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Abstract 

Despite nearly two decades of promoting minimum tillage (MT) in Zambia, there is 

little empirical evidence on its maize yield effects under typical smallholder conditions. 

We use nationally representative survey data from nearly 48,000 smallholder maize 

plots for the period 2008-2011 to estimate the maize yield effects of planting basins and 

ripping. After controlling for unobserved heterogeneity at the enumeration area level, 

yields were significantly higher on ripped plots compared to conventionally plowed 

plots if tillage is done before the rains. The gains average 577 kg/ha nation-wide and 

821 kg/ha in low rainfall agro-ecological zones. The gains from planting basins relative 

to hand hoe tillage average 191 kg/ha when tillage is done before the onset of the rains. 

Thus, MT with early land preparation can raise smallholder maize yields in Zambia; 

however, further research would determine whether these yield benefits are large 

enough to offset the higher costs of MT.   

Keywords: minimum tillage, ripping, planting basins, maize yields, correlated random 

effects, Zambia 
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1. Introduction 

Food and agricultural systems in sub-Saharan Africa (SSA) are under mounting pressure. 

Throughout the region, smallholders must increasingly contend with the interrelated challenges 

of climate change and increasing climate variability, declining soil fertility, and declining land 

availability. At the same time, rising and more volatile food prices, coupled with increased food 

demand resulting from population and per capita income growth, place increased pressure on 

domestic production systems (Deininger, 2013; Laurance et al., 2013). Under these conditions, it 

is essential to develop strategies to substantially increase crop yields, while at the same time 

increasing the resilience of rain-fed farm systems to climate variability. Farm productivity levels 

in SSA suggest that significant opportunities exist to meet this challenge. For example, 

Deininger (2013) demonstrates that current smallholder productivity is less than 25% of its 

potential in Africa’s sparsely populated countries such as the Democratic Republic of Congo, 

Zambia, Tanzania and Sudan.  

Conservation agriculture (CA) technologies are increasingly seen as a potentially effective 

strategy to address low agricultural productivity in SSA, while enhancing smallholders’ capacity 

to mitigate and adapt to the effects of climate change (Thierfelder and Wall, 2010; Giller et al., 

2011; Friedrich et al., 2012; Verhulst et al., 2012; Corbeels et al., 2014). CA technologies are 

based on the three core principles of: (i) no or minimal mechanical soil disturbance; (ii) 

permanent soil cover or crop residue retention; and (iii) crop diversification or rotation 

(Haggblade and Tembo, 2003).  

Despite the potential benefits of CA and almost two decades of active promotion of it in SSA 

(Umar et al., 2011; Grabowski and Kerr, 2013), CA adoption in the region remains low (Kassam 

et al., 2009), even in Zambia and Zimbabwe - the two countries that are often highlighted for 

heightened diffusion of CA technologies (Knowler and Bradshaw, 2007; Giller  et al., 2009; 

Andersson and D'Souza, 2014; Arslan et al., 2014). For example, in the case of Zambia, Arslan 

et al. (2014) found a 5% CA tillage use rate in 2008 while Ngoma et al. (2014) found less than 



 
 
 
  
 
   

 

10% minimum tillage use rates between 2008 and 2012 in districts with the highest use rates. 

These rates are far below the government target of 40% CA adoption by 2016 (GRZ, 2013). 

Generally, it has been found that less than 1% of cropland is under CA in Zambia and Zimbabwe 

compared to over 50% in South America (Corbeels et al., 2014). Furthermore, adoption of CA 

practices in SSA tends to be only partial, with farmers incorporating only one or two of the three 

core CA principles (Umar et al., 2011; Grabowski and Kerr, 2013; Andersson and D'Souza, 

2014). For example, Arslan et al. (2014) found that only 3% of the farmers used the two 

principles of minimum tillage and crop rotation in 2008 in Zambia.  

