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Abstract 

 

This paper appraises the environmental performance of US agriculture with respect to water 

pollution from pesticides through a parametric approach. The performance of the 48 continental 

States is evaluated through a translog stochastic and hyperbolic distance function allowing an 

environmentally adjusted productivity index and its components technical and efficiency change 

from 1960-1996.  Water pollution is captured by four indicators of risk developed by Ball et al. 

(2004) : i) risk to human health from exposure to pesticide leaching; ii) risk to human health 

from exposure to pesticide runoff;  iii) risk to aquatic life from exposure to pesticide leaching 

and iv) risk to aquatic life from exposure to pesticide runoff. The resulting environmentally 

adjusted productivity growth is slower than the conventional one but still driven by technical 

progress. Further finding reveals that innovation in the sector is biased toward crop and livestock 

rather than pollution mitigation. Results also show a potential for crops and livestock expansion 

and a contraction in water pollution and inputs. 
 

1. Introduction  

 

Agriculture has been a very successful sector of the U.S. economy in terms of productivity 

growth over the last six decades.  From 1948 to 1994, productivity increased annually by 1.94 % 

reflected by a growth in output of 1.88 % and a decline in inputs of 0.06 % (Ahearn et al., 1998). 

But, this performance ignores byproducts and environmental impacts which include land 

degradation, climate change, and biodiversity loss and water pollution. In fact, agriculture 

emitted about 6.3% of total U.S. greenhouse gas emissions (EPA, 2012).  Agricultural nonpoint 

source pollution is the leading source of water quality impacts on surveyed rivers and lakes, the 

second largest source of impairments to wetlands, and a major contributor to contamination of 

surveyed estuaries and ground water (FAO, 2006). 

In US, the EPA (1990) national pesticide survey reveals that about 52.1% of the community 

water system wells contain nitrate, about 10.4% contain one or more pesticides, and about 7.1% 

contain both. On the other hand, 57% of rural domestic wells contain nitrate while 4.2% contain 

one or more pesticides, and about 3.2% contain both. More alarming, 0.8% of community water 

system wells and 0.6% of rural domestic wells contain one or more pesticides at levels above 

health-based limits. Further estimates show that approximately 1.2% and 2.4% respectively for 



community water system and rural domestic wells contain nitrate exceeding the health-based 

limits.  

However, only very few studies have accounted for water contamination in the US agricultural 

productivity. Of the few studies, Ball et al. (2004) is most prominent but positing a strong 

assumption assimilating any deviation from the best frontier to inefficiency in a deterministic 

setting. Such approach also fails to provide statistical inference without a bootstrapping 

technique.  

This study aims to assess the environmental performance of U.S. agriculture with respect to 

water pollution from pesticides following Ball et al. (2004) who used a non-parametric approach. 

Water pollution is captured by four indicators of risk developed by Ball et al. (2004) : i) risk to 

human health from exposure to pesticide leaching; ii) risk to human health from exposure to 

pesticide runoff;  iii) risk to aquatic life from exposure to pesticide leaching  and iv) risk to 

aquatic life from exposure to pesticide runoff.  Results from this study reveal a drastic change in 

agricultural productivity growth when water contamination is accounted for.  In fact, the 

conventional Malmquist productivity index (the one ignoring water contamination) reveals a 

1.54% yearly growth whereas the environmentally sensitive hyperbolic average 0.98%. The ratio 

of the environmentally sensitive productivity index and the conventional one provides an 

environmental Malmquist productivity index that reveals a decline of growth to 0.56%. They 

also constructed two environmentally sensitive Fisher productivity indices -based on livestock 

and crops virtual prices- revealing growth rates of 1.25% and 1.43% per year over the period 

1960-1996.  Their Fischer environmental productivity growth rate is relatively higher than the 

environmentally sensitive Malmquist index growth rate but still smaller than the rate obtained 

with the conventional Malmquist index. 

Table1. US States Agricultural Productivity Annual Growth Rates (1960-1996) 

  Annual Growth Rates 

 

CMPI* ESMPI** EPI*** 

1960-1996 1.54% 0.98% -0.56% 

1960-1972 1.68% -2.56% -4.17% 

1973-1983 0.12% 0.30% 0.18% 

1984-1996 2.64% 4.96% 2.26% 
    Source Ball, et al. 2004   



*Conventional Malmquist Productivity Index, 

**Environmentally Sensitive Hyperbolic Malmquist Productivity Index 

***Environmental Productivity Index= ESMPI/ CMPI 

 

Ball et al.(2004) contrast the conventional Malmquist productivity index with three constructed 

environmental productivity indices accounting for water pollution from pesticide runoff into 

surface water and pesticide leaching into groundwater from 1960-1993. Results show an 

overestimation of productivity growth by the conventional Malmquist productivity index in the 

early years, and an underestimation in the later years. This bias is explained by failing to account 

for rapid increases in pesticide use and reductions in water contamination respectively in the 

earlier and later periods. Ball et al. (2001) also model the joint production of livestock and crop 

(desirable outputs) and water contamination (undesirable outputs) to calculate a Malmquist-

Luenberger productivity index for US agriculture. Their results reveal a higher productivity 

growth when accounting for water contamination caused by the use of agricultural chemicals, 

especially in the later period of the study (1984-1993). Chaston and Gollop (2002) estimated a 

translog cost function to capture the impact of water regulation on US agricultural productivity. 

Results suggest that improvement in water quality subsequent to regulation substantially 

improved productivity.  

2. Methodology 

This study uses a parametric and stochastic hyperbolic distance function developed by Cuesta, 

Lovell and Zofio (2009) to account for water pollution in US agricultural productivity. This 

approach presents the advantage of treating desirable and undesirable outputs asymmetrically, 

conducting statistical inference without bootstrapping in contrast to non-parametric approaches, 

determining the desirable output elasticity with respect to the inputs, inputs substitutability or 

complementarity, and the degree of complementarity between desirable and undesirable outputs. 

