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1. Introduction 

Water, food and energy (WFE) are strongly interconnected: each depends on the other for a lot of 

aspects, spanning from guaranteeing access to services, to environmental, social and ethical impact 

issues, as well as economic relations.  

The development, use, and waste generated by demand for these resources drive global changes and 

create concerns for resource scarcity. To date, a new approach to the concept of sustainable 

development is emerging and a joint analysis of these three areas is needed. “Demand for water, 

food and energy is expected to rise by 30-50% in the next two decades, while economic disparities 

incentive short-term responses in production and consumption that undermine long-term 

sustainability. Shortages could cause social and political instability, geopolitical conflict and 

irreparable environmental damages. Any strategy that focuses on one part of the WFE relationship 

without considering its interconnections risks serious unintended consequences” (World Economic 

Forum, 2011).  

In the last years international organizations have organized several conferences to raise awareness 

of the WFE nexus (IISD 2011, footnote p.6) and some studies have addressed this issue trying to 

provide a theoretical integrated view aimed at understanding how to tackle these complex 

relationships when designing policies and taking appropriate actions (Bazilian et al. 2011, Elobeid 

et al. 2013, Howells et al. 2013). These studies have analyzed the technical connection that exists 

between the three elements in order to highlight the need for a joint policy aimed at ensuring a 

sustainable development.  

From an economic point of view, there are still very few analyses that utilize empirical approaches 

to validate recent theoretical literature (Peterson et al. 2014, Curmi et al. 2013). This area of study is 

clearly wide and an economic analysis of the link aimed at understanding the interactions and 

correlations on a global scale is still needed.  

An empirical analysis on the nexus should need economic data which are not available for water, 

since it is not treated as a commodity, and consequently there are no specific information to 

economically measure the water at global level. This means that it is very difficult to give an 

economic dimension to water and every analysis of economic nature must be addressed by 

narrowing the field according to a specific approach. In this study we therefore address this issue 

taking a specific lens to investigate the WFE relationship, i.e. the lens of financial concerns. 

Indeed, the financial theory states that the more the financial components are correlated the greater 

is the possibility that shocks propagate between sectors. Therefore, taking the financial perspective 
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has the important advantage to highlight the strength of these relations and their dynamics to better 

understand if and how shocks are transmitted from one sector to the others. 

Within this framework, the aim of our paper is to empirically analyze the correlation and the 

volatility spillovers between variables representing the financial component of water, food and 

energy. A good understanding of the origins and drivers of volatility and cross market correlation is 

crucial because it can help policy makers in taking the proper measures to mitigate the potential 

correlations across the use of these resources which may create future undesirable shocks to the 

world and domestic economy.  

Taking into account that water, food and energy are inextricably interlinked around the world, the 

nexus approach needs to be addressed on a global scale, but at the same time we also know that 

actions must be locals. Therefore, considering that different areas in the World have different 

degree of financial market integration, we focus both on global scale and on different geographical 

areas such as Europe, North America, Latin America and Asia.  

To perform the analysis, we use a multivariate GARCH model with Dynamic Conditional 

Correlation (Engle, 1982, 2002; Engle and Kroner, 1995), which appears the most proper 

econometric methodology to study the shock transmissions, the volatility spillover effects and the 

dynamics of conditional volatility between markets.  

Water is proxy by equity indexes provided by Datastream that represent the performance of the 

industry involved in water business both at global and local level, such as World overall, Europe, 

North America, Latin America and Asia.  

For the food and energy sectors we use two sub-indexes of S&P GS-Commodity Index, respectively 

the S&P Agriculture-Livestock Index and the S&P Energy Index. The rationale for the choice of 

these two variables is that these commodity indexes have gained increasing importance within 

financial market by commodity index traders and therefore can be viewed as a financial asset that 

can be appropriately analyzed in relation with water index. Indeed, as well as for water index, such 

commodity indexes constitute a benchmark for a large amount of financial products with a real-

asset exposure; the commodity index swaps, exchange traded funds (ETFs) and exchange traded 

notes (ETNs). Typically, hedge funds, pension funds, and other large institutions purchase these 

financial instruments relating to agricultural commodities with the aim of diversifying their 

portfolios. 