Although current adoption rates are low, the promotion of CA practices remains a cornerstone 

strategy among some donor organizations in SSA for raising smallholder crop productivity in the 

context of heightened climatic variability. Yet, the empirical evidence on the productivity impact 

of CA among smallholder farmers in SSA is mixed (Giller  et al., 2009; Andersson and D'Souza, 

2014; Brouder and Gomez-Macpherson, 2014). Indeed, if CA is having little or no impact on 

smallholder productivity, this may be one reason for low uptake of the technology. While some 

studies suggest that CA offers clear, well-established pathways towards increasing agricultural 

productivity among resource poor smallholder farmers because it optimizes input use, reduces 

peak season labor demands and improves water harvesting potential (Haggblade et al., 2011; 

Friedrich et al., 2012; Umar et al., 2012), other studies question the suitability of CA for real 

smallholder farm conditions. This latter body of literature contends that there is little empirical 

evidence that CA raises crop yields under real farm conditions; rather, most of the evidence 

comes from experimental on-station or  on-farm trials, which often involve higher levels of input 

use, weeding, and other crop management skills than is typical of smallholder farms in SSA 

(Giller  et al., 2009; Andersson and Giller, 2012). Moreover, some studies suggest that, to the 

extent that CA does offer yield benefits, those benefits may only be realized in the medium to 

long term (Giller  et al., 2009; Thierfelder et al., 2013). This could further discourage CA use 

among African smallholders, many of whom are thought to have high discount rates and very 

short planning horizons due to poverty and other factors (Angelsen et al., 1999; Holden and 



 
 
 
  
 
   

 

Lunduka, 2014).1 The emerging consensus is that CA may improve productivity under some 

conditions, but that these conditions may not obtain on the majority of African smallholders’ 

farms (Andersson and Giller, 2012). Overall, the empirical evidence base for the productivity 

effects of CA under real smallholder farm conditions in SSA remains thin.   

This paper seeks to bolster that evidence base and contribute to the debate over the suitability of 

CA for African smallholders by empirically analyzing the maize yield effects of some individual 

CA technologies using nationally representative survey data from smallholder farm households 

in Zambia.  In particular, the paper examines the yield effects of planting basins and ripping, the 

two most important minimum tillage CA practices in Zambia.2 Planting basins are a tillage 

system with minimal soil disturbance save for permanent planting stations (or basins) dug using 

manual labor.3 Ripping is a tillage method where the soil is left undisturbed save for planting 

stations along rip lines made by animal draft or mechanical-drawn rippers. From this point 

forward, we refer to planting basins and ripping collectively as minimum tillage (MT). Our focus 

on ripping and planting basins is justified on the grounds that practicing MT is a necessary 

condition for any CA-based farming system, and MT is the most prevalent core CA principle in 

Zambia. The main objective of the paper is to econometrically estimate the ceteris paribus 

effects on maize yields of ripping and planting basins versus conventional tillage methods 

(especially plowing and hand-hoeing) under typical smallholder farm conditions. We focus on 

                                                                 
1For further information regarding debates surrounding CA, see   

http://conservationag.wordpress.com/2009/12/01/ken-gillers-paper-on-conservation-agriculture/ (last accessed 

August 2014). 
2 Although zero tillage is another variant of minimum tillage CA practiced in Zambia, we focus only on ripping 

and planting basins in this study because our data do not distinguish between CA zero tillage and a similar 

traditional shifting cultivation system known as Chitemene. Chitemene is a slash-and-burn system where trees are 

cut in a large area and then piled on a smaller area and burnt. Crops are then grown in the ash for a few years, before 

moving on to the next site while leaving old sites in fallow (Holden, 1991). So as not to confound CA minimum 

tillage and Chitemene, we exclude from the analysis plots reportedly using ‘zero tillage’.  
3 These basins are often dug using Chaka hoes into precise grids of 15,850 basins per hectare (Haggblade and 

Tembo, 2003). Chaka hoes are specifically designed to somewhat ease the digging of deep basins because they have 

wider blades and are heavier than regular hand hoes (Umar et al., 2012). Some farmers use regular hand hoes to dig 

planting basins.  

http://conservationag.wordpress.com/2009/12/01/ken-gillers-paper-on-conservation-agriculture/


 
 
 
  
 
   

 

maize because it is the country’s main staple food and arguably the most economically and 

politically important crop in Zambia. 

Ours is not the first empirical study of the effects of CA tillage methods on maize yields in SSA 

or Zambia. We categorize the extant literature on this topic into three main categories: (i) those 

based on experimental plots; (ii) those based on case studies or seasonal snapshots; and (iii) 

those based on nationally representative observational data but that are not specifically focused 

on explaining the influence of tillage methods on yields. Fitting in the first category are cross 

country studies (Rockström et al., 2009; Thierfelder and Wall, 2010) that compare maize yields 

between CA and conventional tillage plots in Zambia, Tanzania, Kenya  and Zimbabwe, and in-

country studies that do the same in Malawi (Ngwira et al., 2012; Ngwira et al., 2013) and 

Zambia (Thierfelder et al., 2013). All of these studies find CA to offer maize yield advantages 

over conventional tillage based on experimental plots and based on bivariate mean comparisons. 