Adding a time trend to the parametric setting serves as a proxy for technical progress.  

The production technology can be defined as T transforming input vector                 
  

into output vectors                 
  consisting of subvectors                  

    

and    (         )    
 
.       and   represent respectively desirable and undesirable outputs 

whereas the subscript             refers to the decision making units, the 48 contiguous states 

in occurrence.  From this definition, the technology T can be represented by a production 

possibility set as follows: 



(1)   T = {(x, y, b):     
          

   x can produce (y, b)}             

The technology can also be represented by an output distance function which represents the 

maximum feasible expansion of the desirable output vector required to reach the boundary of the 

technology T at a given level of inputs and undesirable outputs. 

 

The output distance function       
      

      
          can be formally defined as: 

                   {    (  
 

 
  )   }       

falling in the range of              .  To contract undesirable outputs while increasing 

desirable ones the technology can be represented by a hyperbolic distance 

function       
      

      
          formally defined as: 
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   )   }      

Here the hyperbolic distance function provides an environmental efficiency measure and 

represents the maximum expansion of the desirable output vector and equiproportionate 

contraction of the undesirable output vector that places a producer on the best practice frontier T. 

Its range is                  

The enhanced hyperbolic distance function       
      

      
          is defined as  

                    {    (   
 

 
   )   } 

with a range              .  

The enhanced hyperbolic distance function provides an environmental efficiency measure and 

represents the maximum expansion of the desirable output vector and equiproportionate 

contraction of the undesirable output and input vectors that places a producer on the best practice 

frontier T. 

The              satisfies the following properties provided that the technology T satisfies the 

standard axioms as defined by Färe, Grosskopf and Lovell, (1985: 111) and Färe (1988:6-8)  



1. Non decreasing in desirable outputs :                                 

2. Non increasing in undesirable outputs  :                             

3.  Non increasing in  inputs :                                

4. Almost homogeneity                    =              ,     The              is 

almost homogeneous of degree -1, 1, -1, 0 and 1respectively in undesirable outputs, 

desirable outputs, inputs, time trend and the  distance function . This property implies that 

if the set of desirable outputs is increased by a given proportion while reducing the set of 

inputs and the undesirable outputs by the same proportion the function increases by that 

same proportion.   

Following Cuesta and Zofio (2005) the almost homogeneity of             states that for a 

scalar     and any        , 
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A function             is almost homogenous of degree                       if  

                                     ,     .                            …   

Assuming that             is continuously differentiable, to be almost homogeneous it must 

satisfy  

      ∑
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The output distance function              is almost homogeneous of degrees 0, 1, 0, 0 

and 1. The hyperbolic distance function             is almost homogeneous of degrees 0, 1, 

−1, 0, and 1, and the enhanced  the hyperbolic distance function             is almost 

homogeneous of degrees −1, 1, −1, 0 and 1. 

Specify            as a translog function for a panel of        producers as follows: 
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Partial derivatives of            as defined in     yields the following elasticities:  
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Dividing both sides of the equation    , by            and imposing almost homogeneity of 

degrees -1 in input  , -1 in undesirable output    1 in desirable outputs   and zero in the time 

trend   , the translog function            defined in     yields the following: 
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Applying the almost homogeneity of degree −1, 1, −1, 0 and 1 to expression (7) and rewriting 

(10) in logarithmic form yields the following: 
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Plugging all the partial derivatives obtained in     in equation      yields the following:  
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From the previous equation, 1+N+M+J restrictions emerge as sufficient and necessary to ensure 

almost homogeneity of degrees -1, 1, -1, 0 respectively in inputs, desirable outputs, undesirable 

outputs and time trend:  
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Recalling that   (
 

 
    

 

 
  )               by virtue of almost homogeneity and setting 

  
 

  
  with     being an arbitrary chosen desirable output a translog enhanced hyperbolic 

function takes the following form: 
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where   
  

       ;   
         and   

        .  For all       the ratio   
 

  is equal 

to one and vanishes since log of one is zero. Subsequently, all summation involving   
 

 are over 

M-1.  

In addition to almost homogeneity equation      satisfies the symmetry condition such that  

        ,        ,         and        . 

 Opting for a stochastic frontier approach, any deviations from the frontier stem from two types 

of disturbances.  Random disturbances such as factors beyond producers’ control and error 

measurements are termed    hereafter. On the other hand, disturbances resulting from factors 

under producers’ control such as technical and economic inefficiency are termed    hereafter, 

Aigner, Lovell and Schmidt (1977). In our specification, the inefficiency      corresponds to 

                 which ranges                       for an interior solution. Producers 

operating along the frontier exhibit a                  equivalent to zero and are considered 

efficient. To account for errors in observations and measurement     is appended to equation  

      which turns into the following form: 
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This translog stochastic frontier can then be formulated in a more compact form as follows: 

        (  
    

 
  
   

                 )                  

where   (   
         )       and             with           

   and            
  .  

The error     has two components:  i) a symmetric error     accounting for the stochastic nature 

of the production process and possible measurement errors of the inputs and outputs also 

assumed normally and identically distributed as           
  ; ii) an asymmetric error      

accounting for inefficiency and assumed to have a half normal distribution               
   . 

    is a vector of explanatory variables associated with the technical inefficiency     . Both     

and    terms are assumed to be independently distributed such that           is a vector of 

unknown coefficients. 

 

Parameters of interest in the stochastic frontier model                           will be 

estimated by maximum likelihood principle.  Since      cannot be directly estimated, the 

distribution function or the density function of     is to be determined first. Thus, a conditional 

distribution of      given     can be estimated as the conditional expectation of     given    .  