We use daily data spanning from November 2001 to May 2013. The timeframe covers the 2008 

economic and financial crises and allows us to assess whether it influenced the relationship between 

the sectors. 
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The novelty in this work is twofold. Firstly, the paper focuses on a topic of great relevance from an 

economic, environmental and ethical perspective, as recently outlined by many international 

organizations. The complex interactions and policy implications that consider all three sectors 

together need more work in order to effectively support decision-making. To the authors’ 

knowledge no previous study has investigated the WFE relationship using a financial lens to 

understand economic spillover between the three sectors. Secondly, it performs the first 

econometric analysis of the financial relationship among these three sectors using a Dynamic 

Conditional Correlation model that permits studying in a dynamic framework the evolution of the 

indexes relationships and detect times of high and low correlation between the sectors. 

The paper is organized as follows: Section 2 focuses on issues related to the WFE nexus, Section 3 

presents the empirical framework, Section 4 presents the data, Section 5 reports the results, Section 

6 discusses the main conclusions. 

 

2. The water- food-energy nexus 

Population growth, changes in lifestyles, increasing prosperity are putting rising pressures on 

resources. According to international organizations – such as the FAO, the International Food 

Policy Research Institute IFRI and the International Energy Agency IEA – by 2030 the demand for 

food, energy and water is expected to rise by 30-50%. 

Resources are scarce and shortages could impact on communities and cause social and political 

instability, geopolitical conflict, environmental degradation. Consequently, in order to satisfy such 

an increasing demand many efficiency improvements for both development and implementation 

need to be achieved: new sources for food, changes in water use, more efficient mix of energy 

production systems. 

Improvements require not only research and developments investments and funds, but also an 

integrated approach since water, food and energy are strongly interrelated. Indeed, agriculture and 

food both require large amount of water and energy in all the production stages (Ercin and 

Hoekstra, 2014); energy production needs water as well as bio-resources; water extraction and 

distribution requires energy. Bazilian et al. (2011) clearly and exhaustively identify the descriptive 

elements of the WEF nexus. Among them:  

- many billions of people are without access to any or all the three areas (quantity or quality or both. 

Lack of access to modern fuels or technologies for cooking/heating; lack of access to safe water; no 

improved sanitation; people chronically hungry due to extreme poverty; lack of food security); 

- all three areas have rapidly growing global demand; 
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- all have resources constraints; 

- all have different regional availability and variations in supply and demand; 

- all have strong interdependencies with climate change and the environment. 

Given those interrelations, any improvement strategy that focuses on water, food and energy 

without considering their nexus risks unintended negative consequences. For example, the use of 

biofuel reduces vehicle emissions, but at the same time, it may impact worldwide availability of 

food and lead to higher agricultural prices (Peri and Baldi, 2010). Likewise, shale gas extraction can 

reduce the use of fossil fuels and is cleaner-burning than oil and coal; nevertheless, hydraulic 

fracturing requires large amount of water and this reduces the availability of water for other uses. 

Moreover, the fluid injected into the subsurface contains chemical additives that can contaminate 

surrounding areas.  

Those are clearly trade-offs that policy makers have to think about when assessing planning for 

investments, actions and policies. The water, food and energy nexus needs global governance and 

integrated response strategies. 

 

3. The Dynamic Conditional Correlation approach  

In order to allow for interdependencies of volatilities across WFE markets we apply a multivariate 

GARCH (MGARCH) model with the conditional variance assumed to be VARMA (Ling and 

McAler, 2003) and with the dynamic conditional correlation (DCC) specification of Engle (2002) 

for the analysis of dynamic covariances and correlation across markets. This approach has been 

shown to be more useful when studying volatility spillover mechanisms than univariate models that 

do not allow for a cross-market volatility spillover effect which is likely to occur with increasing 

market integration. One of the main advantages of this model is that it permits exploring the shock 

transmissions, the volatility spillover effects and the dynamics of conditional volatility between 

series. Moreover this model provides meaningful estimates of the unknown parameters with less 

computational complication of  other multivariate specifications (Hammoudeh et al. 2009, Tse and 

Tsui 2002).  

