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Abstract  

This study investigates the impact of package adoption of inorganic fertilizers and improved 

maize varieties on yield among smallholder households in Kenya. We used a blend of the 

quasi-experimental difference-in-differences approach and propensity score matching to 

control for both time-variant and time-invariant unobservable household heterogeneity.  

Our findings show that inorganic fertilizers and improved maize varieties significantly 

improve yields when adopted as a package rather than as individual elements. The impact is 

greater at the lower end of the yield distribution than at the upper end, and when technical 

efficiency of the farmers improves. A positive effect of partial adoption is experienced only in 

the lower quantile of the yield distribution. The policy implication is that complementary 

agricultural technologies should be promoted as a package, and should target households 

and areas which are already experiencing low yields.  
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1. Introduction 

For most sub-Sahara African countries, the adoption of sustainable agricultural practices that 

enhance agricultural productivity and improve environmental outcomes remains the most 

pragmatic option for achieving economic growth, food security and poverty alleviation. This 

underscores the role of agricultural research and technological improvements, in particular, 

research that targets smallholder households (households that cultivate 2 hectares of land or less), 

the environments within which they operate, and their most common crops. However, mere 

research and technology development is inadequate because its adoption may be totally absent, 

partial or even reversed due to disadoption. The relationship between technology adoption and 

agricultural productivity is, however, a complex one that is influenced and shaped by farm and 

farmer characteristics, access to extension and financial services, risk preferences, social capital, 

and farm size, among other factors (Barrett et al. 2005; Foster and Rosenzweig 1995). 

 Maize is vital for global food security and poverty reduction. In Africa, maize is the most widely 

grown staple crop. This importance of maize is rapidly expanding to Asia. Due to the increasing 

demand for feed and bio-energy, the demand for maize is growing and is expected to double by 

2050 (Rosegrant et al. 2007). Unfortunately for many farmers in Africa, maize yields (output per 

acre) have fallen in the last decade, in spite of improvements in agricultural technologies (Suri 

2011). This is further complicated by the threat of climate change, which will make it more 

difficult to meet the growing demand for maize (Rosegrant et al. 2009). This is worrisome for 

economic and social policies aimed at increasing food production and agricultural incomes. 

Understanding persistently low technology adoption and its impact in the maize sector motivates 

our interest in this study. Field trials at agricultural stations across Kenya have developed high-

yielding seed varieties, optimal fertilizer application rates and increased farmer field days as 

demonstration projects (see Karanja 1996; Duflo et al. 2008). Despite this, adoption rates of 

improved maize varieties and fertilizers remain low and widely varying across regions. This is in 

sharp contrast to other countries such as the United States that have fully adopted high yielding 

varieties (HYV), (Dorfman 1996). In spite of the higher productivity of certified seed and 

fertilizer relative to other practices, small scale farmers are seen to be slow in adoption. Many 
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attempts have been made to investigate the reasons for the partial adoption, but few have studied 

the subsequent impact of packaged multiple technologies. An attempt to establish whether a 

technology yields high returns and thus merits promotion faces several fundamental challenges. 

First, there is over-reliance on field station trials in which labour, fertilizer use and other inputs 

are very carefully controlled. Yet, it is difficult to approximate ex post how these variables 

operate under prevailing farmer conditions. Farmers face many constraints that affect their 

adoption decisions. Hence, establishing the actual gains attributable to a particular technology 

poses methodological difficulties. Second, past research has put too much emphasis on single 

technologies. Yet, farmers are observed to practice various combinations of multiple 

technologies in light of their binding constraints. Last, historical context and policy antecedents 

influence contemporary technology adoption decisions. For instance, fertilizer application 

demands high levels of information and knowledge. Thus, the individual farmer may at first 

suffer low pay-offs before benefitting from the knowledge gained. This implies that the value of 

adoption would increase with time as more farmers gain experience with the technology. This is, 

of course, true for accumulated experience in choosing fertilizer type and dosage for various 

crops. Analysis of technology impacts without controlling for this path dependence may either 

overestimate or underestimate the influence of various technologies. 

The present study examines the impact of adopting certified seed practices and fertilizer as a 

package on yield by maize farmers in Kenya. More important, we examine how farm 

management practices influence these impacts by simulating technical efficiency change 

scenarios. The objective is to determine the yield differences between adopters and non-adopters 

of improved maize varieties and inorganic fertilizers taking into account that the level of farmer 

efficiency could play an important role. Substantial gaps in knowledge exist as to the 

productivity impacts of the package adoption decisions. Evaluation studies of this nature have 

been limited, perhaps constrained by lack of appropriate data. Most of the previous studies have 

relied on experimental data, yet farmers do not operate under controlled conditions, and therefore 

results from experiment stations are unlikely to be replicated in farmers’ fields. Thus, using 

household plot-level panel data, this study was able to control for the confounding factors and 
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provide empirical evidence on the effect of improved maize varieties and inorganic fertilizer on 

crop yield in Kenya’s smallholder crop agriculture.  