Such results are not unexpected given that experimental plots are typically managed by research 

institutions or CA advocates who supply all the requisite inputs and provide high-end crop 

management. The question is whether the results obtained on these experimental plots can be 

replicated under normal smallholder conditions. 

In the second category of analysis are studies from Zambia that find that CA tillage systems offer 

maize yield advantages among a sub-segment of MT adopters (Haggblade and Tembo, 2003; 

Haggblade et al., 2011; Umar et al., 2011, 2012; Shitumbanuma, 2013; Kuntashula et al., 2014). 

These studies typically use data drawn from case studies of selected areas where CA has been 

most promoted (Kuntashula et al., 2014), and normally do not cover more than one agricultural 

season. Some of these studies also simply focus on MT yield effects, grouping together ripping 

and planting basins rather than allowing these two fundamentally different tillage methods to 

have different effects on yields. In the third category is an econometric analysis on nationwide 

panel data  by Burke (2012) on the effect of inorganic fertilizer on maize yields but that also 



 
 
 
  
 
   

 

includes tillage variables as controls. Burke finds no evidence of statistically significant MT 

effects on maize yields, but MT is not the focus of his study.   

The analysis presented in the current paper differs from and compliments these previous studies 

in three main ways. First, unlike studies in category one whose results may not be a true 

reflection of on-farm conditions, our study uses farm household survey data that is representative 

of actual farmer situations. Second, unlike previous studies based on observational data, we 

attempt to test and control for the potential endogeneity of MT usage to maize yields and also go 

a step further to estimate the maize yield effects of the individual MT elements of ripping and 

planting basins as opposed to lumping them together and provide perspectives at national level 

and for agro-ecological zones 1 and 2a (the two zones most suitable for CA). Third, the current 

study compliments  available case study or seasonal snapshot analyses in category two by using  

more recent “big” data of nearly 48,000 maize plots from 2008-2011. These data are  statistically 

representative at both national and district levels and  are from the Central Statistical 

Office/Ministry of Agriculture and Livestock - Crop Forecast Surveys. The data are a panel at 

the standard enumeration area (SEA) 4 level, and are the best data available to give the big 

picture of MT usage as main tillage at plot level by smallholder farmers in all districts and agro-

ecological zones  in Zambia.  Use of these data rather than the data used in previous analyses is 

important because: (i) it allows us to analyze the effects of MT on maize yields over a longer 

time horizon and across the country and beyond CA promotional project sites; (ii) the large 

sample size allows our analysis to benefit from asymptotic properties thereby reducing many 

statistical and econometric problems common in small samples; and (iii) it also allows us to 

exploit the meso-panel data structure of the data and control for some time-constant unobserved 

factors that may confound the results. Exploiting the higher order panel structure of a national 

crop survey is also a methodological contribution, and an approach that could be replicated in 

other countries in SSA. 

                                                                 
4 SEAs typically contain 150-200 households or about 2-4 villages.  



 
 
 
  
 
   

 

The remainder of the paper is organized as follows. Section 2 presents a brief background on CA 

in SSA with a focus on Zambia. The data and methods are described in sections 3 and 4, 

respectively. Results are presented in section 5, and conclusions and policy implications are 

drawn in section 6.  

 

2. Development and productivity impact of conservation agriculture in sub-Saharan 

Africa  

 

2.1. Development and promotion of CA in sub-Saharan Africa 

Many SSA countries have fairly long histories of active CA promotion among small scale 

farmers (see Andersson and D’Souza (2014) for a readable account on the development of CA in 

SSA).  Despite different initial motives for CA promotion across countries, for example food 

security-enhancing humanitarian motives in Zimbabwe, agricultural production intensification in 

Malawi, and addressing land degradation, water scarcity and productivity losses in Zambia 

(Haggblade and Tembo, 2003; Andersson and D'Souza, 2014), the objectives of increasing 

agricultural productivity and sustainably intensifying agricultural production are central 

components of all CA promotion efforts in the region.  