Finally, the estimated technical efficiency for a decision making unit at time t can be formulated 

as  

          
̂              =         ̂   =    ̂  .  

On the other hand,      can be estimated as: 

     ̂                 ̂  . of    .  



The percentage of total error variance due to inefficiency can be determined as follows:  

  
 

  
    

  
  

    
 

  
    

    
     

  
  

    
                         

 

It can be shown that a lambda greater than 1 suggests than the variance for efficiency is 

dominated by the variance of the random errors.  

Having determined the technical efficiency     
̂               as in     , the efficiency change 

(EC) index between two adjacent periods      and    can be computed as follows:  

      ̂  
    ̂             

      ̂                    
                      

An   ̂ equivalent to one expresses no change in efficiency. On the other hand,   ̂ greater than 

one suggests an improvement in efficiency whereas a value of   ̂ less than one conveys a 

regress.  

On the other hand, the technical progress is computed by partial derivative of equation      with 

respect to time as follows:  
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The technical change for the adjacent periods (           is computed as geometric mean of 

the two partial derivatives which corresponds to the exponential of their arithmetic mean in the 

case of a translog function. Coelli et al. (2005).  
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A technical change   ̂  equivalent to one shows stagnation or no progress.  Technical progress is 

expressed by   ̂   greater than one whereas a regress is shown by a value less than one. 

The Malmquist total factor productivity change can be calculated as a product of the two 

previous measures if the technology exhibits constant return to scale or as follows:  



   ̂         ̂      ̂   ̂                     

To account for scale economies the inclusion of a scale change as a third component of the TFP 

index is suggested by Denny, Fuss and Waverman (1981) cited by Coelli et al. (2005), Balk 

(2001) and Orea (2002) extend it to a parametric distance function.  
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where                          ,           ∑       
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            and      characterize constant, increasing and decreasing return to scale 

respectively. 

Prior to the interpretation and discussion of the results from the translog distance function 

defined in     , we will first check the regularity properties of monotonicity and curvature.  Key 

derivatives to gauging monotonicity are elasticities of the output distance function.  Following 

O’Donnell and Coelli (2005), the             monotonicity requires that: 

1. the             be non-increasing inputs: 
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 therefore the             monotonicity property amounts to having             and     

   



For a twice differentiable              quasi-convexity in   requires that all the principal 
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For a twice differentiable              convexity in   requires that all the principal minors of 

the Hessian Matrix     be non-negative  ie          ,                      

where  
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3.  Data and Results Discussion 

 

This study uses a panel data set from the 48 contiguous states over the period 1960 – 1997. 

Desirable output is an index of all outputs (crop, livestock and other farm-related outputs) 

whereas inputs are indices of capital, land, labor, and intermediate inputs. Methods and 

documentation of these indices can be explored in Ball, Wang and Nehring (2010). Water 

pollution is captured through four indicators of risk to human health and to aquatic life arising 

from exposure to pesticide runoff into surface water and pesticide leaching into groundwater 

developed by Kellog et al. (2002).  These indices are:   i) index of risk to human health from 

exposure to pesticide leaching; ii) index of risk to human health from exposure to pesticide 

runoff;  iii) index of risk to aquatic life from exposure to pesticide leaching and iv) index of risk 

to aquatic life from exposure to pesticide runoff.  

Table 2. Data* Descriptive Statistics: State-Level U.S. Agricultural Data, 1960-1997 

Variables Mean Std Dev Min Max 

     

y1  Output Production Index 1.0673 1.0648 0.0127 8.3548 

b1 IR_HPL 0.5843 1.1331 0.0000 14.6001 

b2 IR_HPR 7.3091 17.3647 0.0000 140.5140 

b3 IR_APL 0.6480 1.5511 0.0000 17.9762 

b4 IR_ APR 0.7599 1.2647 0.0000 16.4965 

x1  Capital 1.9341 1.7269 0.0219 9.4096 

x2  Land 2.1244 2.2344 0.0118 15.1196 

x3  Labor 2.7514 2.3796 0.0285 12.5889 

x4  Intermediate Inputs 0.8537 0.8003 0.0067 8.0000 

     Source: ERS 2010 and Ball et al. 2004. 

*All data are indexed to Alabama 1996=1 

IR_HPL =Index of Risk to Human Health from exposure Pesticide Leaching 

IR_HPR =Index of Risk to Human Health from exposure Pesticide Runoff 

IR_APL =Index of Risk to Aquatic Life from exposure Pesticide Leaching 

IR_APR = Index of Risk to Aquatic Life from exposure Pesticide Runoff 

 

The authors assess the risk based on the extent to which the concentration of a specific pesticide 

exceeds a water quality threshold. To handle the translog estimation some zeros values in 

undesirable outputs were substituted by a value of 0.00001. The underlying argument for 

substitution is the jointness of water pollution and livestock and crops production. The zero 

pollution simply means there is very little pollution rather than inexistence. If the zeros occur by 



nonexistence, quadratic function comes as an alternative to the translog used in this study. 

Battese (2008) suggests another alternative but in the Cobb Douglas production setting.  To 

account for pesticide regulation impacts on efficiency levels, we included three dummies; the 

first one considers the inception of the EPA as regulatory body, the second accounts for the 1972 

EPA regulation regarding use of DDT and the third for the EPA’s 1983 ban on toxaphene. To 

account for fixed effects, we use 9 dummies for the 10 US regions used by USDA (Northeastern 

plains, Appalachian plains, Lake States, Cornbelt plains, Delta States, Northern plains, Southern 

States, Mountain, and Pacific States 

 

The parametric distance function is estimated with the package frontier within R software 

developed by Coelli and Henningsen (2012).  We first check the key regularity conditions of 

monotonicity and curvature of the output distance function            .  The former stipulates 

that the             is non-decreasing in desirable outputs   and non-increasing in inputs   and 

undesirable outputs  . The latter requires that             be quasiconvex in   and   and 

convex in     The overall monotonicity check reveals that the distance function is monotonically 

increasing in all arguments for 0.1%, with different levels of violations in inputs and outputs. 