In MGARCH approach we model the mean equation, the variance equation and the time 

relationships as follows. 

We use a VAR system in the mean equation to allow for autocorrelation and cross correlation in the 

returns. To let a shock in one index to affect the variance of the others in the system we model the 

variance equation to be vector autoregressive moving average-GARCH (Ling and McAleer, 2003). 



5 

Finally, to increase model flexibility for studying over time evolution of the indexes relationships 

we use dynamic conditional correlation (DCC) model of Engle (2002).  

In the multivariate GARCH we use the following mean equation specification (Silvennoinen and 

Teräsvirta, 2008): 

 

titj

n

j
ijiti RbR ,1,

1
, εα ++= −

=
∑

                                                                                                                 (1) 

tititi vh ,
2

1

,, =ε
                                                                                                                                         (2) 

 

where: i is index of the investigated sectors; n is the total number of sectors (for WFE nexus n=3); 

Ri,t is the return calculated by first log difference of ith price index at time t; εi,t is a random error 

term of the mean equation with conditional variance hi,t; and vi,t is the innovation that is distributed 

as an i.i.d random vector.  

Information criteria are used for the lag length selection for VAR in the mean equation. Based on 

AIC information criteria, in all the models tested the number of lag selected for the VAR systems is 

equal to one. 

The variance term is specified as follows (Ling and McAleer, 2003): 
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Equation (3) is a generalization of the Bollerslev (1990) specification which accommodate for 

interdependencies of volatility across indexes. hi,t is the conditional variance at time t, hj,t-1 represent 

the own past variance when j=i while, when j≠i it denotes past conditional variance of the indexes 

in the system.  
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The analysis of dynamic covariances and correlation across markets is carried out using dynamic 

conditional correlation (DCC) by Engle (2002) that is a generalized version of the constant 

conditional correlation (CCC) model by Bollerslev (1990). This representation is one of the most 

widely-used in financial analysis (see Bauwens et al. 2006 for a review) and more recently in 

energy finance (Lanza et al., 2006; Sadorsky, 2012; Hammoudeh et al. 2013). 
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The specification of Engle’s DCC model is as follows: 

 

Ht = Dt Rt Dt               (4) 

 

Where Ht is the conditional covariance matrix; Dt is a n x n diagonal matrix of conditional, time 

varying, standardized residuals estimated in a first step by univariate GARCH models; Rt is the n x 

n time varying correlation matrix with the following form1: 
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Conditionally to the estimated Dt in a second step the correlation component Qt , that is a weighted 

average of a positive definite and a positive semidefinite matrix, is estimated with the following 

equation: 
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where Q0 is the unconditional correlation matrix of the standardized residual epsilon, θ1 and θ2 are 

the parameters that respectively indicate the impact of past shocks on current conditional correlation 

and the impact of the past correlations. The model is mean reverting as long as θ1 + θ2 <1. The 

dynamic conditional correlation coefficient ρI,j,t , that are typical elements of Qt, are calculated as in 

equation 7: 
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In the empirical application the model is estimated using quasi maximum likelihood estimator 

(QMLE) by BFGS algorithm. t statistics are calculated using robust estimate of the covariance 

matrix.  

For the specific purpose of this study we specify a MGARCH with n=3. 

                                                           
1 In Constant Conditional Correlation models  Rt=R, with R time invariant. 
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4. Data  

We use daily data spanning from November 2001 to May 2013 obtained from Datastream. For 

water component we use equity indexes that provide liquid and tradable exposure to the main 

companies from around the world that are involved in the water related businesses. Data on 

geographic water equity indexes are from Datastream too and represent the performance of the 

major industry involved to water sector for a given area (Maxwell 2009, 2013). Specifically the data 

used are for Europe, North America, Latin America, and Asia. For agriculture and energy sectors 

we used two sub-indexes of S&P GS-Commodity Index. These indexes are a proxy for the level of 

nearby commodity prices, for Agriculture-Livestock and Energy. Specifically the S&P GSCI 

Agriculture and Livestock Index comprises the following index components: Wheat, Corn, 

Soybeans, Cotton, Sugar, Coffee, Cocoa, Feeder Cattle, Live Cattle, and Lean Hogs2. While the 

S&P GSCI Energy Index comprises WTI Crude Oil, Brent Crude Oil, RBOB Gas, Heating Oil, Gas 

Oil and Natural Gas. Both the indexes are calculated primarily on a world production weighted 

basis, and comprise the principal physical commodities that are the subject of active, liquid futures 

markets . The weight of each commodity in the index is determined by the average quantity of 

production as per the last five years of available data. All indexes are “capitalization-weighted”, that 

is the components are weighted according to the total market-value of their outstanding shares.  