 

In the Zambian context, CA promotional activities started around the 1980s when CA 

technologies  were initially introduced as a package of potential solutions to declining soil 

fertility and water scarcity, especially in the drier agro-ecological zones (AEZs) 1 and 2a 

(Haggblade and Tembo, 2003).5 CA in Zambia is based on the three core principles of no or 

minimum tillage, permanent soil cover or crop residue retention, and crop rotation or 

                                                                 
5 There are four AEZs in Zambia: AEZ 1 receives less than 800 mm rainfall per year; AEZ 2a has clay soils with 

800-1000 mm rainfall per year; AEZ 2b has sandy soils with 800-1,000 mm rainfall per year; and AEZ 3 receives 

more than 1,000 mm of rainfall per year. 



 
 
 
  
 
   

 

diversification. Planting basins and ripping are the two most commonly practiced forms of 

minimum tillage in Zambia (Ngoma et al., 2014). The planting stations established under 

planting basin and ripping tillage systems are supposed to be placed in permanent positions so 

that farmers can use the same stations year after year, thereby reducing labor requirements after 

the first year (Haggblade and Tembo, 2003). The permanent planting stations are also thought to 

optimize input use, improve water retention, and help to build up soil organic matter.6 CA 

farmers are encouraged to do the basin or rip tillage operations soon after harvest in the dry 

season when soils are still somewhat moist (as opposed to waiting until after the first rains to do 

tillage). Dry season land preparation facilitates early planting, and crops can potentially benefit 

from the initial nitrogen flush in the soil that comes with the first few rains; it also allows farmers 

to make use of the greater availability of  labor during the dry season (Haggblade et al., 2011). 

CA crop residue retention involves avoiding burning crop residues and leaving at least 30% of 

such residues in the fields. Recommended crop rotations involve cereal-legume crop rotations. 

Legumes are important to replenish soil nutrients, especially nitrogen. Agroforestry is another 

important aspect of CA and involves intercropping of cereals with nitrogen-fixing tree species 

such as Sesbania sesban. 7  

 

As in many other SSA countries, CA promotion in Zambia has mainly been donor-driven either 

through direct support to the government through the Ministry of Agriculture and Livestock 

(MAL) or through project financing. Longstanding CA advocates in Zambia include the 

Conservation Farming Unit (CFU) of the Zambia National Farmers Union (ZNFU), the Golden 

Valley Agricultural Research Trust (GART), World Vision, and Dunavant Cotton (now NWK 

                                                                 
6

 See Haggblade and Tembo (2003), and Arslan et al. (2014) for further details on the development and diffusion 

of CA technologies in Zambia. 
7 The term conservation farming (CF) is also frequently used in the literature and especially in Zambia. Some groups 

use CF and CA interchangeably while others make a distinction between the two. In the latter case, CF involves 

minimum tillage practices in conjunction with crop residue retention and crop ro tations with legumes, and CA is CF 

plus agroforestry. The differences are not important in the context of the current paper, and we use the terms CA and 

CF interchangeably.   



 
 
 
  
 
   

 

Agri-Services Zambia).  Other local and international NGOs across the country have also been 

actively involved in promoting CA through various projects. The Food Agriculture Organization 

of the United Nations (FAO), the European Union (EU), the Swedish International Development 

Cooperation Agency (Sida) and the Norwegian Agency for Development Coorperation (Norad) 

have been keenly involved in promoting CA in Zambia, as in many other parts of the world. 

Despite this long history of CA promotion in Zambia and much of SSA, evidence of its adoption 

and productivity impacts remains mixed. The next subsection reviews the evidence on the latter.  

 

2.2. Productivity impacts of CA in sub-Saharan Africa 

The emerging consensus in the existing literature is that CA-based farming systems have the 

potential to increase crop yields relative to conventional farming systems under certain 

conditions (Kassam et al., 2009). However, there is less agreement in the literature about the 

magnitude of the yield impacts and how many years it takes from initial adoption of CA to the 

realization of yield benefits. For example, recent studies report that significant CA yield benefits 

accrue after two or more years (Thierfelder et al., 2013; Brouder and Gomez-Macpherson, 2014; 

Corbeels et al., 2014), with negative to neutral yield advantages in the short term. In Zambia, 

long-term CA trials by Thierfelder et al. (2013) in the southern and eastern parts of the country 

found that CA-based systems only conferred significant yield advantages after two seasons.  In 

contrast, anecdotal evidence from CA proponents suggests that CA confers immediate yield 

benefits.  The yield advantages conferred by CA are mainly attributed to improvements in water 

infiltration, soil moisture, soil porosity, soil organic matter, and crop management practices 

(Thierfelder et al., 2013; Corbeels et al., 2014).  