Intermediate inputs exhibit the lowest violation rate of 0.1% followed by capital (6.9%). Labor 

and land are characterized by violation rate of 20.8% and 71.9% respectively. For undesirable 

outputs, the highest violation rate is found in the IR_APL (74.6%). The IR_HPL and the 

IR_HPR are characterized by a violation of 26.8% and 16.5% respectively. It follows that the 

elasticities of the             with respect to land (0.0163) and INDX-FL (0.0019) are not 

consistent with monotonicity condition as IR_HLP , IR_HRP, capital labor and intermediate 

input displayed in the unrestricted estimates of table 3. The curvatures check shows that 

            is quasi- convex in   only on 6.7% data points. Consistent with theoretical 

properties of the distance function we first impose monotonicity using a three step procedure 

proposed by Henningsen and Henning (2009).  

Table 3 Output Distance Elasticities, U.S. agriculture, 1960-1997 

(Equation 22) 

  

Violating 

Monotonicity 

 

Fulfilling 

Monotonicity 



Output_Index       1.0322   0.9773 

IR_HLP        

 

-0.0084 

  

-6.91E-16 

IR_HRP       

 

-0.0306 

  

-0.0227 

IR_ALP       -0.0032   -1.60E-17 

Capital       

 

-0.1078 

  

-0.0988 

Land        

 

0.0254 

  

-0.0124 

 Labor       

 

-0.0199 

  

-0.0295 

InterInput       -0.3820 

  

-0.3614 

      

Source: Author’s calculation 

On the first step, we estimate the translog stochastic frontier and check the monotonicity and 

curvature properties as pointed out earlier. Estimates for this initial step are reported in table 

9(see appendix).   

On the second step, we extract the estimated parameters  ̂ and their corresponding covariance 

matrix    to conduct a minimum distance estimation as follows: 

        ̂        ( ̂   ̂)  ̂ 
  ( ̂   ̂)                 

subject to   (   ̂ )         

For our translog output distance function, this constraint turns into  

   (   ̂ )  
  (   ̂ )

   
   where         

This can be converted into the following quadratic program problem 

                     
 

 
     st      

where      ̂   ̂ ,                 ̂ 
  ,     and      ̂ from the quadratic 

programming the restricted parameters  ̂  can be determined as  

 ̂      ̂  

     where R represents a matrix of dimension      
      

 
  and   is the number of 

variables in the output distance function. 
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Table 4 Monotonic Restricted Coefficient from the Minimum Distance Estimation  

Variables   
Restricted 

Coefficients(Eq 23) 

Difference 

(Restricted-

Unrestricted) 

Restricted_adjusted 

coefficient(eq 28) 

                

Intercept 

 

-0.3772 

 

-0.1763 

 

0.3774 

 IR_HPL 

 

0.0030 

 

0.0696 

 

-0.0030 

 IR_HPR 

 

0.0186 

 

-0.0827 

 

-0.0186 

 IR_APL 

 

0.0000 

 

-0.0176 

 

0.0000 

 Capital 

 

0.2960 

 

0.4717 

 

-0.2962 

 Land 

 

0.0194 

 

-0.0300 

 

-0.0194 

  Labor 

 

0.0339 

 

0.0473 

 

-0.0339 

 InterInput 

 

0.1760 

 

0.6153 

 

-0.1761 

 Time 

 

0.0045 

 

0.0061 

 

-0.0045 

 IR_HPL*IR_HPL 0.0001 

 

0.0023 

 

-0.0001 

 IR_HPL*IR_HPR -0.0001 

 

-0.0025 

 

0.0001 

 IR_HPL*IR_APL 0.0000 

 

-0.0002 

 

0.0000 

 IR_HPL*Capital -0.0002 

 

-0.0255 

 

0.0002 

 IR_HPL*Land -0.0002 

 

-0.0012 

 

0.0002 

 IR_HPL*Labor -0.0005 

 

-0.0079 

 

0.0005 

 IR_HPL*InterInput 0.0010 

 

0.0357 

 

-0.0010 

 IR_HPL*Time 0.0000 

 

-0.0002 

 

0.0000 

 IR_HPR*IR_HPR 0.0025 

 

0.0165 

 

-0.0025 

 IR_HPR*IR_APL 0.0000 

 

0.0003 

 

0.0000 

 IR_HPR*Capital -0.0098 

 

-0.0021 

 

0.0098 

 IR_HPR*Land 0.0005 

 

0.0229 

 

-0.0005 

 IR_HPR*Labor 0.0024 

 

0.0108 

 

-0.0024 

 

        Source: Author’s Calculations 



 

Table 4(continued) Monotonic Restricted Coefficient from the Minimum Distance 

Estimation 

Variables   
Restricted 

Coefficients(Eq 23) 

Difference 

(Restricted-

Unrestricted) 

Restricted_adjusted 

coefficient(eq 28) 

    

     

  

        IR_HPR*InterInput 0.0055 

 

-0.0406 

 

-0.0055 

 IR_HPR*Time -0.0004 

 

-0.0006 

 

0.0004 

 IR_APL*IR_APL 0.0000 

 

0.0000 

 

0.0000 

 IR_APL*Capital 0.0000 

 

0.0076 

 

0.0000 

 IR_APL*Land 0.0000 

 

0.0009 

 

0.0000 

 IR_APL*Labor 0.0000 

 

0.0028 

 

0.0000 

 IR_APL*InterInput 0.0000 

 

-0.0105 

 

0.0000 

 IR_APL*Time 0.0000 

 

0.0002 

 

0.0000 

 Capital*Capital -0.0644 

 