Figure 1 shows trend for Water index for World and for the other four areas considered. All the 

series show an increasing trend until the end of 2007 then slipped down to be followed by a new 

growth but distinct differences are present between the areas.  

[insert figure 1] 

Asia index has more than quintupled during the first six years, but then its value drops during the 

financial crisis. Afterwards the index grows again very intensely until it reaches the 2007-level. 

Energy and agriculture follow similar trends although they have become fairly distinguished in 

recent years. North America water index increases considerably crisis whereas Europe index shows 

poor performances after 2011. Figure 2 reports Agriculture and Energy indexes trends. The 

graphical representation suggests that the two series follow an increasing trend until the crisis, both 

reaching unprecedented heights in the middle of 2008 and subsequently still declining with 

remarkable speed.  

[insert figure 2] 

                                                           
2 As states the Waterfootprint organization (www.waterfootprint.org) animal products generally have a larger water 

footprint than crop products. That’s why we utilize an index comprising both agriculture and livestock products instead 
of only agriculture products. 
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After this period indexes level grew again at different rate but only agricultural has reached and 

exceeded past levels.  

Table 1 shows the descriptive statistics of continuously compounded daily returns for each series.  

[insert table 1] 

The t-statistics indicate that the mean is statistically significant only for Asia Water index whereas 

the other indices’ means are statistically insignificant from zero. Noticeably, Water indexes returns 

display a stronger amount of kurtosis than Agricultural and Energy indexes. Skewness is negative 

for all the indexes, but Asia. The higher the kurtosis coefficient is above the normal level, the more 

likely future returns will be either extremely large or extremely small. This fact suggests the need to 

account for the presence of volatility in our models confirming the idea of using an Autoregressive 

Conditional Heteroskedasticity (ARCH) approach. 

 

5. Empirical results and comments 

We first test for the existence of ARCH effects in the series and then we proceed with the estimate 

of a multivariate GARCH model, with the mean equation modelled as a VAR system. Table 2 

reports results of multivariate GARCH estimate for all the investigated areas.  

[insert table 2] 

The estimates of these models can provide measures of the significance of the short-run persistence, 

ARCH effects of past shocks, own (ai,i) and among sectors (ai,j) and the long-run persistence, 

GARCH effects of own (bi,i) and spillover (bi,j) past volatilities. In the table coefficient a1,3 

represents the short term volatility spillover from Energy (3) to Water (1) while b2,3 represents the 

long term volatility spillover from Energy (3) to Agricultural (2). 

The first part of the table shows the mean equations estimates and the second the variance equation 

estimates. Overall, most of the coefficients are significant for World and for the others geographic 

areas. In the following we will focus our discussion only on the significant terms.  

In variance equation ARCH effects are mostly significant. Own conditional effects (ai,i) are always 

positive and bigger than cross effects as expected, with Water coefficient (ranging from 0.055 to 

0.074) that shows the strongest shocks dependence. Agriculture and Energy markets highlight a 

smaller own dependence (from 0.035 to 0.042) and a very similar own news sensitivity between 

areas. 

Inter sector short run/shock spillovers of the three indexes show different patterns between 

geographical areas and between each other. Agriculture to Water coefficient (a1,2) is significant only 

in World equation whereas no substantial effect is present at local level. Positive spillover effects 
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are present in particular in North and Latin America. It is interesting to note that shocks from Water 

to Agriculture and from Agriculture to Energy are always negative, suggesting that water volatility 

tone down agricultural volatility and then energy.  