In Zambia, analyses aimed at measuring the on-farm productivity impact of CA technologies 

have been plagued by challenges in defining CA adoption. For example, some studies on the 

productivity impact of CA do not mention how CA adoption is defined, for how long adopters 



 
 
 
  
 
   

 

have used the practices, or what proportion of cultivated land is under CA among adopters, while 

other studies equate adoption of MT to adoption of CA, even if farmers do not practice other 

principles of CA (see Umar et al., 2011).  Such definitions may lead to overestimates of CA 

adoption by including farmers who are only experimenting with the technologies.  While some 

studies isolate the individual elements of CA, others do not, making it difficult to determine 

which CA component(s) is (are) responsible for the yield effects.  

Evidence on the yield effects of MT in Zambia is mixed. For example, use of basins was found 

to confer maize yield advantages in (Haggblade and Tembo, 2003; Haggblade et al., 2011; Umar 

et al., 2011), but not in Burke (2012), while use of MT (in general) was found to increase maize 

yields in Kuntashula et al. (2014). Additionally,  “experienced CF adopters” were found to have 

as much as 2,000 kg/ha yield advantage over less experienced CF farmers and conventional 

farmers based on bivariate mean comparisons using data collected by taking physical 

measurements of plot sizes and harvest in Shitumbanuma (2013).  Most of the aforementioned 

studies are based on small samples and seasonal snapshots, and draw their samples from within 

concentrated CF promotion areas. Others rely on experimental data, which has low external 

validity and can therefore offer only limited insights on the impacts of CA on real farmer 

conditions.  This paper therefore approaches the productivity impact of CA from an empiricist’s 

perspective while paying particular attention to definitional and estimation issues that may 

confound extant empirical results. 

 

3. Data  

 

This study uses data from annual Crop Forecast Surveys (CFS) conducted by the Ministry of 

Agriculture and Livestock (MAL) and the Central Statistical Office for the period 2008 to 2011 

(i.e., the 2007/08 through 2010/11 agricultural years). During this period, the CFS was conducted 

in the same standard enumeration areas (SEAs) each year. The CFS data are the most current and 



 
 
 
  
 
   

 

largest farm household survey data sets available in Zambia, allowing analysis of actual 

smallholder farm conditions across time and space.8 The CFS is conducted between February 

and April each year and collects basic demographic information (household size, and gender, 

age, and marital status of household members) and detailed information on households’ crop 

production activities (area planted, input use, tillage method, whether land preparation was done 

before or during the rainy season, etc.). Sampling for the CFSs is discussed below. 

A limitation of the CFS data is that it is mainly a production-oriented survey, as opposed to an 

incomes- or livelihoods-oriented survey; as such, the CFS does not capture highly detailed socio-

economic and demographic information. However, the CFS does capture data on the most 

important maize yield determinants in the Zambian context. We therefore do not anticipate major 

issues with omitted variable bias. A second limitation of the CFS data is that the survey is 

conducted before harvest but after maize plants have reached physiological maturity; production 

quantities are therefore based on farmers’ estimates of how much they expect to harvest (as 

opposed to actual quantities harvested). Fortunately, comparisons of farmers’ production 

estimates in the CFS to actual production quantities captured in post-harvest surveys suggest 

only small and non-systematic differences between expected and actual production (Zulu and 

Sitko, 2014) 9. It has been argued that another potential limitation of large scale surveys like CFS 

relates to the survey design effects where the sampling protocols used do not take into account 

the clustering of agricultural technologies like CA (Grabowski et al., 2014).  We do not see this 

to be a problem with the CFS because these surveys are statistically representative at district 

level which allows analysis to be scaled down even to agro ecological zones (as done in this 

paper later on). Despite these limitations, we think that the CFS data are the best data available to 

                                                                 
8 Smallholder farm households are defined as those cultivating less than 20 ha of land. 
9 We use data from the CFS instead of from the Supplemental Survey (SS), a three -wave household-level 

longitudinal survey of smallholders, because those data are more dated (they cover the 1999/2000, 2002/03, and 

2006/07 agricultural seasons) and are not representative at the district level. The CFS data are more recent and are 

representative at the district level. The CFS better captures changes over time and space in the use of CA in Zambia. 

The tradeoff is that while the SS data would allow us to control for time-constant unobserved effects at the household 

level, the CFS data only allow us to control for such effects at the SEA level.  



