
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

 

 

 

Examining Self-Selection and the Impacts of Integrated Pest Management 

Adoption on Yield and Gross Margin: Evidence from Ghana 

 

 

Victor Owusu and Isaac Larbi Kakraba 

Department of Agricultural Economics, Agribusiness and Extension 

Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 

 

 

 Abstract   

This article investigates the impact of Integrated Pest Management (IPM) adoption 

on yields and gross margins of vegetable farmers using survey data from the Ashanti 

Region in Ghana. A parametric approach that accounts for selection bias in IPM 

adoption is employed to evaluate the direct impact of adoption of pest monitoring 

only, pesticide application only and both pest monitoring and pesticides application 

on yields and gross margins. The empirical results from the study show selectivity 

effects for the impact of adoption of pest monitoring and adoption of both IPM 

practices on yields of vegetable farmers but no selectivity effects for the impacts on 

gross margins. Assessment of yield and gross margin of IPM adopters in sub-

Saharan Africa must account for selectivity effects.   
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1. Introduction 

The use of chemical inputs plays a crucial role in agricultural production in many developing 

countries, including Ghana. Although agro chemical use is effective in controlling pest and reducing 

yield loss, it has been associated with negative externalities on human health and the environment 

(Wilson and Tisdell, 2001). According to World Health Organization (WHO) standards, most of the 

pesticides used by vegetable farmers in Ghana are either banned or very toxic.  Mitigating the negative 

effects of increased pesticides use by smallholder farmers in developing countries has become 

paramount. To reduce the alarming rate of pesticide use in sub-Saharan Africa, strategies such as 

outright ban of toxic pesticides (Belder et al., 2006), the imposition of valorem Tax and VAT on 

pesticide (Agne, 2000, Dinham, 2003) have been implemented by various governments. However, 

banned pesticides eventually end up in the production systems of most developing countries (Dinham, 

2003; Belder et al., 2006)  making banning of toxic pesticides ineffective policy option in Sub-

Saharan Africa.  

In terms of environmental sustainability and profitability of agricultural production in 

developing countries, it is argued that IPM is an appropriate method that could minimize the use of 

pesticides (Wolff and Recke, 2000; Wilson and Tisdell, 2001; MoFA, 2011). Integrated Pest 

Management (IPM) strategies are effective for increasing agricultural production without upsetting 

the balance of nature while controlling pest (Fernandez-Cornejo, 1996). It empowers farmers to 

promote the health of crops with a well-balanced agro-ecosystem and emphasizes on the use of a 

combination non-chemical methods and judicious application of chemical inputs in production (Dent, 

2000). IPM practices may include the integration of biological, mechanical, cultural and pest 

management practices based on continuous pest monitoring (Alston and Murray, 2014). Although 

pesticides application is relevant in controling  pest and disease in agriculture, pest monitoring tends 

to be one of the principal elements in IPM implementation. Effective IPM requires regular field 

monitoring of pest conditions to the identification of the critical periods for the recommended 

pesticide application or other control measures.   

The growing body of literature on IPM in Africa have largely been limited to analyzing 

perceptions of pesticide use (Ntow et al., 2006), and the nature and determinants of IPM adoption 

(McNamara et al., 1991; Wolff and Recke, 2000; Mugisha et al., 2004; Hassan and Bakshi, 2005; 

Rasouli-Azar et al., 2008: Aubert et al., 2013). Others studies have focused on the uncertainty of IPM 

profitability (Abara and Singh, 1993), the benefits accrued from IPM (Dent, 2000), and the health-

related and environmental effects of adopting IPM practices (Fernandez-Cornejo and Ferraioli, 1999). 

Studies that have assessed the impact of IPM adoption have considered the reverse causality of the 

impact of Farmer Field Schools (FFS) on IPM adoption (Erbaugh et al., 2007). Less empirical 
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evidence therefore exist on the direct impact of IPM adoption on crop yields and returns of 

smallholder farmers in sub-Saharan Africa. Moreover, if the presence of unobserved characteristics 

are not accounted for, it may confound the estimation of yields and returns to IPM adoption. Notably, 

whether or not vegetable farmers self-select themselves into IPM adoption has not received much 

attention in the empirical literature. 

The empirical analysis in the current paper employs the parametric multinomial logit model 

that accounts for selection bias to examine the direct impact of adoption of IPM practices on yields 

and gross margins among vegetable farmers in the Ashanti region of Ghana. The impacts of IPM 

adoption, disaggregated by pest monitoring only, pesticides application only, and both pest 

monitoring and pesticides application on yields and gross margins are investigated. This paper 

provides an empirical contribution by employing the two-step multinomial logit model  suggested by 

Bourguignon et al. (2007). The approach, based on the multinomial logit model, allows us to attribute 

the selection bias in the estimation of the impact of adoption of IPM on yield or gross margin to the 

allocation of individuals with better or worst unobserved characteristics in IPM adoption, as well as 

linking the selection bias of individuals to each of the IPM alternatives. Section 2 lays out a simple 

model of IPM adoption, including the self-selection bias correction through the multinomial logit 

approach. Section 3 provides a description of the data used in the analysis. Section 4 discusses the 

empirical results. Conclusions and policy implications are presented in the final section. 