Examining market interactions in terms of the conditional second moment can provide better insight 

into the dynamic price relationships of markets. Long term persistence expressed by GARCH 

coefficients (bii) is still always present with all the coefficients significant. For each i, the estimated 

bii values are bigger than their respective estimated aii values, ranging from 0.802 to 0.957. This 

suggests that past own volatilities are more important in predicting future volatility than past shocks 

or news in all three sectors. There is also evidence of cross volatility effects between all the three 

sectors with many bij coefficients significant at the 1% or 10% level. Also in this case World and 

Americas show the best performance in statistical terms. 

Specifically, cross volatility in Water-Agriculture is always positive in both directions of causality 

except for Asia. Instead, Water-Energy links show negative cross-GARCH coefficients implying 

therefore a volatility cooling effect between these sectors. For what that concerns the relation 

Agriculture to Energy and vice versa, still the results show past volatility spillover for the most of 

the areas. Specifically there is a negative cross-volatility from Energy to Agriculture and from 

Energy to Water although there is also a volatility cooling effect from Water to Energy.  

The Ljung-Box diagnostic test is reported in Table 3. This test tests the null hypothesis that there is 

no autocorrelation up to order 12 and 20 for standardized residuals; the null hypothesis up to order 

12 and 20 are always not rejected. 

[insert table 3] 

Overall results confirm that models perform statistically well. ARCH and GARCH coefficients 

highlight that even considering the entire period, volatility spillover exists between water, 

agricultural and energy sector; this result is itself relevant since it confirms the existence of a nexus 

in the short and long term.  

Nevertheless, table 2 reports results considering very long period which includes numerous events 

and circumstances. To better fit with the purpose of this analysis we also report the graphs of the 

time varying dynamic conditional correlations (figure 3) that plot the time series for each of the 

geographical area studied for the following pairs of series: agriculture/energy, water/agriculture and 

water/energy. These figures show how effects evolve over time and what is the relationship 

between price indexes in function of both the history of variance (volatility) that each series as 

undergone and correlation between them. Overall, the dynamic conditional correlation is positive. 

At World level a very strong break is evident in the middle of 2008, when the economic and 
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financial crises occurred. After this moment, a strong upwards pattern is evident for each pair of 

correlations and for the most of geographical areas.  

[insert figure 3] 

Agriculture and Energy relationship evolve with a similar pattern among the different areas 

investigated and shows the highest levels of correlation in Asia and North America.  

Dynamics of Water-Energy and Water-Agriculture correlation show a similar trend too, 

highlighting in some case the effect of the crisis on the volatility transmission. Specifically Water 

and Energy show a very similar dynamics between Europe and Latin America and between North 

America and Asia. Similar distinction is outlined by the dynamic conditional correlation between 

Water and Agriculture. In Europe and Latin America both the DCCs sharply increased after the 

global economic downturn exceeding level 0.5, whereas this evidence becomes less noticeable in 

North America and Asia where correlations reach level around 0.3 and 0.2 respectively. 

When analyzing the World as a whole, the differences in the lines that show the DCCs are much 

less, and this strengthens the idea that the water issue is much more substantial in a global 

perspective. After the crisis a strong upwards pattern is evident for each pair of correlation. 

Specifically, in few weeks the conditional correlation between water and energy jumps from -0.06 

up to 0.60; similarly, the conditional correlation between water and agriculture increases from -0.03 

to 0.59. Interestingly, before the financial crisis, the correlation between agriculture and energy is 

always stronger than the correlation of the two variables with water. Moreover, the water and 

energy relationship shows negative values only in few and short windows. Conversely, after the 

global economic downturn this evidence becomes unclear since in many periods the dynamic 

conditional correlation between water and energy and water and agriculture are higher than the 

correlations between agriculture and energy. This highlights the rising relevance of water issues 

within the nexus. 

In Figure 4 we synthesize all the previous information by constructing a graph that tries to express, 

for each of geographical area, the nexus between water energy and food. Specifically, for all the 

investigated area the graph describes the mean value of the three dynamic conditional correlation 

(agriculture-energy, water-agriculture and water-energy).  