We find that inorganic fertilizers and improved maize varieties improve yields. The magnitude of 

the effect of these technologies on yield, however, depends on whether a farm household adopts 

a complete package, and on the current yield levels. Adoption of the complete package of 

technologies (planting fertilizer, improved maize varieties and top dressing fertilizer) dominates 

both partial adoption and non-adoption. These effects are largest among households falling 

within the lower quantiles of the yield distribution (25
th

 and 50
th

 quantiles). Partial adopters are 

better off than non-adopters only at the lower end of yield distribution (25
th

 quantile). At the 75
th

 

quantile, this trend is reversed. We further find that, with increased efficiency, the effect of 

inorganic fertilizers and improved maize varieties on maize yield becomes even larger.  

The knowledge and information generated may be useful in rectifying the situation and giving a 

boost to the region’s maize sector. Better understanding of the impact will help redress the policy 

failures experienced thus far with technology adoption in the region. We contribute to the 

growing literature on the impact of adopting multiple technologies in maize production among 

smallholder farmers. Additionally, we provide a micro-perspective on the effect of improved 

maize varieties and inorganic fertilizer on smallholder land productivity. These findings are 

important for providing feedback to agricultural technology development research and offering 

evidence to policy makers and technology disseminators on the results of the technologies under 

practical conditions in farmers’ fields. 

The remainder of the article is organized as follows. The next section discusses the literature on 

inorganic fertilizer and improved maize varieties and how they affect yields; the following 

section discusses the challenges of estimating the impact of improved technologies on crop yield 

before exploring the estimation strategy used. Data used in the analysis are described in the 

fourth section and results are discussed in the fifth section. The final section concludes and 

provides policy implications. 
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2. Inorganic Fertilizer, Improved Maize Varieties and Productivity 

It has been widely anticipated that agricultural technology development and adoption would 

trigger “Green Revolution” in Africa. Unfortunately, the large increases in yield and production 

that characterised “green revolution” in Asia are yet to be witnessed in Sub-Saharan Africa (see 

Adekambi et al., 2009). This makes it imperative to investigate why the large yield increases 

associated with improved seed varieties and/or inorganic fertilizer at experimental plot level have 

not been replicated in the farmers’ fields. Consequently, a number of studies have traced the 

impact of improved technologies on crop yield at farm level. 

In Kenya, most of the previous studies that have evaluated the impact of improved technologies 

on yields have relied on experimental data. For example, the Fertilizer Use Recommendation 

Project (FURP) studied 70 sites across the country in the early 1990s in conjunction with the 

Kenya Maize Database Project (MDBP). Kenya Agricultural Research Institute has also 

conducted many trials at their experimental stations. Both FURP and KARI used experimental 

approaches but their results were significantly different. Yield levels recorded by FURP were 

50% lower than those recorded by KARI. Hassan et al. (1998), thus, combined experimental data 

generated by FURP with survey data to evaluate the impact of inorganic fertilizer use on maize 

yield. They observed that optimal use of fertilizer would lead to about 30% rise in yields. In the 

same vein, Duflo et al. (2003) used controlled field experiment in western Kenya to test the yield 

change attributable to top-dressing fertilizer. They noted a yield rise ranging between 28% and 

134% for two cropping seasons. 

De Groote et al. (2005), using an econometric approach, analysed the maize green revolution in 

Kenya using farm level surveys between 1992 and 2002. They found that intensity of fertilizer 

use had a major effect on maize yield. However, the use of improved maize varieties did not 

have any effects on the yields, an indication that some local varieties could perform as well as 

the improved varieties in some areas. The yield-enhancing effects of fertilizer and improved 

maize varieties are confirmed by Owino (2010), who used experimental data in the Trans Nzoia 

District. Owino further noted that the yields varied with different improved varieties, fertilizer 

types and intensity, and management practices. 



  

6 

 

Marenya and Barrett (2009), in an interesting study of fertilizer interventions in Western Kenya, 

found that fertilizer application is beneficial to farmers with high soil organic matter (SOM). The 

implication is that plots with poor, degraded soils limit the marginal productivity of fertilizer. 

The finding suggests that fertilizer interventions are not very helpful for poorer farmers who 

largely cultivate soils deficient in SOM. Suri (2011), using a dataset similar to ours, also found 

that not all farmers benefit from fertilizer use, despite the presence of high average returns. 

These findings challenge conventional wisdom and call for further work, especially among the 

poor who require multiple inputs in response to a new technology. Understanding the distribution 

of yield as a result of the use of multiple technologies and varying farmer efficiency levels is 

important for policy design and targeting. This approach is especially important for 

understanding the results of new technologies on farms that are actually worked by farmers, 

which is a different situation from evaluating results in highly monitored field experimental 

plots. 

3. Methodology  

Here we discuss the theoretical underpinning of the study and the analytical approaches used. 

3.1 Theoretical model  

While a few improved maize varieties are developed to directly increase yield, most of them only 

increase yields indirectly by mitigating adverse effects of drought, heat, excess moisture, weeds 

(e.g. Striga), pests, frost, nitrogen-deficiency, diseases (e.g. ear rot, grey leaf spot, maize streak 

virus, northern leaf blight, smut and rust), wind, and stalk and root lodgings. Similarly, inorganic 

fertilizers mitigate depletion of soil nutrients. Thus, the technology package of improved maize 

varieties and fertilizers may be viewed from the perspective of damage control rather than direct 

yield enhancement. Therefore, following Ameden, Qaim, and Zilberman (2005), this study 

adopts damage control framework suggested by Lichtenberg and Zilberman (1986). Assuming 

constant-returns-to-scale agricultural production function of maize, the effective yield is viewed 

as a product of potential output, ),,( zf j and damage abatement, ),( Nxgi  (Eq. 1).  
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 ),(),( ijjijiij zfNxgy                                                                                                      (1) 

Potential output is the maize output that would be realized in the absence of the damage factors. 