 

2. Conceptual framework 

We assume a linear specification for examining examining the impact of adoption of IPM practices 

on vegetable yields or gross margins. The yield or gross margin ( )
ik

Q  regression can be expressed as 

 

ik ik ik i
Q Z Jφ α ξ′= + +                                              (1) 

 

where i  represents individual, 
ik

Q is yield or gross margins for adopting pest monitoring only ( 1),k =

pesticide application only ( 2)k =  and both pest monitoring and pesticide application ( 3),k =  ξi  is a 

normal random disturbance term and 
ik

J is a [ ]0,1  dummy variable for adoption in IPM practice with 

1
ik

J =  if the individual adopts the IPM practice, and 0
ik

J = , otherwise. The vector 
ik

Z summarizes 

individual and household characteristics, including demographic characteristics, human capital, and 

asset structure. The decision of the individual to adopt IPM practice is based on the individual’s self-

selection rather than random assignment.  
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We assumed a dichotomous choice for IPM adoption, where the practice is adopted, if the net 

benefits from adoption are greater than non-adoption. The difference between the net benefits may 

be denoted as *
J , such that * 0J > . Although *

J  is not observable, it can be expressed as a function 

of observable elements in the following latent variable model:  

 

* ,ik ik iJ Xα µ= + *1 [ 0].iJ J= >
                                                                                                           

(2)  

 

where 
ik

J is a binary variable that equals 1 if the individual i adopts the IPM practice and 0 otherwise, 

α is a vector of parameters to be estimated,
ik

X is a vector of household and plot level characteristics 

and
i

µ  is an error term assumed to be normally distributed. The probability of adoption of IPM 

practice can be represented as: 

 

*Pr( 1) Pr( 0) Pr( ) 1 ( )ik ik i ik ikJ J X G Xµ α α= = > = > − = − −
                                                                    

(3) 

 

where G is a cumulative distribution function with logistic distribution. 

Selection bias occurs if unobservable factors influence both the error terms in the adoption ( )
i

µ  

and outcome ( )
i

ξ  equations, such that ( , ) .corr µ ξ ρ=  To correct this selectivity bias, we employ the 

two-step multinomial logit self-selection bias correction (BFG) approach proposed by Bourguignion 

et al. (2007). The advantages of using the BFG multinomial logit self-selection bias correction 

approach are that (i) it provides a fairly good correction even when there is the presence of 

unobservable characteristics by allowing for a more informative comparison of the impact of the 

probability of adoption in more than two IPM practices (ii) self-selection bias is corrected for the 

outcome equation, even when the “independence of irrelevant alternatives” (IIA) assumption 

hypothesis is violated.1 

The BFG approach proceeds in two-steps. In the first step, a multinomial logit model (MNL) 

that allows correlations between different IPM alternatives is estimated. The MNL is specified as: 

1
1 1

exp( )
( 0 | ) ;

exp( )
kk

X
P X

X

α
ε

α
< =

∑
1, 2,3k =                                                                                            (4) 

 

                                                           
1 See previous self-selection bias correction methods by Heckman (1979), Lee (1983), Dubin and McFadden (1984), 

Schmertmann (1994).  
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where * *

1 1
1

max( ) 0,k
k

J Jε
≠

= − < 1P  is the probability of adopting IPM alternative 1 , k  is a categorical 

variable describing the adoption of an individual in pest monitoring only ( 1),k =  pesticide application 

only ( 2),k = both pest monitoring and pesticide application ( 3)k = and non-adoption of any of the 

IPM practices. 
k

α  are the consistent maximum likelihood estimates, X is a set of explanatory 

variables for the IPM adoption alternatives.  

In the second step, the impact of adoption of pest monitoring only, pesticide application only, 

and both pesticide application and pest monitoring on yields or gross margins is specified as: 

* * * 32
1 1 1 1 1 1 2 2 3 3

2 3

ln ( ) ( ) ( )
( 1) ( 1)

k

PP
Q Z P P P

P P
φ λ ψ ψ ψ υ

 
= − Γ + Γ + Γ + 

− −                                                  

(5) 

where *

1 1 ,λψ *

1 2λψ and *

1 3λψ are the coefficients of the corrected selection bias terms; 1( ),PΓ 2( )PΓ and

3( )PΓ are the predicted probabilities from the multinomial logit model, 
k

υ  is the random error term 

with mean zero and orthogonal to all the terms on the RHS of (5) and the 1sφ are estimated with 

Ordinary Least Square (OLS).2 

 

3. Data description 

The data employed in the study comes from a cross-sectional data collected on three hundred urban 

vegetable farmers in the Kumasi metropolis of Ghana. The urban and periurban areas of Kumasi 

metropolis contribute significantly to the transformation of food systems in the country. Stratified 

random sampling was used to capture vegetable farmers who have been introduced to IPM practices. 