[insert figure 4] 

During the first period analyzed, from the end of November till the half of September 2008, the 

nexus between water, agriculture and energy moves on the same level for all the investigated areas 

with a mean DCC ranging from 0.11 to 0.16; in the subsequent period, all the values more than 

doubled reaching a mean level of 0.42 at a world scale with peaks greater than 0.6. Also in this case 

the World line almost always shows the highest correlations. These results are in line with recent 
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economic literature (e.g., Buyuksahin, et al., 2010; Silvennoinen and Thorp, 2010; Tang and Xiong, 

2010; Daskalaki and Skiadopoulos, 2011) that provides evidence that commodity returns and stock 

returns’ correlation has gone up substantially during the recent financial crisis, and this despite the 

traditional negative correlation between commodity and equity returns documented by Greer 

(2000), Gorton and Rouwenhorst (2006), and Erb and Harvey (2006). 

The huge amount of money invested by index trader in commodity markets, especially during and 

after the 2008 financial crisis, has created a new link between commodities and stock market and 

so, as outlined in our empirical exercise, also between agriculture, energy and water volatility. 

These results are in line with King and Wadhwani (1990), that argue that the strength of 

international market links depends mainly on volatility, with stronger links in periods of high 

volatility and weaker correlation between price changes when volatility declines. The new global 

scenario, characterized by even more volatile markets, and the rising importance of these resources 

for humanity, highlight the relevance of a policy framework that accounts for the new concept of 

sustainable development, also considering the relevance of both technical and economic nexus 

between water, food and energy. 

 

6. Conclusion  

The new lines upon which is based the concept of sustainable development aim to analyze jointly 

water, energy and food. In this context, policy makers must operate by selecting those policy 

instruments acted to maintain a balance between the three components in order to avoid unwanted 

and distorted results. 

Indeed, a policy that gives priority to the support of energy development will be reflected in a 

decline in the availability of water for other uses (e.g. agricultural) with a consequent increase in the 

prices of agricultural commodities and an increase in costs for water and sanitizing. This would 

result in higher costs for the community. Similarly, a policy based on priority support to agriculture 

and devoting the major water resources to this primary sector may cause competition for human use 

and for energy products with a consequent increase in the prices of final products. 

In a context where global economies and sectors are strongly connected, forecast of population 

growth are impressive, and globalization has reduced the spatial dimension of trade, it is useful to 

identify pattern of sustainable development able to maintain the balance between these three areas 

adopting policy instrument in order to avoid price shock transmission between the three sectors. 

Within this framework political, economic and technical tools have to be arranged to help policy 

makers to develop the proper strategies for a sustainable development based on the WFE nexus. 
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Adopting an economic perspective there are different ways that can be taken into account in order 

to provide support to policy makers and to monitor these trends. In this paper, we make a small step 

in this direction by using the lens of financial perspective and performing the analysis of the 

dynamics of the three markets for different geographical area. The financial dimension of 

agriculture, energy and water as mentioned before, can be seen as a barometer to monitor the 

balance of the relations between WFE. Specifically we used two sub-indexes of S&P GS-

Commodity Index for Agriculture-Livestock and Energy, while for Water the data are from 

Datastream and represent the performance of the major industry involved to water sector for a given 

area: Europe, North America, Latin America, Asia and World. 

The analysis is carried out following two steps. Firstly, we apply a Multivariate GARCH model to 

test and quantify the presence of spillover effects between Water, Agricultural and Energy price 

change. ARCH and GARCH coefficients highlight that volatility spillovers exist between the three 

sectors and this result is itself relevant since it confirms the existence of a nexus in all the 

investigated area and at a world level in the short and long term. 

Secondly, the Engle (2002) DCC specification of the M-GARCH framework allowed us also to 

track the trend of the relationships between variables by the plot of the time varying dynamic 

conditional correlation for each pair of series and for each geographical area. At World level the 

plot clearly shows that, after a period of low and slightly variable DCC, a very strong break took 

place during the economic crisis in September 2008. After this break, the dynamic conditional 

correlation (water-energy, water-agriculture, agriculture-energy) is much stronger in respect to the 

previous period, even if during the latest observation the level of correlation seems to revert to the 

level before the break.  