That is, if the factors being targeted by improved maize varieties and inorganic fertilizers did not 

exists or occur in a given maize plot. It is an increasing function of production inputs, z, and 

heterogeneity indicator, α, which is a function of human capital, climatic conditions and plot 

quality. Damage abatement is the proportion of maize harvest that would have been lost had 

there been no investment in damage control. It is increasing at a decreasing rate as the farmer 

uses alternative damage controlling inputs, ,x  such as pesticides and herbicides, and decreasing 

as prevalence of damage-causing factors, N, diminish. 

Farmers face four distinct technology package options: local seed-no inorganic fertilizer               

( ),0,0  ji improved seed-no inorganic fertilizer ( ),0,1  ji  local seed-inorganic fertilizer      

( ),1,0  ji  improved seed-inorganic fertilizer ( ).1,1  ji  We define the first option as no-

doption state, the second and third as partial adoption state, and the last as the full package 

adoption state. 

From the foregoing, the farmer’s problem may be defined as: 

 ijijijijjijiijjixz IvxwzzfNxpgMax  ),(),(,,,                                                           (2), 

where p, w, and v are exogenous prices for output, production inputs and alternative damage 

control inputs, respectively while ijI is the cost of technology option .ij  

The technology package option that yields the highest expected profits subject to the binding 

costs constraints is adopted by the farmer. Profit-maximizing inputs, conditional on technology 

option, are functions of prices and land quality. Thus, solving the farmer’s problem recursively; 

 ),,,(** Npvwxx ijij                                                                                                               (3) 

 ),,,(** Npvwzz ijij                                                                                                               (4) 
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By substituting optimal inputs into the profit function, maximum profits under each technology 

are obtained. The farmer is then able to choose the technology package option which generates 

the highest expected non-negative profits. 

Understanding the optimality conditions is important for ultimate analysis of impact of adoption 

of a technology package option: 

a) Partial or full package adoption of damage control technologies increases effective yield, 

holding growth conditions constant. This is true so long as damage-causing factors exist 

within the farmers’ fields; 

b) Yield gains from damage control technologies increase with the severity of the damage-

causing factors and price of alternative damage control inputs. This gain is computed as 

the difference between yields in adoption state and yields in non-adoption state of a 

technology package option: 

),(),( 01 NxgNxgg jj                                                                                     (5),                          

So 0/  dNgd and 0/  dvgd . 

c) Adoption of damage control technologies may increase the use of other production inputs 

or improve the manner in which they are managed so long as input prices remain 

unchanged. This increases potential output which in turn increases effective yield beyond 

the pure effect of damage abatement. While experimental plots are able to estimate only 

the pure technology effect (or “gene effect” in the case of maize variety), the yield effect 

which works through the potential yield function is important and must not be ignored in 

estimating the technology effect. Although our data do not allow us to test the impact of 

adoption of improved maize varieties and/or inorganic fertilizers on the use of other 

inputs, we hypothesize that this impact could manifest in the change in technical 

efficiency of the farmer. Our subsequent analysis, therefore, incorporates this additional 

yield effect through simulation based on technical efficiency change scenarios. This 

makes our estimation of impact of improved technologies on yields unique among the 
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previous approaches. Thus, the total change in effective yield due to adoption of 

improved maize varieties and/or inorganic fertilizers can be decomposed as: 

jzjj gfgyyy 101                                                                                   (6), 

Where g is the yield effect arising from damage abatement due to adoption of improved 

maize varieties and/or inorganic fertilizers while jz gf 1 is the yield effect of technical 

efficiency change due to change in production input use occasioned by technology 

adoption. 

d) Yield gains due to adoption of technology package option may vary with heterogeneity 

factors, α, and quality of plots cultivated. While some of these factors may be observable 

(and easy to control for), others may be unobservable (and difficult to control for). 

Failure to control for these factors, however, leads to biased estimates of effects of 

technology adoption. Thus, the essence of good evaluation is to either eliminate the bias 

(hardly achievable) or minimize it as much as possible. 