Specifically, the Kumasi metropolis has been stratified into six vegetable producing areas by the 

Agricultural Extension Agents (AEAs) of the Ministry of Food and Agriculture (MoFA) in the 

Ashanti region of Ghana.  These areas include Gyinyase, Georgia Hotel, Weweso, D-line, Manhyia, 

and Asokore Mampong. Fifty farmers were selected randomly from each of the six strata to obtain a 

total sample size of three hundred vegetable farmers for the study. The IPM practices investigated in 

the study include adoption of pest monitoring only, adoption of pesticide application only, and 

adoption of both pest monitoring and pesticide application. 

Table 1 presents the descriptive statistics of the variables used in the regression analyses. The 

data collected on the households provided information on individual characteristics, household 

composition, farm characteristics and other institutional characteristics. Also presented in Table 1 are 

the statistical differences between adopters of pest monitoring only and non-adopters, pesticide 

                                                           
2 OLS estimation procedure was used to estimate the outcome equation in the second step because the outcome 

specification captured only the treated for each IPM alternative. Hence the dependent variable for outcome is continuous 
and do not contain zero observations. 
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application only and non-adopters, and adopters of both IPM practices and non-adopters.3 It is evident 

that there are significant differences between the mean age of the farmer, contract farming, hired 

labour, availability of labour and extension contacts for adopters of pest monitoring only and non-

adopters. Similar significant differences were observed for adopters of pesticide application only and 

non-adopters. Apart from education, dependency ratio and farm size, the estimated average 

differences for all the other variables for adopters of both pesticide application and pest monitoring 

are statistically significant. 

TABLE 1 

 

The mean age of vegetable farmers adopting pest monitoring only and pesticide application 

only is about 49 years, whilst those adopting both IPM practices is about 51 years. The average 

number of years of education of adopters of both IPM practices exceed those adopting the individual 

practices. In terms of labour availability for IPM, the reverse seems to be the case. Adoption of pest 

monitoring only, pesticides application only, and both pest monitoring and pesticides application 

were all measured as dummy variables, indicating 1 if the farmer adopted any of these practices as 

IPM strategy.  About 21% of the sampled vegetable farmers adopted pest monitoring only, 56% 

adopted pesticide application only and 12% adopted both IPM practices. Yield was measured as the 

total output per hectare (GH¢/ha). The average yield for adopters of pest monitoring only is GH¢ 

939.9 (US$ 606.04) per hectare and that of pesticide application only is GH¢ 885.97(US$ 571.26) 

per hectare. 4  Gross margin analysis was used to determine the costs and returns of vegetable 

production for adopters and non-adopters of IPM practices. The gross margin is often used where 

fixed capital appears to be a negligible portion of the farming enterprise, especially in the case of 

smallholder vegetable production in sub-Saharan Africa. The gross margin of a vegetable farmer was 

computed as the difference between the total revenue and the variable costs.5 The average gross 

margin for adopters of both pest monitoring and pesticide application exceeds those adopting other 

IPM practice alternatives. The average gross margin of adopters of any the three IPM practice 

alternatives also exceeds that of non-adopters of the IPM practices.  

 

4. Empirical Results 

This section presents and discusses the empirical results from the parametric two-step multinomial 

logit estimation that correct for self-selection bias.  

                                                           
3 Non-adopters refer to the sub-group of farmers who have not adopted any of the existing three IPM practices. 
4 Exchange rate: 1US$= GH¢1.5157 in September 2011 
5 It is important to note here that the vegetable farmers did not report any sales costs. 
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4.1. Multinomial logit estimation results 

The first step in the two-step multinomial logit analysis involves an estimation of the probability to 

adopt IPM alternatives by the vegetable farmers given in equation (4). This step provides estimates 

of the determinants of IPM adoption as well as bias correction terms for the second step. Given that 

the coefficients from the multinomial logit presented in Table 2 are difficult to interpret, we provide 

the marginal effects of the estimates on  the adoption of pest monitoring only, pesticide application 

only, and adoption of both pest monitoring and pesticide application for better interpretation of the 

results (see Table 3). The base variable in the multinomial logit model is non-adoption of the three 

IPM alternatives. The estimates show that in each specification, the value of the 2χ square statistic 

from the Hausman and McFadden (1984) test does not violate the IIA assumption, as the null 

hypothesis is not rejected. This indicates that distinguishing between  adoption of  pest monitoring 

only, pesticide application only, and adoption of both pest monitoring and pesticide application 

satisfies the basic assumption in Dubin and McFadden (1984).  