 
 
 
  
 
   

 

address the core research question of this study (what are the ceteris paribus effects of ripping 

and planting basins on maize yields in Zambia) because the CFS data provide the most up-to-

date, widest and statistically representative coverage of smallholder farmers at national, 

provincial, and district levels in Zambia.  

In the econometric analysis, we supplement the CFS data with dekadal (10 day period) rainfall 

data from 36 rainfall stations throughout the country from the Zambia Meteorological 

Department. Descriptive results are from the CFS as well as from the 2008 Supplemental Survey 

(SS) and the 2012 Rural Agricultural Livelihoods Survey (RALS), both of which are nationally 

representative surveys of smallholder farm households. See Mason and Tembo (2014) for details 

on the SS and RALS. In the discussion of the results, we also draw on information collected 

during focus group discussions (FGDs) held with 57 farmers in Chipata, Choma and Chongwe 

districts in August 2014. Of these 57 farmers, 27 were consistent users of CA each year since 

2009; the remaining 30 either never used CA or used it in only a subset of years. We held 

separate FGDs with each of the three farmer groups in all the districts visited. The three districts 

in which the FGDs were conducted had some of the highest variability in MT use rates in 

Zambia between 2008 and 2012 (Ngoma et al., 2014). Participants in the focus group discussions 

were selected with the help of camp extension officers in the districts. 

3.1. Sampling  

Sampling for the 2008-2011 CFSs was based on the 2000 Census of Housing and Population. 

The sampling frame mainly included rural SEAs, but urban SEAs with 70% or more of their 

households engaged in agricultural activities were also included. A two-stage cluster sampling 

scheme was used.  In the first stage, 680 SEAs were selected out of a total of 12,789 SEAs 

nationwide using probability proportional to size, with the number of agricultural households 

serving as the measure of size. At the second stage, all households in selected SEAs were listed 

and agricultural households identified. Listed agricultural households were then stratified into 

three categories, A, B and C, on the basis of total area under crops; presence of some specified 



 
 
 
  
 
   

 

special crops; numbers of cattle, goats and chickens raised; and sources of income. Systematic 

sampling was then used to select 20 households distributed across the three strata in each SEA. 

This resulted in a total national sample size of 13,600 households per year and a total of 51,156 

maize plots between 2008 and 2011.  

3.2. Data processing and caveats 

We put the data through a series of filters to prepare it for use in the analysis. Starting with 

51,156 maize plots owned by 37,169 households in panel SEAs between 2008 and 2011, we 

dropped 5% of the fields with seed rates exceeding 100 kg/ha; 0.08% which did not report any 

seed used; 0.7% with yields greater than 8000 kg/ha; 0.4% and 0.1% with basal and top dressing 

application rates, respectively, exceeding 400 kg/ha; and two fields that were larger than 20 ha. 

These cutoff points were determined on the basis of reasonable input use and yield rates in 

Zambia, and on the basis of recommendations by MAL. 10  Altogether, these changes resulted in 

the exclusion of 3,197 maize plots (or 6.2% of the original sample), bringing the analytical 

sample to 47,959 total maize plots. This data filtering is within acceptable levels; for example, 

Sheahan et al. (2013) excluded 9.7% of observations from their original sample after 

implementing similar cutoffs for a study of factors affecting maize yields in Kenya.  

4. Methods 

  

4.1. Conceptual Framework  

The main objective of this paper is to estimate the ceteris paribus effects of planting basins and 

ripping on smallholder maize yields in Zambia. This is accomplished through econometric 

estimation of a maize production function following Xu et al., (2009) and Burke (2012) for 

Zambia, and Sheahan et al., (2013) for Kenya. The general production function is specified as  

                                                                 
10

 The recommended maize seeding rate in Zambia is 20 kg/ha, and the recommended fertilizer application rates 

are 200 kg/ha each of basal and top dressing. Fields larger than 20 ha were excluded because these exceed the 

definition of a smallholder farmer (i.e., those cultivating less than 20 ha of land). 



