09 -20956.42

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Land prices

Dependent variable:

ln(pst/oth) ln(agr/oth) ln(for/oth) ln(urb/oth)

OLS spatial spatial OLS spatial spatial OLS spatial spatial OLS spatial spatial
error autoregressive error autoregressive error autoregressive error autoregressive

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 1.605∗∗∗ 2.082∗∗∗ 0.449∗∗∗ 1.909∗∗∗ 2.753∗∗∗ 0.524∗∗∗ 2.495∗∗∗ 2.392∗∗∗ 0.764∗∗∗ −4.995∗∗∗ −4.344∗∗∗ −2.508∗∗∗
(0.217) (0.356) (0.144) (0.185) (0.305) (0.143) (0.174) (0.282) (0.117) (0.184) (0.290) (0.159)

tl00 −0.390∗∗∗ −0.270∗∗∗ −0.428∗∗∗ 0.053∗ 0.090∗ 0.153∗∗∗ −0.231∗∗∗ −0.138∗∗∗ −0.247∗∗∗ 0.129∗∗∗ 0.195∗∗∗ 0.156∗∗∗
(0.032) (0.056) (0.022) (0.027) (0.049) (0.021) (0.026) (0.046) (0.020) (0.027) (0.047) (0.023)

revfor_mean 0.030∗∗∗ 0.020∗∗∗ 0.026∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.006∗∗∗ 0.017∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.016∗∗∗
(0.001) (0.003) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

men_ha −0.128∗∗∗ −0.092∗∗∗ −0.297∗∗∗ −0.138∗∗∗ −0.099∗∗∗ −0.276∗∗∗ −0.169∗∗∗ −0.115∗∗∗ −0.317∗∗∗ 0.078∗∗∗ 0.119∗∗∗ 0.145∗∗∗
(0.013) (0.012) (0.009) (0.011) (0.012) (0.009) (0.011) (0.011) (0.008) (0.011) (0.012) (0.010)

rev00_mean −0.092∗∗∗ −0.016 −0.065∗∗∗ 0.092∗∗∗ 0.074∗∗∗ 0.150∗∗∗ 0.078∗∗∗ 0.058∗∗∗ 0.144∗∗∗ 0.302∗∗∗ 0.270∗∗∗ 0.383∗∗∗
(0.013) (0.016) (0.009) (0.011) (0.015) (0.008) (0.010) (0.014) (0.008) (0.011) (0.015) (0.010)

slope −0.041∗∗∗ −0.061∗∗∗ −0.049∗∗∗ −0.297∗∗∗ −0.260∗∗∗ −0.347∗∗∗ −0.050∗∗∗ −0.034∗∗∗ −0.045∗∗∗ −0.222∗∗∗ −0.220∗∗∗ −0.247∗∗∗
(0.007) (0.013) (0.005) (0.006) (0.011) (0.005) (0.006) (0.010) (0.004) (0.006) (0.010) (0.005)

TEXT2 1.603∗∗∗ 0.445∗∗∗ 2.070∗∗∗ 1.685∗∗∗ 0.625∗∗∗ 2.216∗∗∗ 0.042 0.056 0.051 1.001∗∗∗ 0.453∗∗∗ 1.314∗∗∗
(0.117) (0.111) (0.080) (0.100) (0.104) (0.077) (0.094) (0.099) (0.100) (0.110) (0.084)

TEXT3 2.511∗∗∗ 0.842∗∗∗ 3.415∗∗∗ 2.661∗∗∗ 1.158∗∗∗ 3.461∗∗∗ 0.748∗∗∗ 0.302∗∗∗ 0.942∗∗∗ 1.662∗∗∗ 0.813∗∗∗ 1.993∗∗∗
(0.124) (0.129) (0.086) (0.106) (0.120) (0.083) (0.100) (0.114) (0.046) (0.106) (0.126) (0.089)

TEXT4 3.015∗∗∗ 1.066∗∗∗ 4.378∗∗∗ 2.858∗∗∗ 1.392∗∗∗ 4.033∗∗∗ 0.711∗∗∗ 0.205 0.690∗∗∗ 1.496∗∗∗ 0.558∗∗∗ 1.570∗∗∗
(0.187) (0.177) (0.128) (0.159) (0.166) (0.122) (0.150) (0.158) (0.104) (0.159) (0.175) (0.133)

Moran’s I 0.562∗∗∗ 0.457∗∗∗ 0.453∗∗∗ 0.38∗∗∗
λ 0.789∗∗∗ 0.732∗∗∗ 0.71∗∗∗ 0.643∗∗∗
ρ 0.775∗∗∗ 0.704∗∗∗ 0.702∗∗∗ 0.61∗∗∗