TABLE 2 

The results in Tables 3 reveal that the probability of vegetable farmers adopting  pest monitoring 

only is significantly related to the positive marginal effects of the number of years of schooling and 

being a member of farmer-based organization. The finding on education is consistent with other 

empirical studies on the effect of education on adoption of IPM strategies (Dasgupta et al., 2004; 

Aubert et al., 2013). Also pointed out by Beckmann et al. (2006), farmers are more likely to adopt 

IPM strategies if they join farmer-based organizations (FBOs). Unlike adoption of pest monitoring 

only, membership of farmer-based organization tend to decrease the probability to adopt  pesticide 

application only among the vegetable farmers. The possible reason for this may be that as much as  

recommended pesticide application rates are crucial, one may not have to belong to an FBO before 

getting such information compared to pest monitoring which requires more knowledge-based 

approach and easy information flow environment to even detect during regular pest monitoring  of 

the pest conditions to the identification of critical periods for pesticide application or other control 

measures. 

 TABLE 3 

It is also clear that the likelihood of vegetable farmers adopting  pest monitoring only decreases 

with household size whilst the reverse is the case for farmers adopting both pest monitoring and 

pesticide application. These statistical results concur with the labor use hypothesis on adoption of 

IPM in that, vegetable farmers who adopt pest monitoring only may require less labor compared to 

adopters of both pest monitoring and pesticide application (Fernandez-Cornejo, 1996; Morse and 

Buhler, 1997; Pingali and Gerpacio, 1998; Ofuoku et al., 2009). The negative marginal effect of hired 
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labour use on the probability to adopt pest monitoring only and the positive marginal effect for the 

adoption of pesticide application only confirm our earlier preposition on the effect of labor on IPM 

adoption. The empirical results further show that increasing hired labor and for that matter, labor 

availabilty on the vegetable farm significantly increases adoption of pesticide application only 

compared to pest monitoring only. 

The results also indicate that as farm size or contract farming increases,  the propensity to adopt 

both pest monitoring and pesticide application by the vegetable farmers  tend to increase. The findings 

support the study by Hammond et al. (2006) who found a positive correlation between farm size and  

adoption of IPM by farmers. The empirical findings also lend credence to the hypothesis on the 

relationship between contract farming and pest control (Eaton and Shepherd, 2001). As the distance 

from the vegetable farm to the chemical input shop increases, the vegetable farmers tend to increase 

the adoption of pesticide application only but decrease the adoption of both pest monitoring and 

pesticide application. The empirical results also indicate that access to credit tends to increase the 

adoption of pest monitoring only but decreases the adoption of both IPM alternatives. Other variables 

of interest are the age of the farmer and extension contact, which tend to decrease the non-adoption 

of  the three IPM alternatives.  

 

4.2. Impact of Adoption of Integrated Pest Management  on Yields and Gross Margins 

The estimated results on the impacts of adoption of pest monitoring only, pesticide application only, 

and both pest monitoring and pesticide application on yields and gross margins of the vegetable 

farmers are presented in Table 4. Self-selection correction terms for non-adoption (mills 1), for pest 

monitoring only (mills 2), for pesticide application only (mills 3), and for both pest monitoring and 

pesticide application (mills 4) were generated in the first step multinomial model estimation and 

included in the three IPM impact specifications in the second step. We find some statistically 

significant selection bias correction terms after employing the BFG strategy, which confirms why we 

should use the BFG approach to account for unobserved characteristics of vegetable farmers when 

estimating the impacts of adoption of IPM strategies.  

TABLE 4  

The empirical results reveal a negative selectivity correction coefficient for non-adoption 

(mills 1) in the equation explaining the impact of adoption of pesticide monitoring only. This indicates 

lower yields for the farmers adopting pest monitoring only than randomly chosen vegetable farmers 

due to the vegetable farmers with better unobserved characteristics shifting from the adoption of pest 

monitoring only to non-adoption of the IPM alternatives. Exhibiting downward bias in yields, what 

the result suggests is that if selectivity bias correction was not taken into account, the yields of the 
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vegetable farmers who adopted pest monitoring only would have been overestimated (Dimova and 

Gang 2007). The possible reason for this observation is that perhaps the adoption of pest monitoring 

only led to inefficient allocation of resources and that individuals that would have been better-off 

adopting pest monitoring only rather shifted to non-adoption  of the three IPM strategies. Similar 

interpretations could hold for the significant negative selectivity bias correction terms for the adoption 

of both pest monitoring and pesticide application (mills 4) in the impact equation of adoption of pest 

monitoring only, the selectivity term for non-adoption of the three IPM alternatives (mills 1) in the 

impact equation of adoption of both pest monitoring and pesticide application, and the selectivity 

term for the adoption of pest monitoring only (mills 2) in the impact equation of both pest monitoring 

and pesticide application.  