 
 
 
  
 
   

 

(1) ( , , )y f tillage X Z  

where y is field-level maize yield in kg per ha; tillage is a vector of dummy variables capturing 

the tillage method used on the field (i.e., planting basins, ripping, and various conventional 

tillage methods), and capturing the timing of when tillage was done (i.e., before or during the 

rainy season); X is a vector of other yield determinants controlled by the farmer (e.g., use of 

hybrid seed, fertilizer application and seeding rates, labor quantity and quality, etc.); and Z is a 

vector of strictly exogenous yield determinants such as rainfall and other agro-ecological 

conditions (Burke, 2012). The specific variables included in tillage, X, and Z are discussed in 

detail in the next sub-section. A quadratic functional form is used for the production function in 

equation (1). As discussed in Sheahan et al., (2013), the quadratic functional form is generally 

thought to be a good approximation of the underlying data generating process of crop yields and 

is frequently used in analyses of crop yield response in developing countries. See Burke (2012) 

and Xu et al. (2009) for other applications of the quadratic production functions in yield 

estimation in Zambia. 

4.2. Empirical model 

Bringing equation (1) to the data, we represent the empirical model as:  

(2)      sij sij 1 sij 2 sij 3 4 s sijy c u     tillage X Z year    ,  

where ysij  is the maize yield in kg/ha in SEA s for household i on plot j, and we have excluded 

time-subscripts to indicate the fact that the data are a panel at the SEA-level and not at the 

household- or plot-level. tillage, X, and Z are defined as in equation (1) above; year is a vector of 

year dummies; cs is unobserved time invariant SEA-level heterogeneity; usij is the idiosyncratic 

error term; and the  ’s are parameters to be estimated.11    

                                                                 
11 To keep the notation simple, we have also excluded the squared  and interaction terms from equation (2) but they 

are included in the estimated models. 



 
 
 
  
 
   

 

The specific explanatory variables included in the production functions estimated here were 

selected based on previous studies on the determinants of smallholder maize yields in eastern and 

southern Africa (Xu et al., 2009; Burke, 2012; Sheahan et al., 2013), agronomic principles of 

maize production in Zambia, and data availability. Table 1 presents summary statistics for the 

variables used in the regressions. The dependent variable, plot-level maize yield, averaged 1,796 

kg/ha over the four-year study period.  

[Table1] 

Included in tillage, the vector of tillage-related variables, are separate dummy variables equal to 

one if the plot was tilled using planting basins, ripping, plowing, bunding, or ridging. 

Conventional hand hoe tillage is the base tillage method and so its dummy variable is excluded 

from the regression models. As indicated in Table 1, the vast majority of maize plots were tilled 

using conventional tillage methods: 31%, 33%, and 28% were tilled by hand hoe, plowing, and 

ridging, respectively. About 2% of plots were tilled via bunding, and only 1% of plots each were 

tilled with ripping and planting basins. Also included in tillage is a dummy equal to one if the 

field was tilled before the onset of the rainy season, and equal to zero if the field was tilled 

during the rainy season. Overall  30% of the plots in the sample were tilled before the rains 

(Table 1) while 52%, 23%, 12% and 43% of all plots tilled with basins, ripping, plowing and 

hand hoeing , respectively, had tillage done before the rains. These  average to about 25% for all 

tillage options in agro-ecological zones 1 and 2a. Recall that dry season land preparation is 

encouraged under CA to facilitate early planting and so that maize plants can benefit from the 

nitrogen flush associated with the first few rains of the season (Haggblade et al., 2011). To 

capture potential differential effects of tillage method on yields depending on when tillage is 

done, we interact the tillage method dummies with the tillage-before-the-rains dummy.  

Included in X, the vector of other yield determinants under the control of the farmer, are basal 

and top dressing inorganic fertilizer application rates (kg/ha), whether hybrid maize seed was 

used (=1), and the seeding rate for all types of seed (kg/ha). On average, households used 61 



 
 
 
  
 
   

 

kg/ha of basal dressing, 63 kg/ha of top dressing, and 21 kg/ha of maize seed. These fertilizer 

rates are lower than the recommended rates of 400 kg/ha but the seeding rates are close to the 

recommended seeding rate of 20 kg/ha (GRZ, Undated). Overall, less than half of the 

smallholder population used fertilizer and hybrid seed over the study period. A priori, increases 

in the fertilizer and seed application rates are expected to increase maize yields up to a point, 

beyond which decreasing marginal returns are likely to set in. The quadratic functional form 

allows for such effects. Our models also include interactions between basal and top dressing 

fertilizer to capture the effects of combined fertilizer application. We include interactions of 

hybrid seed use and fertilizer application rates to capture the combined effects of improved input 

use.  