-0.0788 

 

0.0645 

 Capital*Land -0.0123 

 

-0.0871 

 

0.0123 

 Capital*Labor -0.0412 

 

-0.0857 

 

0.0413 

 Capital*InterInput 0.1055 

 

0.2294 

 

-0.1056 

 Capital*Time -0.0018 

 

-0.0040 

 

0.0018 

 Land*Land -0.0047 

 

-0.0513 

 

0.0047 

 Land*Labor 0.0045 

 

0.0119 

 

-0.0045 

 Land*InterInput 0.0122 

 

0.1063 

 

-0.0122 

 Land*Time -0.0002 

 

-0.0016 

 

0.0002 

 Labor*Labor 0.0036 

 

-0.0163 

 

-0.0036 

 Labor*InterInput 0.0305 

 

0.0784 

 

-0.0305 

 InterInput*Time 0.0001 

 

-0.0001 

 

-0.0001 

 InterInput*InterInput -0.1265 

 

-0.3503 

 

0.1266 

 InterInput*Time 0.0020 

 

0.0057 

 

-0.0020 

 Time*Time 

 

0.0002 

 

0.0005 

 

-0.0002 

                 

Source : Author’s Calculation 

On the third step a stochastic frontier is estimated where the initial dependent variable     is 

regressed on the predicted    ̃ based on the restricted estimates. 

                    ̃                   



where    ̃            ̂ ),       .      amounts to allowing an adjustment of the 

restricted frontier 
 

 
     (       ̂ )

  
.   The restricted and adjusted elasticities show that 

the             is non-increasing in both inputs and undesirable outputs as required by 

monotonicity property (see table 4). 

Table 5.  Stochastic frontier estimates (eq.26) based on monotonic restricted estimates 

  Estimates Std- error   

Intercept -0.0508 (0.0054) *** 

 

 
 

-1.0007 (0.0019) *** 

EPA_Inception -0.1103 (0.0499) * 

1972_Pesticide Regulation -0.302 (0.0542) *** 

1983_Pesticide Regulation -0.0113 (0.0365) 

  

 
 

0.0346 (0.0025) *** 

 

0.8236 (0.0216) *** 

Expected Mean Efficiency 0.9247 
 

         

Source: Author’s Calculations 

Significance codes  0 :‘***’ 0.001 :‘**’ 0.01 :‘*’   0.05 :‘.’  0.1 :‘ ’ 

 

Assuming that inefficiency is influenced by some observable environmental variables (Zs), we 

consider the error effect model initially developed by Kumbhakar, Ghosh and McGuckin 

(1991) and generalized later by Battese and Coelli (1995).  Zs variables consist of the creation 

EPA and the introduction of two pieces of pesticide regulation: the 1972 DDT ban and the 

1983 toxaphene ban.  

Table 5 reveals that inefficiency amounts to 40.4% of the total variance and the remaining 60% 

is due to random variation given an estimated lambda of 0.8236. The z-test rejects the null 

hypothesis of no differences in inefficiency among states; the variance   
  being significantly 

greater than 0. Alternatively, the performed likelihood ratio test positing a null-hypothesis of 

no difference in efficiency across states as in OLS, versus the alternative of difference as in 



SFA, strongly rejects the null hypothesis                                       ) and 

corroborates the z-test conclusion. The expected mean efficiency is equal to 0.9247 suggesting 

that on average the desirable output could have been expanded by 8.1% (1/0.9247-1) and 

inputs and water pollution could have been contracted by 7.5% (1-0.9247). The EPA’s 

inception and its banning use of DDT and toxaphene suggest an improvement in efficiency 

associated with the regulation.  

While the minimum distance computation offers the benefits of providing estimates consistent 

with monotonicity and to a large extent with convexity, its statistical inference relies on a more 

involved bootstrapping approach beyond the scope of this study. In fact, Andrew (2000) shows 

that if parameters are at the boundary of the feasible space, the standard bootstrapping 

technique provides an inconsistent covariance matrix. Alternatively, the Bayesian approach 

suggested by O’Donnel and Coelli(2005) is to be considered to impose these regularity 

conditions and preserve all the benefit provided by a translog parametric estimation( statistical 

inference included).  But here, our interpretation is limited to the third column of table 4, the 

restricted-adjusted estimates.  The time trend, proxy for technical change, shows a technical 

progress of 0.5% at an increasing rate over the considered period. Estimate for the desirable 

outputs, recovered from equation (12) suggests a technological bias towards more production 

desirable outputs than water pollution mitigation.  Among undesirable outputs, the innovation 

is biased towards a reduction of risk to human health from pesticide leaching and runoff 

compared to the risk to aquatic life from pesticide leaching. In nutshell, innovation in the US 

agriculture has reduced water pollution impacting human health more than aquatic life.  On the 

input side, technical progress is capital, land and labor saving and intermediate inputs using.  



To calculate the Malmquist Productivity index in equation (20), we assume constant return to 

scale.  The resulting productivity index reveals a 0.8% annual growth rate (table 8).   Results 

from nonparametric setting by Ball et al. (2004) suggest an environmentally sensitive 

productivity growth of 0.98% and a decline in growth rate to 0.54% per year in the 

environmental productivity index. Further results show that productivity in US agriculture is 

mainly driven by technical change with a 0.51% annual growth rate. This result falls out of the 

range of 1.25 and 1.92 % change from recent studies that ignore environmental impacts 

(Fulginiti, 2010 and O’Donnell, 2012). 

Additional information from the translog output distance function estimation consists of inputs 

substitutability or complementarity, and the degree of complementariness between desirable 

and undesirable outputs. The second terms-order cross terms between inputs     can be 

interpreted as seconder-order(bias) measures  of their effect on the desirable output specified as 

dependent variable. 