From the above theoretical underpinning, adoption of improved maize varieties and/or inorganic 

fertilizers increases maize yield through damage abatement and/or increasing potential output 

due to increased use of other production inputs. However, isolating the contribution of these 

improved technologies to productivity is not trivial. How can we be sure that the yield 

differences between adopters and non-adopters of improved maize varieties, inorganic fertilizers, 

or both are due to adoption of these technologies? With experimental data, we would have the 

counterfactual information on which to base the causal inference. But without experimental data, 

the researcher would have to contend with two potential problems. The first problem is self-

selection, which arises because households decide whether to adopt the improved maize varieties 

and inorganic fertilizers based in part on their expectation of the benefits. The second problem is 

related: farm households could be systematically different in their demands for the improved 

maize varieties and inorganic fertilizers. Therefore, unobservable characteristics of farmers and 

their farms may affect both the adoption decision and the productivity outcome. Thus, evaluation 

must account for both heterogeneity of the farm households and endogeneity of adoption of 

improved maize varieties and inorganic fertilizers. 
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3.2 Estimation Strategy 

Our estimation strategy is to overcome bias arising from both observable and unobservable 

factors which are either time-invariant or time-variant. Consequently, we augment Difference-in-

Differences (DID) as suggested by Smith and Todd (2005) with Propensity Score Matching 

(PSM). The novelty of using PSM is that the eventual computation of the impact of technology 

adoption is restricted to adopting and non-adopting households which are matched in terms of 

observable characteristics (Dehejia and Wahba, 2002; Smith and Todd, 2005). This helps in 

controlling endogeneity bias due to observable time-variant factors. DID, on the other hand, 

controls for the endogeneity of adoption of improved maize varieties and inorganic fertilizers 

among the farm households arising from unobserved fixed effects. This provides consistent 

estimates of the impact of improved maize varieties and inorganic fertilizers on maize yields 

(Abadie 2005). Although DID cannot control for the effects of time-varying unobservable 

factors, it is highly likely that these factors would affect the matched households in similar ways. 

Thus, using PSM and DID jointly in analysing the effect of improved maize varieties and 

inorganic fertilizers on maize yield controls for both time-variant and time-invariant observable 

and unobservable factors. 

To introduce the influence of management (change in use of inputs due to adoption of improved 

maize varieties and/or inorganic fertilizers) on the yield, we computed the technical efficiency 

(TE) scores of the farm households in maize production for 2004-2007 period. Data envelopment 

analysis (DEA) approach was used (see Coelli 1995; Coelli et al. 1998 for details). Scenarios of 

TE changes were then developed and yield differences between complete, partial and non-

adopters re-computed. 

For brevity, we exclude the discussion on PSM and DEA, and concentrate on DID from which 

the ultimate results were derived. We treat PSM, not as an evaluation method parse, but as a tool 

for screening the households on which DID approach is eventually applied.  



  

11 

 

For this study, the DID estimator is the difference in average maize yield among the adopters of 

improved maize varieties and inorganic fertilizers between the baseline and follow-up periods, 

minus the difference in average yield among the non-adopters for the same periods. It is derived 

from the difference of the first difference (FD) estimators of the two groups. The two-period 

panel data FD estimator is specified as follows: 

11101 iiii XY  
                                                                           (7)                                                                                       

  22202 )( iiii XY  
                                                                (8)  

Subtracting (7) from (8) yields: 

iii XY  
,                                                                               (9)   

 where iY  is the maize yield, iX  is a vector of exogenous variables, i  is the error term 

and   is the differencing operator. The unobserved effect, i , has been differenced away (which 

is the main advantage of this approach because the requirement that i  be uncorrelated with itX

is no longer necessary). This implies that time-invariant unobserved heterogeneity is no longer a 

problem in the analysis of the effect of adoption of improved maize varieties and inorganic 

fertilizers on maize yield.  measures the change in intercept while  is the coefficient of change 

in independent variables between the two periods. Equation 9 is computed for both the adopters 

and the non-adopters of improved farm technologies. Consequently, DID is computed as: 

  NAA FDFDDID 
 ,                                                                              (10) 

where AFD is the maize yield change for the adopters of improved maize varieties and 

inorganic fertilizers between the baseline period and the follow-up period, while NAFD is the 

yield change for the non-adopters for the same periods. 

The DID approach has the advantage of capturing variations over time by estimating time-

varying parameters (Abadie 2005). However, the approach is not able to eliminate time-varying 

unobserved heterogeneity. As indicated earlier, this motivated the use of PSM to restrict the 
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analysis to adopting households suitably matched with non-adopting households on observable 

characteristics.  The matching was done using the baseline data. 

Other approaches that have previously been used to address the problem include: the Heckman 

two-step method, which is based on a strong assumption of normality of distribution of the 

unobserved variables and linearity of the conditional expectation of it given it (Olsen 1980); 

and the Instrumental Variable (IV) approach, which imposes a linear functional form 

assumption. Linearity assumption implies that coefficients of control variables are similar for 

adopters and non-adopters, an assumption which is unlikely to hold (Jalan and Ravallion 2003; 

Mendola 2007). This is because technology adoption would also lead to increased productivity of 

other factors of production (Alene and Manyong 2007). A fixed effect procedure (Crost et al. 

2007) and an endogenous switching regression (Maddala 1983) may also be used although, 

where panel data are available, DID is superior. 

4. Data and Descriptive Statistics 

The study used 2004 and 2007 waves of the Tegemeo Institute panel data on agricultural 

households in Kenya. It covers all parts of the country except Nairobi and the North Eastern 

provinces, which are hardly used for crop production. The panel survey adopts the NASSEP IV 

sampling frame of the Kenya National Bureau of Statistics (KNBS). A total of 1342 households 

were covered by the survey.  

The agricultural technologies of interest were broadly improved maize varieties and inorganic 

fertilizer. To understand how the farm households combined the technologies, inorganic fertilizer 

was further divided into planting and top dressing fertilizer. The study considered joint adoption 

of improved maize varieties, planting fertilizer and top dressing fertilizer as a complete package. 