Our results highlight the existences of a financial nexus between WFE that is particular exacerbated 

during finance turbulence, especially in Europe and Latin America. Evidence therefore suggests the 

need to better investigate the policy options that can be used to reduce price volatility in a 

framework of a rising relevance of water issues within the nexus. Moreover, these changes in 

conditional correlation have profound implications for a wide range of issues such as commodity 

producers, hedging strategies, speculators investment strategies and for the food and energy policies 

of many countries. 

The growing demand of primary commodities like water, food and energy, the technical linkage 

between them and associated with their production use and consumption had stimulated 

international organization and academic researcher to move through a new concept of sustainable 

development. In this sense, the three sectors have to be planned jointly with the aim to develop 

response strategies within and across sectors, remembering that water is the common element that 
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links these three areas that are fundamental for economic growth and human security. At a global or 

macro scale, economic literature has not yet investigated this topic in a nexus framework. 

Unfortunately, at this time both public and private financial institutions lack adequate analytical 

frameworks to value nexus issues. In this paper we try to fill this gap by following a financial 

approach as a lens in order to derive some economic considerations. This is one of the first 

exercises trying to empirically analyze this nexus, nevertheless the complex interactions and policy 

implications that consider all three sectors together, need more investigation and study in order to 

effectively support decision-making.  
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Table 1 - Descriptive statistics of daily returns 

 

Source: our elaboration on Datastream data 

Note:  Descriptive statistics are presented for continuously compounded daily returns calculated as 
100*ln(pt/pt-1) where pt is daily index. 

Europe 

Water 

index

Asia 

Water 

index

North 

America 

Water 

index

Latin 

America 

Water 

index

World 

Water 

indexes

Agriculture 

price index

Energy 

price index

Obs. 3007 3007 3007 3007 3007 3007 3007

Mean 0.008 0.054 0.041 0.024 0.034 0.028 0.052

Median 0.009 0 0.001 0.078 0.070 0 0.025

Std. Dev. 1.424 1.557 1.328 1.686 1.119 1.096 1.982

Kurtosis 7.32 5.16 7.43 4.99 8.17 2.66 2.13

Skewness -0.030 0.498 0.361 -0.550 -0.306 -0.218 -0.123

Minimum -10.09 -9.24 -7.56 -12.26 -8.07 -5.81 -9.35

Maximum 13.97 13.27 12.14 10.55 10.90 5.72 9.81

t-statistic 0.325 1.904 1.679 0.786 0.991 1.416 1.434



18 

Table 2 – Multivariate GARCH estimates and diagnostic test 

 

Note: Model estimated using QMLE by BFGS algorithm. The order of variables is the following: Water (1), 
Agriculture (2) and Energy (3). In the mean equation c denotes the constant terms. In the variance equation 

a denotes the estimated Arch terms and b denotes the estimated GARCH terms.  P-value in italic. 

Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value Coeff. P-value

m 1,1 0.054 0.002 -0.019 0.289 -0.059 0.001 0.036 0.067 0.071 0.000

m 1,2 0.024 0.225 0.083 0.000 -0.021 0.220 0.072 0.007 0.036 0.015

m 1,3 0.013 0.218 0.041 0.001 0.013 0.164 0.011 0.435 0.014 0.067

m 1,0 0.068 0.000 0.056 0.013 0.053 0.003 0.056 0.030 0.065 0.000

m 2,1 -0.005 0.721 -0.006 0.540 0.009 0.457 0.005 0.637 -0.003 0.857

m 2,2 0.022 0.239 0.026 0.118 0.023 0.160 0.029 0.086 0.023 0.173

m 2,3 -0.022 0.008 -0.026 0.001 -0.020 0.009 -0.023 0.002 -0.023 0.004

m 2,0 0.025 0.134 0.028 0.072 0.021 0.151 0.024 0.119 0.024 0.127

m 3,1 0.001 0.965 -0.034 0.063 0.034 0.143 0.034 0.065 0.003 0.912

m 3,2 0.040 0.185 0.054 0.052 0.047 0.075 0.053 0.056 0.042 0.109

m 3,3 -0.035 0.048 -0.037 0.021 -0.034 0.027 -0.042 0.007 -0.038 0.023

m 3,0 0.080 0.009 0.075 0.007 0.064 0.016 0.076 0.007 0.081 0.003

c 1,1 0.017 0.004 0.059 0.002 0.016 0.008 0.294 0.000 0.016 0.000

c 2,2 0.009 0.021 0.009 0.000 0.007 0.000 0.008 0.000 0.008 0.000

c 3,3 0.027 0.003 0.032 0.000 0.033 0.000 0.047 0.000 0.030 0.000

a 1,1 0.055 0.000 0.074 0.000 0.071 0.000 0.071 0.000 0.062 0.000

a 1,2 -0.006 0.599 0.015 0.337 -0.012 0.379 0.001 0.973 -0.014 0.030

a 1,3 0.008 0.279 0.000 0.960 0.009 0.083 0.043 0.016 0.009 0.000

a 2,1 -0.012 0.134 0.003 0.596 -0.021 0.000 -0.011 0.003 -0.019 0.001

a 2,2 0.039 0.000 0.042 0.000 0.038 0.000 0.035 0.000 0.038 0.000

a 2,3 0.008 0.265 0.002 0.705 0.007 0.028 0.008 0.096 0.009 0.013

a 3,1 0.020 0.087 0.000 0.981 0.014 0.189 0.005 0.526 0.018 0.089

a 3,2 -0.022 0.146 -0.010 0.218 -0.020 0.002 -0.021 0.041 -0.018 0.100

a 3,3 0.037 0.000 0.041 0.000 0.038 0.000 0.039 0.000 0.038 0.000

b 1,1 0.933 0.000 0.913 0.000 0.923 0.000 0.802 0.000 0.922 0.000

b 1,2 0.017 0.608 -0.281 0.012 0.056 0.038 0.142 0.422 0.021 0.000

b 1,3 -0.002 0.920 0.031 0.306 -0.039 0.004 -0.051 0.464 -0.008 0.031

b 2,1 0.031 0.151 0.017 0.350 0.043 0.000 0.046 0.006 0.042 0.000

b 2,2 0.955 0.000 0.951 0.000 0.955 0.000 0.957 0.000 0.955 0.000

b 2,3 -0.018 0.230 -0.004 0.428 -0.009 0.015 -0.024 0.009 -0.018 0.008

b 3,1 -0.049 0.027 -0.023 0.118 -0.073 0.000 -0.072 0.002 -0.048 0.008

b 3,2 0.054 0.098 0.018 0.164 0.058 0.000 0.102 0.001 0.046 0.041

b 3,3 0.954 0.000 0.951 0.000 0.950 0.000 0.944 0.000 0.952 0.000

θ 1 0.013 0.000 0.008 0.001 0.010 0.000 0.008 0.000 0.014 0.000

θ 2 0.984 0.000 0.991 0.000 0.988 0.000 0.990 0.000 0.984 0.000

Log L -14,859.9 -15,363.9 -14,784.9 -15,656.8 -14,129.1

AIC 9.93 10.27 9.88 10.46 9.44

SBC 10.00 10.34 9.95 10.53 9.51

HQ 9.96 10.29 9.91 10.49 9.47

variance equation

World DSEurope Asia

mean equation

North America Latin America
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Table 3 – Diagnostic tests for standardized residuals 

 

Note: Q(12) and Q(20) denote the Ljung-Box test statistic on returns. p-value in italics. The null hypothesis 
is that there is no autocorrelation up to order 12 and 20 for standardized residuals. 

 

 

Table  4 - Mean value of DCC, before and after the financial crisis of September 2008 

Period Europe Asia North A. Latin A. World DS 

before Sept., 18 2008 0.16 0.11 0.11 0.15 0.15 

after Sept., 18 2008 0.38 0.27 0.31 0.38 0.42 

Source: based on our calculations 

 

Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Q(12) 105.275 0.556 103.332 0.609 73.266 0.996 75.746 0.992 94.777 0.814

Q(20) 180.221 0.481 194.483 0.218 139.533 0.989 137.066 0.993 170.544 0.682

Europe Asia North America Latin America World
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Figure 4 – Geographical area dynamic Nexus: mean value of DCC between agriculture-energy, water-
agriculture and water-energy 
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