The coefficient of the selectivity bias correction term for the adoption of pesticide application 

only (mills 3) is positive and significant in the equation explaining the impact of adoption of pest 

monitoring only. A positive selectivity bias correction coefficient related to pesticide application only 

in the equation explaining the impact of adoption of pest monitoring only suggests higher yields for 

farmers who adopt pest monitoring only compared to farmers chosen at random, due to the allocation 

of farmers with worse unobserved characteristics shifting from adoption of pest monitoring only to 

pesticide application only. The same interpretation holds for the positive selectivity correction term 

of the adoption of pesticide application only (mills 3) in the impact eqquation of adoption of both pest 

monitoring and pesticied application. However, we do not observe the presence of sample selection 

effects for the impact of the IPM practice alternatives examined in the current paper on gross margins 

of the vegetable farmers since none of the selectivity correction terms is statistically significant even 

at the 10% level.  

   

5. Conclusion and Policy Recomendations 

This study has investigated the impact of adoption of IPM practices on yields and gross margins of 

vegetable farmers after accounting for sample selection effects. These impacts were investigated for 

the adoption of pest monitoring only, adoption of pesticides application only and the adoption of both 

pest monitoring and pesticide application. The data used are from a survey on farm households in the 

Ashanti region of Ghana. A parametric BFG multinomial logit model was employed to account for 

selection bias that normally occurs when unobservable factors influence both adoption of IPM 

practices and yields or gross margins. The findings from the two-step multinomial logit model show 

selectivity effects for the impact of adoption of IPM alternative practices on yield of vegetable farmers 

but no selectivity effects for the impacts on gross margins, thus reiterating the effects of price and 

market incentives on the overall welfare of smallholder farmers in developing countries. 
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The findings presented in this study appear to support the growing interest of policy makers in 

promoting the use of IPM practices in sub-Saharan Africa.  Given the absence of organic methods for 

producing vegetables in most developing countries,  policy measures could target vegetable farmers 

in both urban and peri-urban areas of developing countries to improve their adoption in IPM practices. 

Improving the human capital base of rural households through easy access to education and informal 

training programs and facilitating easy access to institutional or informal micro-credit schemes are 

policy options needed to encourage the adoption of IPM practices with the goal of improving the 

yields of smallholder farmers and reducing the health-related risks of pesticide use in vegetable 

production in sub-Saharan Africa. 

 

References 

Abara, I. O. C., Singh, S.,1993. Ethics and Biases in Technology Adoption: The Small Farm 

Argument. Technological Forecasting and Social Change 43:289-300. 

Agne, S., 2000. The Impact of Pesticide Taxation on Pesticide Use and Income in Costa Rica’s Coffee 

Production. Pesticide Policy Project, Publication Series No. 2, 165 pp.  

Alston, D. and Murray, M. (2014). Vegetable IPM Practices In: Bunn, B. (ed), Utah Vegetable  

Production and Pest Management Guide. Utah State University IPM Program, pp 23-27. 

Aubert, M., Bouhsina, Z, Codron, J-M., Rousset, S., 2013. Pesticide Safety Risk, Food Chain 

Organization, and the Adoption of Sustainable Farming Practices. The Case of Moroccan 

Early Tomatoes Paper Presented to the 134th EAAE Seminar, Paris (FRA), March 21-22, 

2013. 

Beckmann, V., Irawan, E., Wesseler, J., 2006. The Effect of Farm Labor Organization on IPM 

Adoption:  Empirical Evidence from Thailand. Contributed paper prepared for presentation at 

the International Association of Agricultural Economists Conference, Gold Coast, Australia, 

August 12-18, 2006. 

Belder, E.D. Xiaoping, S., Van, D.T.H, Tuong, T.M., Tol, J.D.D.-V., 2006. Kick The Pesticide Habit: 

Forces Affecting Pesticide Use and Pesticide Policy in the Fringe of Hanoi and Nanjing, 

Stakeholders’ Perspectives and Policy Recommendations. Plant Research International B.V., 

Wageningen. Note 426. 

Bourguignon, F., Fournier, M., Gurgand, M., 2007. Selection bias corrections based on the 

multinomial logit model: Monte Carlo comparisons. Journal of Economic Surveys 21:174-

202  



11 
 

Dasgupta, S., Meisner, C., Wheeler, D., 2004. Is Environmentally-Friendly Agriculture Less 

Profitable for Farmers? Evidence on Integrated Pest Management in Bangladesh. World Bank 

Policy Research Working Paper 3417. 

Dent, D., 2000. Insect Pest Management. Second Edition. CABI Publishing, Wallingford, Oxon, UK. 

Dimova, R., Gang, I.N., 2007. Self-selection and wages during volatile transition. Journal of 

Comparative Economics 35:617-629. 