    
   

     
             =                

     

     
                  

where               is the cost share of input   , here referred to as implicit share, 

corresponding to its proportional marginal product. 

Morrison-Paul et al.(2000) define the bias      as a share weighted relative version of the 

marginal product elasticity               which characterizes substitutability such that an 

increase in    will be associated with an expansion in production but also in more increase 

productivity of complement inputs than substitutes. From      the complete expression 

characterizing the full share elasticity      corresponding to this effect is:                

        . 



Consistent with a negative dependent variable in equation      a negative (positive)      

reflects the expansion (reduction) in production and suggests complementarity (substitutability) 

of inputs    and    . 

Table 6 Desirable output elasticity and Second-Order Terms  

 

Capital Land  Labor InterInput 

     
 -0.1040 -0.0112 -0.3561 -0.0051 

           0.0185 0.0040 0.0181 0.0073 

        0.0035 0.0015 -0.0020 0.0008 

         0.0118 -0.0015 -0.0134 0.0021 

            -0.1028 -0.0040 -0.0134 -0.0087 

 Source: Author’s Calculations 

 

Substuatibility prevails for most inputs combinations expect for labor and land which are 

complementary (table 6).  

Following Grosskpof, Margaritas, and Valdmanis (1995) and Cuesta, Lovell and Zofio (2009) 

the marginal rate of transformation between desirable and undesirable outputs along the 

production possibility frontier can defined as: 

               (
          

  
 

          

   )  (
            

    
 

          

     )          

                   

shows that the ratio of the elasticities is subject to the variation as long as the ratio of outputs 

varies. In light of Grosskpof, Margaritas, and Valdmanis(1995), Cuesta  normalize MRT      

by the output ratio to obtain a measure  of relative opportunity cost referred to as marginal rate 

of transformation relative to the output mix.   



Table 7. Desirable    and undesirable    outputs Substitutability:        (1960-1997) 

                                       

       

1.41E+15 4.30E+01 6.10E+17 0.4937 6.9E-16 -2.3E-02 -1.60E-18 

       

Source : Author’s calculation 

   : index of risk to human health from exposure to pesticide leaching;  

   : index of risk to aquatic life from exposure to pesticide runoff  

   : index of risk to aquatic life from exposure to pesticide leaching  

 

                              

The higher opportunity cost of desirable output in terms of undesirable outputs (relative 

complementarity) is characterized by a greater absolute value of         .    is recovered from 

the almost homogeneity constraint        Results from table 7 reveal higher relative 

complementarity for output production and water pollution from pesticide leaching  

                  . In other words, the opportunity cost of desirable output (livestock and 

crops) is higher relative to pollution from pesticide leaching than from runoff. 

  



 

Table 8.  US States Annual Total Factor Productivity Change, Efficiency Change and 

Technical Change (1960-1997) 

STATES TFP TC EC 
 

STATES TFP TC EC 

AL 1.0096 1.0055 1.0041   NC 1.0082 1.0049 1.0033 

AR 1.0150 1.0063 1.0086 
 

ND 1.0071 1.0046 1.0025 

AZ 1.0094 1.0058 1.0035 
 

NE 1.0106 1.0049 1.0057 

CA 1.0100 1.0056 1.0044 
 

NH 1.0091 1.0064 1.0027 

CO 1.0079 1.0055 1.0024 
 

NJ 1.0067 1.0051 1.0016 

CT 1.0072 1.0049 1.0024 
 

NM 1.0087 1.0046 1.0041 

DE 1.0094 1.0072 1.0022 
 

NV 1.0069 1.0061 1.0009 

FL 1.0118 1.0058 1.0060 
 

NY 1.0093 1.0054 1.0039 

GA 1.0076 1.0055 1.0020 
 

OH 1.0059 1.0040 1.0019 

IA 1.0056 1.0045 1.0011 
 

OK 1.0100 1.0050 1.0050 

ID 1.0071 1.0050 1.0021 
 

OR 1.0058 1.0052 1.0007 

IL 1.0084 1.0049 1.0034 
 

PA 1.0070 1.0046 1.0023 

IN 1.0064 1.0042 1.0022 
 

RI 1.0076 1.0059 1.0016 

KS 1.0075 1.0048 1.0027 
 

SC 1.0100 1.0047 1.0053 

KY 1.0078 1.0043 1.0035 
 

SD 1.0066 1.0047 1.0019 

LA 1.0062 1.0046 1.0016 
 

TN 1.0077 1.0045 1.0032 

MA 1.0082 1.0059 1.0022 
 

TX 1.0080 1.0046 1.0034 

MD 1.0069 1.0051 1.0017 
 

UT 1.0079 1.0056 1.0023 

ME 1.0099 1.0049 1.0050 
 

VA 1.0081 1.0050 1.0031 

MI 1.0059 1.0043 1.0016 
 

VT 1.0084 1.0048 1.0036 

MN 1.0060 1.0046 1.0014 
 

WA 1.0070 1.0051 1.0018 

MO 1.0092 1.0050 1.0042 
 

WI 1.0055 1.0041 1.0014 

MS 1.0075 1.0045 1.0030 
 

WV 1.0083 1.0054 1.0029 

MT 1.0067 1.0046 1.0021 
 

WY 1.0072 1.0055 1.0017 

    
 

 
 

  Geomean           1.0080 1.0051 1.0029 

Source: Author’s Calculation 



 

4. Conclusion 

To account for water pollution in US agricultural productivity, we estimate a translog 

hyperbolic output distance function for the 48 U.S. continental states using capital, land, 

intermediate inputs and labor as inputs in the joint production of crops, livestock and water 

pollution proxies. The estimated environmentally adjusted measure reveals a TFP growth rate 

of 0.8%. Technical progress turns to be biased to towards production of the desirable outputs 

and remains the main component of the TFP growth. This result is consistent with that the one 

from non-parametric environmentally sensitive indexes in Ball et al. (2004).  One limitation of 

this study is its failure to allow statistical inference on the restricted and adjusted estimates. 