Other combinations were classified as partial adoption and included planting fertilizer with 

certified seed, planting fertilizer with top dressing fertilizer, planting fertilizer only, certified 

seed only and top dressing fertilizer only.  

Summary statistics indicated that 25% of the farmers adopted the complete package while 27% 

adopted the partial package option of planting fertilizer with certified seed. Other options 
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adopted included improved seed only (13%), planting fertilizer only (7%), planting fertilizer and 

top dressing fertilizer (5%), and top dressing fertilizer only (1%). This shows that non-adopters 

constituted 22% of the farm households. Table 1 provides these statistics. 

Table 1 about here 

The statistics showed that a combination of planting fertilizer and certified maize seed was the 

most popular partial adoption, ranking even higher than the complete package adoption. Other 

categories of partial adoption had very low preference among the farm households. Thus, 

analysing their effects on maize yield would not yield any meaningful results. Consequently, 

partial adoption was taken as anything less than the full package. Output variation was, therefore, 

compared between: 

a) Package adopters and non-adopters; and 

b) Partial adopters and non-adopters. 

This approach also made it possible to compare the performance of the package adopters and that 

of the partial adopters. 

The 2004 survey was used as the baseline and the 2007 survey as the follow-up. Table 2 provides 

a summary of technology adoption by the farm households and the covariates that are likely to 

affect yield. 

Table 2 about here 

Adopters and non-adopters of the two farm technologies were remarkably different in yield, 

intensity of manure application, non-crop income, education, expected yield and yield 

variability. The yields were highest among the adopters of the complete package in 2004. 

Overall, adopters of the complete package dominated their non-adopter counterparts in both 

periods. Partial adopters dominated their non-adopter counterparts. This is more clearly revealed 

by the first-order stochastic dominance plot (Fig.1). 

Figure 1 about here 

Adopters of the complete package dominated partial adopters and non-adopters. This is shown 

by the maize yield cumulative distribution function (CDF) for the different technology adopter 
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categories. While these differences may not be interpreted as impacts, they provided an 

indication that there could be structural differences in maize yield among adopters of the 

complete technology package, partial adopters and non-adopters. The differences were, however, 

less pronounced at the lower and the upper end of the maize yield distribution. 

A test of the distribution of the maize yield indicated a heavy skewness to the right (Fig.2). 

Figure 2 about here 

This kind of distribution makes regression based on the mean less reliable and less informative 

(Koenker and Hallock 2001). To overcome this challenge, the study used quantile regression. 

Quantile regression allows analysis of the impact of adoption of the different farm technologies 

on maize yield among the smallholder farm households based on sub-sets of unconditional yield 

distribution. This way, the covariates are allowed to influence location, scale and shape of the 

maize yield distribution (Koenker and Hallock 2001). 

Manure application was lower among the adopters than the non-adopters of the complete 

package throughout the period of reference, although the intensity declined for both groups in 

2007. Among the partial adopters, the adopters dominated the non-adopters in manure 

application. The intensity of manure application dropped again in 2007. Complete package 

adopters increased the intensity of planting fertilizer application, possibly to compensate for the 

drop in manure application. By contrast, intensity of application of planting fertilizer among the 

partial adopters dropped in 2007. 

Adopters of improved maize varieties and inorganic fertilizers dominated the non-adopters in 

terms of non-crop income throughout the periods of reference. The difference in non-crop 

income was, however, higher between adopters of the complete package and non-adopters. 

Perhaps differences in education explain this variation in non-crop income. A larger proportion 

of the adopters, especially package adopters, had post-primary education which, possibly, 

provided alternative income sources. A higher male ratio in the population of the adopting 

households is also a possible explanation for the differences in non-crop income. This is because, 

in the rural setting where the farm households are located, most off-farm activities are manual, 

and therefore less likely to be attractive to women. 
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Expected maize yield was higher with adoption of farm technology than without, whether the 

adoption was complete or partial. The expected yields were higher for complete adopters than 

partial adopters. Yield variability was also higher among the technology adopters than the non-

adopters, indicating that improved technologies were suitable for enhancing yields although they 

also increased production risks.  

5. Empirical Results and Discussion                                                           

Before implementing DID on the matched households, it was important to test the quality of 

matching. Thus, we conducted balancing tests and verification of the common support condition. 

Farm, farmer and institutional characteristics were used in the matching. Results of the balancing 

tests showed that most differences in the covariate means between adopters and non-adopters of 

improved maize varieties and inorganic fertilizers were eliminated after matching. In the two 

cases where differences remained, the rates of bias reduction were 18% and 47%. This shows 

that matching increased the likelihood of unbiased treatment effects. Results of the balancing 

tests are summarized in Table 3 

Table 3 about here 

Checking the overlap or region of common support was done through the visual inspection of the 

propensity score graph. Results indicated good overlap in the propensity scores of the adopters 

and non-adopter of improved maize varieties and inorganic fertilizers (see Figure 3). This 

justified the use of PSM in our analysis. 