Dinham, B., 2003. Growing vegetables in developing countries for local urban populations and export 

markets: problems confronting small-scale producers. Pest Management Science 59(5):575-

82. 

Dubin, J.A., McFadden, D. L., 1984. An econometric analysis of residential electric appliance 

holdings and consumption. Econometrica 52 (2):345-62. 

Eaton, C., Shepherd, A. W., 2001. Contract farming: Partnerships for growth, A Guide.  FAO 

Agricultural Services Bulletin 145. Food and Agricultural Organization of the United Nations. 

Erbaugh, J.M., Donnermeyer, J., Amujal, M., 2007. Assessing the Impact of Farmer Field School 

Participation on IPM Adoption in Uganda. Proceedings of the 23rd Annual Conference of 

AIAEE, 2007.  

Fernandez-Cornejo, J., Ferraioli, J., 1999. The environmental effects of adopting IPM techniques: 

The case of Peach Producers. Journal of Agricultural and Applied Economics 31: 551-564. 

Fernandez-Cornejo, J., 1996. The microeconomic impact of IPM adoption: theory and application. 

Agricultural and Resource Economic Review 25(2): 149-160. 

Hammond, C. M., Luschei, E. C., Boerboom, C. M., Nowak, P. J., 2006. Adoption of integrated pest 

management tactics by Wisconsin Farmers. Weed Technology 20 (3):756-767 

Hassan Rejaul A.S.M., Bakshi, K., 2005. Pest management, productivity and environment: a 

comparative study of IPM and conventional farmer of North Districts of Bangladesh. Pakistan 

Journal of Social Science 3(8):1007-1014 

Hausman, J., McFadden, D., 1984. Specification tests for the multinomial logit model. Econometrica 

52(5):1219-1240. 

Heckman ,J.J. 1979. Sample selection bias as a specification error. Econometrica 47 (1):153-61. 

Lee L-F., 1983. Generalized econometric models with selectivity. Econometrica 51 (2):507-12. 

McNamara, K. T., Wetzstein, M.E., Douce, G.K., 1991. Factors affecting peanut producer adoption 

of integrated pest management. Review of Agricultural Economics 13 (1): 129-139. 

MoFA, 2001.  Pest Management Plan (PMP). Ghana Commercial Agriculture Project (GCAP) Final 

Report. Ministry of Food and Agriculture, November 2011.   



12 
 

Morse, S., Buhler, W., 1997. Integrated Pest Management: Ideals and Realities in Developing 

Countries. Boulder: Lynne Rienner Publishers. Rausser (eds.). Handbook of Agricultural and 

Resource Economics. Amsterdam: North Holland. 

Mugisha, J., Ogwalo, R., Ekere, W., Ekiyar, V., 2004. Adoption of IPM groundnut production 

technologies in Eastern Uganda. Africa Crop Science Journal 12 (4):383-391. 

Ntow W. J., Gijzen H. J., Kelderman P., Drechsel P., 2006. Farmer perceptions and pesticide use 

practices in vegetable production in Ghana. Pest Management Science  62 (4): 356-365 

Ofuoku, A.U., Egho, E.O., Enujeke, E.C., 2009. Integrated Pest Management (IPM) adoption among 

farmers in Central Agro-Ecological Zone of Delta State, Nigeria. Advances in Biological 

Research 3 (1-2): 29-33. 

Pingali, P.L., Gerpacio, R.V., 1998.Toward Reduced Pesticide Use for Cereal Crops in Asia. In: Lutz, 

E. (ed), Agriculture and the Environment: Perspectives on Sustainable Rural Development. 

Washington, D.C.: World Bank, 254-270 

Rasouli-Azar, S., Feli, S., Chizari, M., 2008. Affecting Factors on Satisfaction and Effectiveness of 

Integrated Pest Management FFS Courses from the Viewpoint of Farmers in Mahabad City. 

In: First National Conference on Management and Sustainable Agricultural Development, 

Shoushtar. pp: 466-461  

Schmertmann, C.P., 1994. Selectivity bias correction methods in polychotomous sample selection 

models. Journal of Econometrics  60:101-132  

Wilson, C., Tisdell, C., 2001. Why farmers continue to use pesticides despite environmental, health 

and sustainability costs. Ecological Economics 39(3):449-462. 