N 8822
R2 0.193 0.629 0.63 0.403 0.657 0.657 0.14 0.491 0.493 0.381 0.578 0.57
Log Lik. -23645.51 -20883.08 -20840.54 -22236.85 -20326.42 -20283.39 -21715.63 -19905.85 -19872.08 -22212.19 -20914.75 -20953.39

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: Agri revenue

Dependent variable:

ln(pst/oth) ln(agr/oth) ln(for/oth) ln(urb/oth)

OLS spatial spatial OLS spatial spatial OLS spatial spatial OLS spatial spatial
error autoregressive error autoregressive error autoregressive error autoregressive

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 1.782∗∗∗ 2.305∗∗∗ 0.501∗∗∗ 1.756∗∗∗ 2.668∗∗∗ 0.557∗∗∗ 3.397∗∗∗ 2.783∗∗∗ 1.035∗∗∗ −5.476∗∗∗ −4.603∗∗∗ −2.581∗∗∗
(0.254) (0.518) (0.169) (0.215) (0.420) (0.128) (0.202) (0.383) (0.135) (0.214) (0.377) (0.184)

gmnvh00 −1.159∗∗∗ −1.450∗∗ −1.400∗∗∗ 0.417∗ 0.497 0.083 −2.305∗∗∗ −1.227∗∗ −2.324∗∗∗ 1.243∗∗∗ 1.160∗∗ 0.697∗∗∗
(0.271) (0.698) (0.179) (0.229) (0.553) (0.215) (0.499) (0.167) (0.228) (0.479) (0.190)

revfor_mean 0.031∗∗∗ 0.022∗∗∗ 0.028∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.005∗∗∗ 0.020∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.015∗∗∗ 0.015∗∗∗
(0.001) (0.003) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

men_ha −0.137∗∗∗ −0.094∗∗∗ −0.311∗∗∗ −0.137∗∗∗ −0.098∗∗∗ −0.272∗∗∗ −0.174∗∗∗ −0.116∗∗∗ −0.322∗∗∗ 0.081∗∗∗ 0.122∗∗∗ 0.148∗∗∗
(0.014) (0.012) (0.009) (0.011) (0.012) (0.009) (0.011) (0.011) (0.008) (0.011) (0.012) (0.010)

rev00_mean −0.123∗∗∗ −0.020 −0.097∗∗∗ 0.095∗∗∗ 0.076∗∗∗ 0.165∗∗∗ 0.072∗∗∗ 0.056∗∗∗ 0.136∗∗∗ 0.305∗∗∗ 0.276∗∗∗ 0.393∗∗∗
(0.013) (0.016) (0.009) (0.011) (0.015) (0.008) (0.010) (0.014) (0.008) (0.011) (0.015) (0.009)

slope −0.054∗∗∗ −0.062∗∗∗ −0.064∗∗∗ −0.295∗∗∗ −0.259∗∗∗ −0.343∗∗∗ −0.061∗∗∗ −0.036∗∗∗ −0.056∗∗∗ −0.216∗∗∗ −0.216∗∗∗ −0.241∗∗∗
(0.007) (0.013) (0.005) (0.006) (0.011) (0.005) (0.005) (0.010) (0.004) (0.006) (0.010) (0.005)

TEXT2 1.543∗∗∗ 0.423∗∗∗ 2.010∗∗∗ 1.700∗∗∗ 0.633∗∗∗ 2.230∗∗∗ −0.038 0.041 −0.030 1.045∗∗∗ 0.474∗∗∗ 1.344∗∗∗
(0.118) (0.111) (0.080) (0.100) (0.104) (0.077) (0.094) (0.099) (0.100) (0.110) (0.084)

TEXT3 2.436∗∗∗ 0.813∗∗∗ 3.349∗∗∗ 2.673∗∗∗ 1.167∗∗∗ 3.488∗∗∗ 0.696∗∗∗ 0.286∗∗ 0.885∗∗∗ 1.692∗∗∗ 0.838∗∗∗ 2.024∗∗∗
(0.125) (0.129) (0.085) (0.106) (0.120) (0.083) (0.100) (0.114) (0.045) (0.106) (0.126) (0.089)

TEXT4 2.907∗∗∗ 1.036∗∗∗ 4.280∗∗∗ 2.885∗∗∗ 1.401∗∗∗ 4.058∗∗∗ 0.571∗∗∗ 0.184 0.547∗∗∗ 1.572∗∗∗ 0.588∗∗∗ 1.624∗∗∗
(0.188) (0.177) (0.127) (0.159) (0.166) (0.122) (0.150) (0.158) (0.100) (0.159) (0.175) (0.133)

Moran’s I 0.567∗∗∗ 0.457∗∗∗ 0.449∗∗∗ 0.378∗∗∗
λ 0.792∗∗∗ 0.732∗∗∗ 0.71∗∗∗ 0.642∗∗∗
ρ 0.779∗∗∗ 0.704∗∗∗ 0.701∗∗∗ 0.61∗∗∗