Figure 3 about here 

DEA results indicated that the smallholders were less technically efficient. The average TE score 

was 61%. This implied that the maize yield among the smallholders could still be produced even 

if the inputs were reduced by 39%. Table 4 outlines the DID results of maize yield differences 

among the different categories of adopters and non-adopters of improved maize varieties and 

inorganic fertilizers based on the 61% TE levels. 

Table 4 about here 



  

16 

 

Results showed that adoption of improved maize varieties and inorganic fertilizers by 

smallholders in Kenya was correlated with maize yield. The effects, however, varied by 

technology and across the yield quantiles. Between the complete package adopters and the non-

adopters, there was a significant positive correlation between adoption and maize yield for the 

entire sample, and at the 25
th

 quantile and median yield levels. The package adopters realized 

203 kg and 162 kg of maize yield more than their non-adopter counterparts at the 25
th

 and the 

50
th

 quantiles, respectively. On average, the package adopters were 230 kg of maize yield better 

off than the non-adopters. Between the partial adopters and the non-adopters, the direction of the 

effect of adoption was ambiguous. At the 25
th

 quantile of yield, the partial adopters weakly 

dominate the non-adopters. The reverse was true at the 75
th

 quantile. By inference, these results 

indicated that package adopters were better off than partial adopters in terms of maize yield. 

They harvested about 120 kg of maize more at the 25
th

 quantile and 200 kg more at the 50
th

 

quantile. On average, the package adopters harvested 253 kg of maize more than the partial 

adopters. This translates into over 500 kg for areas that enjoy two cropping seasons, which is a 

significant contribution to food security at both household and national levels.  

To understand the role change of TE of the smallholders in yield levels, we simulated four 

scenarios: 100 percent TE; 75 percent rise in TE; 50 percent rise in TE; and 25 percent rise in 

TE. Simulated results are presented in Table 5.  

Table 5 about here 

Assuming that the farm households were fully technically efficient, both package and partial 

adopters of the farm technologies under review would dominate the non-adopters in maize yield. 

However, the package adopters would realize more yields than the partial adopters. The highest 

difference would be at the median quantile, where the package adopters would harvest 610 kg of 

maize more than the partial adopters. On average, holding other factors constant, the package 

adopters would experience about 435 kg of maize harvest above their partial adopter 

counterparts. 

If the TE levels of the smallholders were improved by 75 percent, the package adopters would 

dominate non-adopters in maize yield at all the quantiles of analysis. The partial adopters would 
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dominate the non-adopters at the 25
th

 and the 50
th

 quantiles. On average, the package adopters 

would harvest 378 kg of maize more than the partial adopters, although the greatest yield 

differences between the two groups would be at the median and the 75
th

 quantiles. 

At a 50 percent rise in levels of TE, package adopters would dominate the non-adopters at all the 

quantiles and the partial adopters would dominate them only at the 25
th

 and 75
th

 quantiles. The 

median quantile had the greatest yield difference between the package adopters and the partial 

adopters, while the 75
th

 quantile had the lowest yield difference, both in favour of the package 

adopters. Overall, the package adopters would experience 321 kg more maize harvest than the 

partial adopters at this level of technical efficiency. 

With low levels of technical efficiency, as exhibited by the 25 percent improvement, partial 

adopters would perform poorly. They would not be significantly different from the non-adopters 

except at the 25
th

 quantile. On the contrary, package adopters would still dominate both the 

partial and non-adopters even at such low levels of technical efficiency. They would realize 380 

more kilogrammes of maize harvest than the partial adopters at the median quantile and 301 kg 

at the 25
th

 quantile. At the 75
th

 quantile, they would realize 160 more kilogrammes of maize 

harvest. On average, the package adopters would harvest 263 kg of maize more than their partial 

adopter contemporaries at this low level of TE. 

Four important issues emerge from the above findings: 

a) Inorganic fertilizers and improved maize varieties are indeed yield-increasing. The 

technologies, however, perform best when adopted as a package; 

b) Adoption of inorganic fertilizers and improved maize varieties is likely to increase farmer 

efficiency. If this occurs, yield returns would be much greater; 

c) Partial adoption of inorganic fertilizers and improved maize varieties could be desirable 

as an interim measure to increase yields only among the farm households that are already 

realizing very low yields; and 

d) For all levels of technical efficiency, the largest maize yield increases due to adoption of 

inorganic fertilizers and improved maize varieties are experienced by farmers producing 

at the median quantile. For the non-adopter farm households producing at the 75
th
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quantile, it may not be wise to invest in improved maize varieties and inorganic 

fertilizers, especially when their TE is low. 

6. Conclusion and Policy Implications 

Improved farm technologies are meant to make agriculture more rewarding, especially in terms 

of increased output per unit of factor input or improved quality of output. Inorganic fertilizers 

and improved maize varieties, in particular, are meant to increase or maintain high maize yields. 

In nations such as Kenya, which are heavily dependent on maize as a food staple, the underlying 

motivation is to enhance food security, not just among smallholders but in the entire country. It is 

on this premise that the Government of Kenya, in partnership with development agencies, has 

promoted research on and dissemination of agricultural technologies targeting maize. Improved 

maize varieties have been developed for different agro-ecological zones and fertilizer prices have 

been subsidized. Wide yield disparities, however, persist between experiment stations and the 

farmers’ fields. This raises doubts over the yield-enhancing capacity of these critical farm 

technologies under the uncontrolled conditions in which smallholders operate. As a result, this 

study sought to analyse the effects of adoption of inorganic fertilizers and improved maize 

varieties on maize yields among Kenyan smallholders. The study combined PSM and DID 

techniques to control for both time-invariant and time-variant household heterogeneity while 

determining the yield differences between the adopters and non-adopters. 