Wolff, H.,  Recke, G., 2000. Path dependence and implementation strategies for integrated pest 

management . Quarterly Journal of International Agriculture 39 (2):149-171. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Tables and Figures 

 

Table 1: Variable definition and descriptive statistics 
Variable Definition Pest 

monitoring 
only 

 N=64(21%) 

Pesticide 
application 

only 
N=168(56%) 

Both 
 N=35 (12%) 

Non-adopters 
N=33(11%) 

Outcome variables     
Yield Output per hectare 

(GHC/ha) 
939.92 

(489.39) 
885.97 

(431.58) 
857.54 

(398.23) 
941.70 

(381.98) 
Gross 
margin 

The difference between 
revenue and costs  

  1723.57*** 
(745.57) 

1380.59*** 
(832.30) 

2174.71*** 
(711.60) 

1095.21 
(464.10) 

Independent variables     
Household characteristics     
AGE Age of farmer in years 48.81** 

(8.07) 
49.30*** 

(9.13) 
50.37*** 
(7.62) 

43.5 
(9.65) 

EDU Number of years of 
formal education 

6.16 
(5.92) 

4.85 
(5.07) 

5.31 
(6.15) 

5.06 
(5.07) 

DPRATIO Dependency Ratio  
( >16 and > 65) to the 
working age (16-65)  

0.49 
(0.41) 

0.45 
(0.45) 

0.70 
(0.42) 

0.58 
(0.50) 

HHSIZE Household size 6.44 
(2.27) 

6.60 
(2.45) 

7.23* 
(2.72) 

6.15 
(3.01) 

AVAILAB 1 if labor is readily 
available, 0 otherwise 

0.80 
(0.41) 

0.80*** 
(0.40) 

0.77*** 
(0.43) 

0.39 
(0.50) 

Farm characteristics     
FSIZE Area of land under 

vegetable cultivation (Ha)
1.31 

(0.81) 
1.43 

(0.99) 
1.11 

(0.76) 
1.35 

(0.97) 
CFARM if farmer is practicing 

contract farming 
0.56*** 
(0.50) 

0.50** 
(0.50) 

0.66*** 
(0.48) 

0.24 
(0.44) 

DISTPEST Distance from farm to 
pesticide sales center 
(Km) 

3.09 
(3.22) 

4.46 
(4.89) 

2.09*** 
(1.12) 

5.39 
(4.72) 

 
HLAB 1 if farmer employed 

hired labour, 0 otherwise 
0.44* 
(0.50) 

0.66*** 
(0.47) 

0.54*** 
(0.51) 

0.24 
(0.44) 

Institutional characteristics     
FBO   1 if farmer is a member    

 of farmer-based   
 organization, 0 otherwise  

0.33 
(0.47) 

0.13 
(0.33) 

0.46*** 
(0.51) 

0.18 
(0.39) 

ACSCRED 1 if farmer has access to 
credit, 0 otherwise 

0.67 
(0.47) 

0.60 
(0.49) 

0.29** 
(0.46) 

0.58 
(0.50) 

EXTVISIT Number of extension 
visit in a month 

2.91 
(1.92) 

2.88** 
(1.94) 

3.51*** 
(1.62) 

1.94 
(1.54) 

Note: Asterisks (* and **) indicate statistically significant differences in the respective variables between the 
two subsamples (i.e., adopters of the IPM practice and non-adopters). The null hypothesis of no difference 
was tested using a simple t-test. 
Standard deviations are in parentheses 
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Table 2: Coefficients of Multinomial Logit Estimates of Adoption of IPM Practices 

VARIABLES Pest 
Monitoring 

only 

Pesticides 
Application 

only 

Both Pest Monitoring 
and Pesticide 
Application  

AGE 0.097** 0.073* 0.051 
 (0.043) (0.041) (0.051) 
EDUC 0.109** 0.056 0.131** 
 (0.053) (0.049) (0.063) 
DPRATIO -1.027 -0.816 0.490 
 (0.705) (0.653) (0.804) 
HHSIZE -0.321** -0.204 0.029 
 (0.162) (0.152) (0.183) 
FSIZE 1.144** 0.881** 1.667*** 
 (0.451) (0.412) (0.590) 
CONTFARM 1.717*** 1.401** 2.663*** 
 (0.617) (0.571) (0.741) 
HLAB 0.736 1.816*** 0.869 
 (0.611) (0.557) (0.715) 
AVAILAB 1.759*** 1.934*** 1.542** 
 (0.567) (0.505) (0.673) 
DISTPEST -0.314*** -0.188*** -0.695*** 
 (0.094) (0.071) (0.259) 
FBO 1.428* 0.050 1.591* 
 (0.781) (0.762) (0.842) 
ACSCRED 0.791 0.316 -1.570** 
 (0.615) (0.556) (0.730) 
EXTVISIT 0.457** 0.463*** 0.619*** 
 (0.189) (0.178) (0.202) 
Constant -5.821*** -4.354*** -7.230*** 
 (1.733) (1.545) (2.132) 

Log-likelihood  -264.342  
Pseudo R-squared  0.2323  
Chi-square (36)  159.95***  
Observations  300  

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3: Marginal Effects of Adoption of IPM Practices from Multinomial Logit Model  