N 8822
R2 0.181 0.629 0.63 0.403 0.657 0.657 0.143 0.491 0.493 0.382 0.578 0.57
Log Lik. -23709.75 -20892.24 -20848.73 -22237.04 -20327.71 -20285.76 -21698.72 -19907.44 -19870.24 -22208.62 -20920.5 -20955.95

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16: Lagrange miltiplier tests

Models
ln(pst/oth) ln(agr/oth) ln(for/oth) ln(urb/oth)

Proxy LM Test Statistic df p-value Statistic df p-value Statistic df p-value Statistic df p-value

Shadow price

LMerr 8402.81 1 0 5502.83 1 0 5508.71 1 0 3824.11 1 0
LMlag 8593.49 1 0 5513.07 1 0 5642.74 1 0 3674.2 1 0
RLMerr 46.38 1 0 173.39 1 0 6.04 1 0.014017401 194.62 1 0
RLMlag 237.05 1 0 183.63 1 0 140.07 1 0 44.71 1 0
SARMA 8639.86 2 0 5686.46 2 0 5648.77 2 0 3868.82 2 0

Land prices

LMerr 8256.74 1 0 5513.64 1 0 5402.61 1 0 3817.44 1 0
LMlag 8432.28 1 0 5529.6 1 0 5533.84 1 0 3652.69 1 0
RLMerr 52.54 1 0 174.19 1 0 7.84 1 0.0051083418 204.61 1 0
RLMlag 228.07 1 0 190.15 1 0 139.07 1 0 39.86 1 3e-10
SARMA 8484.82 2 0 5703.79 2 0 5541.68 2 0 3857.3 2 0

Agri revenue

LMerr 8422.24 1 0 5510.55 1 0 5301.49 1 0 3785.84 1 0
LMlag 8612.21 1 0 5524.85 1 0 5468.63 1 0 3629.37 1 0
RLMerr 46.31 1 0 173.59 1 0 2.85 1 0.0912817067 196.27 1 0
RLMlag 236.28 1 0 187.89 1 0 169.99 1 0 39.8 1 3e-10
SARMA 8658.52 2 0 5698.44 2 0 5471.49 2 0 3825.65 2 0
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Appendix D Predicted land use shares

Figure 4: Observed land use shares (left pane) and predicted (OLS model in the middle
and SEM on the right). Proxy for the agricultural rent: shadow price.
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Figure 5: Observed land use shares (left pane) and predicted (OLS model in the middle
and SEM on the right). Proxy for the agricultural rent: farmers’ revenues.
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Figure 6: Observed land use shares (left pane) and predicted (OLS model in the middle
and SEM on the right). Proxy for the agricultural rent: agricultural land and pastures
prices.
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Appendix E Land use shares and nitrogen input tax

Figure 7: Predicted (via OLS) land use without tax (left), with 50% tax (middle) and
with 100% tax (right) on the mineral nitrogen input. Proxy for the agricultural rent:
shadow price.
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Figure 8: Predicted (via SEM) land use without tax (left), with 50% tax (middle) and
with 100% tax (right) on the mineral nitrogen input. Proxy for the agricultural rent:
shadow price.
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Figure 9: Predicted (via SAR) land use without tax (left), with 50% tax (middle) and
with 100% tax (right) on the mineral nitrogen input. Proxy for the agricultural rent:
shadow price.
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Appendix F Land use shares under CC A2, B1

Figure 10: Predicted (via OLS) land use under CC scenarios B1 and A2. Proxy for the
agricultural rent: shadow price.
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Figure 11: Predicted (via SEM) land use under CC scenarios B1 and A2. Proxy for the
agricultural rent: shadow price.
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Figure 12: Predicted (via SAR) land use under CC scenarios B1 and A2. Proxy for the
agricultural rent: shadow price.
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Appendix G Land use shares under CC A2, B1, N tax

Figure 13: Predicted (via OLS) land use under CC scenarios B1 and A2 and 50% N tax.
Proxy for the agricultural rent: shadow price.
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Figure 14: Predicted (via SEM) land use under CC scenarios B1 and A2 and 50% N tax.
Proxy for the agricultural rent: shadow price.
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Figure 15: Predicted (via SAR) land use under CC scenarios B1 and A2 and 50% N tax.
Proxy for the agricultural rent: shadow price.
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Figure 16: Predicted (via OLS) land use under CC scenarios B1 and A2 and 100% N tax.
Proxy for the agricultural rent: shadow price.
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Figure 17: Predicted (via SEM) land use under CC scenarios B1 and A2 and 100% N tax.
Proxy for the agricultural rent: shadow price.
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Figure 18: Predicted (via SAR) land use under CC scenarios B1 and A2 and 100% N tax.
Proxy for the agricultural rent: shadow price.
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