Results showed that inorganic fertilizers and improved maize varieties improved yields. The 

magnitude of the effect of these technologies on yield, however, depended on whether a farm 

household adopted a complete package, and on the household’s baseline yield level. Overall, 

households that adopted the complete package of technologies (planting fertilizer, improved 

maize varieties and top dressing fertilizer) dominated their partially adopting and non-adopting 

counterparts. The effects among adopters compared to non-adopters were greater among the 

households within the lower end of the maize yield distribution (25
th

 and 50
th

 quantiles).  

Partial adopters were better off than non-adopters only at the lower end of yield distribution (25
th

 

quantile). At the 75
th

 quantile, this trend completely reversed. With increasing efficiency, the 



  

19 

 

effect of inorganic fertilizers and improved maize varieties on maize yield was even greater. The 

households producing at the median quantile realized the highest gains. 

The key policy inference from these findings is that complementary agricultural technologies 

yield best results when they are taken up as a package rather than as individual elements. Policy 

makers, therefore, ought to formulate and implement policies that promote package adoption. 

The technology developers also have to work together and market the different complementary 

technology elements as a package. Furthermore, promotion of inorganic fertilizers and improved 

maize varieties should target areas or farm households that experience median yields because 

that is where the impact of adoption would be greatest. It may not make economic sense for the 

non-adopting farm households that are already at the upper end of the yield distribution to 

attempt to adopt yield-enhancing technologies. Among the households or regions experiencing 

below the median yield, partial adoption could be encouraged, but only as an interim 

intervention. Farmers have to be motivated to upgrade to complete package adoption. 

As improved technologies are developed and promoted, we must note that adoption is necessary, 

but not sufficient, to enhance yields. The efficiency with which these technologies are applied in 

the farmers’ fields is equally if not more important. Measures that promote efficient farm 

management ought to be identified and promoted alongside the improved farm technologies. 
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List of Tables 

Table 1: Summary statistics: technologies adopted by households 

Technology  Percentage of adopters 

Package  25 

Planting & top dressing 5 

Planting fertilizer only 7 

Top dressing fertilizer only 1 

Certified maize seed only 13 

Planting fertilizer & seed 27 
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Table 2: Summary statistics of the variables used in the analysis of yield differences among adopters and non-adopters of farm technologies 

Variable  Package Planting fertilizer and certified seed 

2004 2007 2004 2007 

Adopters Non-adopters Adopters Non-adopters Adopters Non-adopters Adopters Non-adopters 

Yield (kg) 2,320 (3,928) 882 (1,712) 3,867 (12,549) 876 (1,434) 1,395 (2,108) 1,151 (2,598) 1,325 (1,996) 1,750 (7,579) 

Mid-high altitude 0.99 0.87 0.99 0.86 0.99 0.87 0.99 0.86 

Well-drained soils 0.85 0.79 0.80 0.79 0.87 0.76 0.91 0.76 

Manure/acres(kg) 544 (1,238) 625 (1,292) 475 (1,207) 575 (1,081) 724 (1,485) 566 (1,199) 657 (1,302) 511 (1,037) 

Mechanized farms 0.58 0.47 0.62 0.43 0.57 0.47 0.47 0.48 

Age of head (years) 53 53 55 53 54 (18) 53 (21) 53 (23) 53 (23) 

With post-primary education 0.44 0.21 0.38 0.21 0.28 0.26 0.26 0.25 

Male heads 0.86 0.77 0.86 0.73 0.83 0.78 0.76 0.75 

Non-crop income (Kshs) 122,276 
(141,065) 

99,480 (182,920) 152,784 
(301,468) 

110,288 
(193,780) 

114,243    
(209,965) 

101,460      
(160,306) 

123,902    
(234,437) 

120,086    
(223,977) 

Wage rate for farm workers 

(Ksh/day) 

76 (30) 85 (37) 84 (26) 90 (32) 85 (30) 83 (37) 93 (29) 87 (31) 

Received credit 0.36 0.27 0.23 0.25 0.40 0.25 0.26 0.24 

Participating in social groups 0.75 0.74 0.70 0.76 0.77 0.73 0.78 0.73 

Distance to market 6.7 (7.4) 6.5 (7.2) 7.3 (7.6) 6.3 (7.1) 5.4  (4.9) 6.9 (7.9) 5.4  (4.6) 7 (8) 

Ratio of male 0.40 0.34 0.49 0.40 0.42 0.33 0.45 0.42 

Household size 4 (2) 4 (2) 6 (3) 5 (3) 4 (2) 4 (2) 5 (3) 6 (3) 

Expected yield 1,146 (359) 618 (334) 1,279 (318) 705 (287) 869 (291) 695 (430) 927 (261) 824 (420) 
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Yield variability 478,620      
(583,744) 

345,963    
(593,159) 

492,007    
(574,992) 

315,364    
(415,824) 