VARIABLES Pest monitoring 
only 

Pesticides 
Application 

only 

Both  Non-
adoption 

AGE 0.005 -0.001 -0.001 -0.003* 
 (0.004) (0.005) (0.001) (0.002) 
EDUC 0.009* -0.009 0.003 -0.003 
 (0.005) (0.006) (0.002) (0.002) 
DPRATIO -0.057 -0.024 0.051* 0.030 
 (0.067) (0.073) (0.028) (0.025) 
HHSIZE -0.025* 0.007 0.010* 0.008 
 (0.015) (0.016) (0.006) (0.006) 
FSIZE 0.047 -0.041 0.029* -0.036** 
 (0.046) (0.049) (0.015) (0.017) 
CONTFARM 0.057 -0.046 0.050** -0.061** 
 (0.057) (0.064) (0.026) (0.026) 
HLAB -0.165*** 0.250*** -0.023 -0.062** 
 (0.061) (0.063) (0.020) (0.028) 
AVAILAB 0.003 0.122 -0.009 -0.116*** 
 (0.067) (0.077) (0.022) (0.047) 
DISTPEST -0.019 0.029** -0.019*** 0.009*** 
 (0.012) (0.013) (0.006) (0.003) 
FBO 0.257*** -0.296*** 0.056 -0.018 
 (0.085) (0.084) (0.036) (0.020) 
ACSCRED 0.106* 0.004 -0.098** -0.012 
 (0.059) (0.071) (0.044) (0.021) 
EXTVISIT 0.002 0.009 0.007 -0.017** 
 (0.015) (0.017) (0.005) (0.007) 

Observations 300 300 300 300 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Impacts of Adoption of IPM Alternatives on Yield and Gross Margin  

 Pest Monitoring  
Only 

Pesticide 
Application 

 Only 

Both Pest Monitoring 
and Pesticide 
Application 

VARIABLES Yield  Gross 
Margin 

Yield  Gross 
Margin 

Yield  Gross 
Margin 

AGE -1.091** 0.045 -0.167 -0.448 -0.134 -0.560 
 (0.412) (1.039) (0.184) (0.317) (0.101) (2.234) 
EDUC 0.683 0.112 -0.246 0.072 0.134 -3.291 
 (0.855) (1.742) (0.302) (0.372) (0.214) (4.254) 
HHSIZE 4.840** -1.190 0.671 2.058 0.091 1.040 
 (1.819) (3.721) (0.851) (1.466) (0.572) (13.055) 
DPRATIO 26.403*** -2.904 1.801 9.927 3.918* -10.421 
 (4.654) (13.720) (3.945) (6.822) (2.006) (49.892) 
FSIZE 0.748 -2.989 -1.924 -0.515 -1.535 -21.627 
 (5.222) (13.012) (2.483) (3.121) (1.193) (28.653) 
CONTFARM 0.242 -6.539 -2.529 -0.973 -5.203*** -33.580 
 (7.327) (20.060) (3.734) (4.812) (1.697) (43.496) 
HLAB -47.268** -15.208 2.183 -12.806 -22.166*** 53.833 
 (18.228) (50.752) (5.566) (10.833) (5.083) (96.057) 
AVAILAB -33.320*** -7.384 -1.369 -10.764 -13.766*** 10.621 
 (7.163) (30.373) (3.557) (7.556) (1.753) (36.968) 
DISTPEST -5.259** 0.847 0.689 -1.454 -0.791 12.149 
 (2.437) (5.473) (1.375) (1.791) (0.728) (16.934) 
FBO 31.280 8.569 -5.144 6.866 13.786** -76.659 
 (21.883) (47.079) (6.915) (9.588) (5.811) (110.959) 
ACSCRED -25.349*** 9.975 -2.102 -10.433 2.296 9.446 
 (7.529) (15.035) (4.779) (8.031) (3.174) (77.700) 
EXTVISIT -4.392*** -2.451 -0.480 -1.520 -2.930*** -2.660 
 (1.532) (6.422) (0.690) (1.342) (0.297) (8.131) 
mills1 -3.423*** -0.927 -0.247 -1.186 -1.539*** -0.295 
 (0.800) (3.458) (0.405) (0.832) (0.147) (3.565) 
mills2 -2.176 -2.286 0.857 -0.003 -2.550** 8.910 
 (3.498) (7.202) (0.808) (1.271) (0.959) (18.504) 
mills3 7.952** 2.595 -0.616 1.998 3.752*** -12.145 
 (3.778) (9.449) (1.116) (1.920) (1.045) (19.731) 
mills4 -3.271*** 0.747 0.025 -1.160 -0.130 3.448 
 (0.569) (1.540) (0.611) (0.928) (0.301) (7.861) 
Constant 3.403 12.494 11.026 6.360 4.552 103.092 
 (27.060) (64.433) (11.609) (14.482) (5.897) (132.541) 

Observations 64 64 168 168 35 35 
F ( , )n n k−  31.89*** 1.74* 7.92*** 1.59* 20.462*** 2.97*** 

R2 0.468 0.261 0.284 0.099 0.998 0.352 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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