Such limitation can be overcome by considering a Bayesian approach. 

  



APPENDIX 3 

APPENDIX 3.1 ADDITIONAL OUTPUT TABLES 

Table 9 Stochastic Frontier Estimates prior to imposing Monotonicity (equation 14) 

Variables Estimate Std-Error   

Intercept -0.2009 (0.1071) . 

IR_HPL -0.0666 (0.0106) *** 

IR_HPR 0.1013 (0.0232) *** 

IR_APL 0.0176 (0.0079) * 

Capital -0.1757 (0.0509) *** 

Land 0.0494 (0.0308) 

 Labor -0.0134 (0.0286) 

 InterInput -0.4393 (0.0644) *** 

Time -0.0016 (0.0019) 

 IR_HPL*IR_HPL -0.0022 (0.0009) * 

IR_HPL*IR_HPR 0.0025 (0.0013) . 

IR_HPL*IR_APL 0.0002 (0.0005) 

 IR_HPL*Capital 0.0253 (0.0042) *** 

IR_HPL*Land 0.0010 (0.0019) 

 IR_HPL*Labor 0.0074 (0.0018) *** 

IR_HPL*InterInput -0.0347 (0.0048) *** 

IR_HPL*Time 0.0002 (0.0001) . 

IR_HPR*IR_HPR -0.0139 (0.0030) *** 

IR_HPR*IR_APL -0.0003 (0.0009) 

 IR_HPR*Capital -0.0077 (0.0067) 

 IR_HPR*Land -0.0224 (0.0038) *** 

IR_HPR*Labor -0.0084 (0.0040) * 

IR_HPR*InterInput 0.0461 (0.0087) *** 

IR_HPR*Time 0.0002 (0.0002) 

 IR_APL*IR_APL 0.0000 (0.0005) 

 IR_APL*Capital -0.0076 (0.0021) *** 

IR_APL*Land -0.0009 (0.0013) 

 IR_APL*Labor -0.0028 (0.0010) ** 

IR_APL*InterInput 0.0105 (0.0028) *** 

IR_APL*Time -0.0002 (0.0001) . 

Capital*Capital 0.0144 (0.0191) 

 Capital*Land 0.0748 (0.0082) *** 

Capital*Labor 0.0445 (0.0063) *** 

Capital*InterInput -0.1238 (0.0169) *** 

 
  

*** 

Source : Author’s Estimations 

 



Table 9 (Continued) Stochastic Frontier Estimates prior to imposing Monotonicity 

(equation 14) 

Variables Estimate Std-Error   

Capital*Time 0.0023 (0.0005) *** 

Land*Land 0.0467 (0.0081) *** 

Land*Labor -0.0074 (0.0038) . 

Land*InterInput -0.0941 (0.0109) *** 

Land*Time 0.0014 (0.0003) *** 

Labor*Labor 0.0199 (0.0062) ** 

Labor*InterInput -0.0479 (0.0084) *** 

InterInput*Time 0.0002 (0.0002) 

 InterInput*InterInput 0.2238 (0.0182) *** 

InterInput*Time -0.0038 (0.0006) *** 

Time*Time -0.0003 (0.0000) *** 

NE_Plains Dummy 0.0298 (0.0066) *** 

Appalachian_Dummy -0.0086 (0.0084) 

 SE_Plains Dummy 0.1131 (0.0089) *** 

Lake_States_Dummy 0.0540 (0.0075) *** 

Cornbelt_ Dummy 0.0643 (0.0087) *** 

Delta_ Dummy 0.0384 (0.0078) *** 

Northern_Plains_Dummy 0.0684 (0.0103) *** 

Southern_Plains Dummy -0.0506 (0.0085) *** 

Mountain_Dummy -0.1069 (0.0082) *** 

EPA_Inception 0.0199 (0.0177) 

 1972_Pesticide 

Regulation -0.0216 (0.0186) 

 1983_Pesticide 

Regulation 0.0868 (0.0110) *** 

   0.0060 (0.0006) *** 

  0.7355 (0.0490) *** 

Expected Mean Efficiency 0.9340   

        

Source: Author’s Estimations 

Significance codes  0 :‘***’ 0.001 :‘**’ 0.01 :‘*’   0.05 :‘.’  0.1 :‘ ’  

  

 



References 

Agrawal, A., Pandey, R. and Sharma, B., 2010.  "Water Pollution with Special Reference to 

Pesticide Contamination in India," Journal of Water Resource and Protection, Vol. 2 No. 5, 

2010, pp. 432-448. doi: 10.4236/jwarp.2010.25050. 

Ahearn, M., Yee, J., Ball,E., and Nehring, R., with contributions from Agapi Somwaru and 

Rachel Evans.,1998.  Agricultural Productivity in the United States.  Resource Economics 

Division, Economic Research Service, U.S. Department of Agriculture. Agriculture 

Information Bulletin No. 740. http://ageconsearch.umn.edu/bitstream/33687/1/ai980740.pdf 

retrieved on January 19, 2013. 

Aigner, D.J., Lovell, C.A.K., and Schmidt, P., 1977.“Formulation and Estimation of Stochastic 

Frontier Production Function Models,” Journal of Econometrics 6, 21-37. 

Andrews, DWK. 2000. Inconsistency of the bootstrap when a parametric is on the boundary of 

the parameter space. Econometrica 68: 399-405. 

Ball, V. E. Färe, R., Grosskopf,S., Hernandez-Sancho, F. and Nehring, F. R., 2002. The 

Environmental Performance of the US Agricultural Sector. In Agricultural Productivity: 

Measurement and Sources or Growth Studies in Productivity and Efficiency ed. Ball, V. Eldon, 

and Norton, W. George. Boston/Dordrecht/London: Kluwer Academic Publishers 258-274. 