475,068    
(801,358) 

342,602    
(498,317) 

365,808    
(557,126) 

358,325 
(430,960) 

Standard deviations in parentheses 
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Table 3: Differences in covariate means before and after matching 

Variable  Sample  Mean   t-test 

Treated  Control   % bias % bias 

reduction 

t-stat p-value 

Age  Unmatched  53.853    52.903       4.7 44.4 0.91   0.361 

Matched  53.688     53.16       2.6 0.50   0.617 

Education  Unmatched .40813     .2138      42.9          90.6 9.33   0.000 

Matched .40502    .42338      -4.1     -0.62   0.534 

Gender  Unmatched .85336       .75      26.1          93.1 5.15   0.000 

Matched .85125    .85841      -1.8     -0.34   0.735 

Non-crop 

income 

Unmatched 1.4e+05    1.0e+05      15.5          68.8 3.43   0.001 

Matched 1.3e+05    1.4e+05      -4.9     -0.68   0.494 

Manure use Unmatched .27915     .4621     -38.6          68.3 -7.78   0.000 

Matched .27957    .33751     -12.2     -2.10   0.036 

Plot size Unmatched 2.217    1.3138      26.1          98.5 7.05   0.000 

Matched 1.8581    1.8448       0.4     0.07   0.942 

Wage rate Unmatched 80.08    87.718     -24.3          68.7 -4.79   0.000 

Matched 80.17    82.563      -7.6     -1.41   0.160 

Credit access Unmatched .28622    .25905       6.1          94.5 1.27   0.203 

Matched .28136    .27986       0.3     0.06   0.955 

Agro-

ecological 

zone 

Unmatched .9947    .86708      52.0          92.5 8.87   0.000 

Matched .99462  .98511     3.9   1.59 0.113 

Distance to 

market 

Unmatched 6.9969     6.391       8.3          37.0 1.73   0.084 

Matched 6.9669    6.5853       5.2     0.89   0.376 

Soil type Unmatched .82862    .78563      10.9          80.0 2.21   0.027 

Matched .82975    .82114       2.2     0.38   0.705 

Household size Unmatched 5.2403    4.4457      31.6          82.0 6.66   0.000 

Matched 5.2204    5.0771       5.7     0.94   0.349 

Mechanized 

production 

Unmatched .60424    .44966      31.3          18.1 6.46   0.000 

Matched .60036     .4738      25.6     4.27   0.000 

Expected yield Unmatched 1216.1    661.08     168.4          94.8 35.70   0.000 

Matched 1207.2    1178.6       8.7     1.33   0.184 

Yield 

variability 

Unmatched 4.9e+05    3.3e+05      28.3          47.3 6.04   0.000 

Matched 4.8e+05        5.6e+05 -14.9     -2.18   0.030 
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Table 4: PSM-based DID estimate of the effect of adoption of improved farm technologies on maize 

yield  

Technology  Adoption Impact on Yield 

Whole sample 75
th

 Quantile 50
th

 Quantile 25
th

 Quantile 

Complete package vs. non-adopters 229.6**  (2.52) 46.290 (0.34) 162.3** (2.24) 203.3*** (3.08) 

Partial adopters vs. non-adopters 23.4 (0.39) -129.28* (-1.69) -40.056 (-0.72) 82.5* (1.75) 

*, **, *** mean significant at 10%, 5% and 1%, respectively; t-values in parentheses 
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Table 5: Simulated impact of technology adoption on maize yield 

Technology  Adoption Impact on Yield 

Whole sample 75
th

 Quantile 50
th

 Quantile 25
th

 Quantile 

100% Technical Efficiency 

Complete package vs. non-adopters 833*** 

(3.31) 

1002*** 

(6.98) 

855*** 

(10.1) 

484*** 

(7.21) 

Partial adopters vs. non-adopters 398*** 

(2.41) 

656*** 

(4.68) 

245*** 

(3.18) 

144** 

(2.12) 

75% Rise in TE 

Complete package vs. non-adopters 682*** 

(3.43) 

672*** 

(5.95) 

853*** 

(10.4) 

481*** 

(6.95) 

Partial adopters vs. non-adopters 304** 

(2.3) 

-188 

(-1.0) 

145* 

(1.73) 

144** 

(2.13) 

50% Rise in TE 

Complete package vs. non-adopters 531*** 

(3.53) 

286** 

(2.03) 

675*** 

(8.69) 

491*** 

(6.72) 

Partial adopters vs. non-adopters 210** 

(2.08) 

223** 

(2.18) 

111 

(1.47) 

138** 

(2.1) 

25% Rise in TE 

Complete package vs. non-adopters 380*** 

(3.45) 

208* 

(1.71) 

441*** 

(6.12) 

416*** 

(6.02) 

Partial adopters vs. non-adopters 117 

(1.56) 

47.9 

(0.51) 

61 

(0.86) 

115* 

(1.89) 

*, **, *** mean significant at 10%, 5% and 1%, respectively; t-values in parentheses 
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List of Figures  

 

Figure 1: Average Maize Yield per Acre by Farm Technology 
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Figure 2: Distribution of maize yield among the households 
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Figure 3: Propensity Score Distribution and Common Support for Propensity Score 

Estimation   
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