Ball, V. E.., Färe, R., Grosskopf, S. and Nehring,F. R., 2001. Productivity of the U.S. 

Agricultural Sector: The Case of undesirable Outputs in New Developments in Productivity 

Analysis, ed. C. Hulten, E. Dean, and M. Harper. Chicago: University of Chicago Press, 541 – 

586. 

Ball, V. E., Lovell C. A. Knox., Luu, H., and Nehring, R., 2004. Incorporating Environmental 

Impacts in the Measurement of Agricultural Productivity Growth.  Journal of Agricultural and 

Resource Economics 29(3):436-460. 

Ball, E. Wang,S.  and Nehring, R., 2010. Agricultural Productivity in the U.S.  Economic 

Research Service. U.S. Department of Agriculture   http://www.ers.usda.gov/data-

products/agricultural-productivity-in-the-us/documentation-and-

methods.aspx#.UWeNiLVqkvE 

Battese, G. E.,1997. A Note on the Estimation of Cobb-Douglas Production Function when 

some Explanatory variable have zero values. Journal of Agricultural Economics, 48: 250–252. 

doi: 10.1111/j.1477-9552.1997.tb01149.x 

 

http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/documentation-and-methods.aspx#.UWeNiLVqkvE
http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/documentation-and-methods.aspx#.UWeNiLVqkvE
http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/documentation-and-methods.aspx#.UWeNiLVqkvE


Bogetoft, P. and Otto L., 2011. Benchmarking with DEA, SFA, and R, International Series 233 

in Operations Research & Management Science 157, Springer, NewYork 

Dordrecht,Heidelberg, London. 

Chaston, K. and Gollop, M., 2002. The Effect of Ground Water Regulation on Productivity 

Growth in the Farm Sector. In Agricultural Productivity: Measurement and Sources or Growth 

Studies in Productivity and Efficiency ed. Ball, V. Eldon, and Norton, W. George. 

Boston/Dordrecht/London: Kluwer Academic Publishers 277-291 

Coelli, J., T., Rao, Prassada, D.S., O’Donnell, J. C. and Battese, E. G.,2005.  An Introduction 

to Efficiency and Productivity Analysis. Second Edition, Springer, New York 340p. 

Coelli, J. and Hanningsen, A.,2012. A. Frontier a Package for Stochastic Frontier Analysis 

(SFA) in R http://cran.r-project.org/web/packages/frontier/index.html 

Cuesta, R., Lovell, C.A.K. and Zofio, J. L. 2009.  Environmental efficiency measurement with 

translog distance functions: A parametric approach. Ecological Economics, 68 8-9: 2232-2242. 

Cuesta, R. and Zofio., 2005.  Hyperbolic Efficiency and Parametric Distance Functions: With 

Application to Spanish Savings Banks. Journal of Productivity Analysis, 24, 31–48, 2005 

Environment Protection Agency , 2012. Inventory of US Greenhouse Gas Emissions and 

Sinks: 1990-2010. Environment Protection Agency(EPA), Washington DC. 

http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2012-Main-

Text.pdf .   

EPA, 1990. National Pesticide Survey.  Summary Results of EPAs National Survey of 

Pesticide in Drinking Water Wells, EPA, Washington DC 

EPA, 1998.  National Water Quality Inventory: 1998. Report to Congress 

Färe, R., 2005. New directions. Germany: Springer Science+Business Media, Inc. 

Färe, R.;Grosskopf, S.;Lovell, C.A.K.; Pasurka, C.,1989. Review of Economics & Statistics,  

Vol. 71, No. 1, p. 90-98 

Food and Agriculture Organization, 2006.  Livestock's long shadow :environmental issues and 

options. Food and Agriculture Organization of the United Nations,  Rome. 

ftp://ftp.fao.org/docrep/fao/010/a0701e/a0701e00.pdf 

Fulginiti, L.E. (2010). "Estimating Griliches' k-shifts" American Journal of Agricultural 

Economics, vol. 92(2010), 86-101. 

http://cran.r-project.org/web/packages/frontier/index.html


Henningsen, A. and Henning, H. C. A., C.,2009. Imposing regional monotonicity on translog 

stochastic production frontiers with a simple three-step procedure. Journal of Productivity 

Analysis December 2009, Volume 32, Issue 3, pp 217-229, 

Kellogg, R. L., Nehring, R.  Grube, A., Goss, D. W. and Plotkin, S., 2002. "Environmental 

Indicators of Pesticide Leaching and Runoff from Farm Fields." In Agricultural Productivity: 

Measurement and Sources of Growth, eds., V. E. Ball and G. W. Norton, pp. 213-256. Boston: 

Kluwer Academic Publishers, 2002. 

Kumbakhar, C.S., Gosh, S.  and McGuckin, J.T., 1991. A Generalized Production Frontier 

Approach for Estimating Determinants of Inefficiency in US Dairy Farms. Journal of Business 

and Economic Statistics, 9, 279-286. 

Morrison Paul,  C. J., Johnston, W. E. and Frengley, G. A. G., 2000. Efficiency in New 

Zealand Sheep and Beef Farming : The Impact of regulatory Reform *The Review of 

Economics and Statistics, May 2000, 82(2): 325–337. 

Orea, L., 2002. Parametric decomposition of a generalized malmquist productivity 

index. Journal of Productivity Analysis, 18(1), 5-22.  

Ruttan, V.W., 2002. Productivity Growth in World Agriculture: Sources and Constraints. 

Journal of Economic Perspectives—Volume 16, Number 4—Fall 2002—Pages 161–184 

Tilman, D., 2001. Forecasting agriculturally driven global environmental 

change.  Science, 292(5515), 281-284 

 