Also included in X are the area of the plot (ha), and proxies for household labor quantity and 

quality, namely: the number of adults age 15-65 in the household size (3.94 on average); the age 

of the household head (44 years on average) – older household heads may have more farming 

experience but may be less amenable to new management practices such as MT; a dummy equal 

to one if the household is male-headed (79% of the sample); and dummies for whether the 

household head is monogamously married (70%) or polygamously married (7%) – the remaining 

household heads are not married. We hypothesize that households with heads that are 

polygamously married might have more family labor available for maize production than 

households with monogamously married heads. Households with married households heads 

might have more family labor available than households with unmarried heads. The CFS data do 

not consistently capture information on labor input to maize production, so we use the marital 

status variables and number of adults as proxies.   

Included in Z, the vector of yield determinants that are strictly exogenous to the household, are 

growing season rainfall in millimeters (November to March) and a variable capturing rainfall 

stress periods measured as the number of 20-day periods during the growing season with less 

than 40 mm of rainfall. The former is expected to increase yields up to a point, while the latter is 



 
 
 
  
 
   

 

expected to reduce yields. We also control for different soil and rainfall conditions by including 

dummies for AEZs 2a, 2b, and 3 (with AEZ 1 serving as the base). Year dummies (year in 

equation 2) are included in the empirical model to control for year-specific yield effects.  

Due to data limitations, we are not able to explicitly control for the number of times a plot is 

weeded, whether or not the plot is irrigated, or the use of herbicide, other crop protectants, or 

lime on the plot. To a certain extent, the labor quantity-related variables serve as proxies for the 

number of weedings. Very few smallholder plots in Zambia are irrigated, and use of herbicide, 

crop protectants, and/or lime is very rare among Zambian smallholders. There is also evidence 

suggesting that the majority of farmers using herbicides are under- and mis-applying it (Umar et 

al., 2011).  

We also do not observe in the CFS data the number of years in which a given plot has been under 

planting basins or ripping. Thus, our estimates of the ceteris paribus effects of these tillage 

methods on maize yields should be interpreted as average effects for plots currently under the 

tillage method.  

  



 
 
 
  
 
   

 

 

4.3. Estimation strategy 

The empirical model is linear in parameters and is estimated via pooled ordinary least squares 

with standard errors clustered at the SEA level. We estimate models using all observations 

(national- level model) as well as models using only observations from the two AEZs where CA 

has been most heavily promoted and is arguably most suitable (AEZs 1 and 2a).  

The major econometric challenge in estimating the causal effects of planting basins and ripping 

on maize yields is the potential endogeneity of farmers’ tillage method choices. Tillage methods 

are not randomly assigned to households or fields, and there may be systematic correlation 

between farmers’ use of planting basins and ripping (and other tillage methods and inputs) and 

unobserved factors affecting maize yields. For example, farmers that are more motivated or 

progressive, or have greater farming skill or management ability, may be more likely to adopt 

planting basins or ripping, but would likely have higher yields than other farmers even if they 

used conventional tillage methods. (We use the age and gender of the household head to proxy 

for these factors.) As a second example, use of MT on a given plot could be correlated with 

unobserved plot-level factors such as soil quality that also affect yields. To address these 

concerns, we control for as many observed plot- and household-level maize yield determinants as 

possible given the available data. While we are somewhat constrained in what we can do to 

address the potential endogeneity of the observed explanatory variables in equation (2) given that 

we do not have plot- or household- level panel data, we do have SEA-level panel data. We take 

advantage of this data structure to control for time invariant SEA-level heterogeneity (cs) using a 

correlated random effects (CRE) approach. We also use an instrumental variables/control 

function approach to test for remaining endogeneity of planting basins and ripping even after 

controlling for cs. These two approaches are described in the next two sub-sections. 



 
 
 
  
 
   

 

4.3.1. Controlling for SEA-level unobserved heterogeneity using correlated random 

effects (CRE) 

We take advantage of the SEA-level panel structure of the CFS data to control for SEA-level 

time-invariant unobserved factors affecting maize yields that could be correlated with the 

observed yield determinants (e.g., average farming management ability, motivation, soil quality, 

and agro-ecological conditions in a household’s SEA). We take a Mundlak-Chamberlain 

device/CRE approach to controlling for cs (Mundlak, 1978; Chamberlain, 1984).12 For simplicity, 

let Wsij represent all the time-varying covariates in equation (2), and recall that s indexes the 

SEA, i indexes the household, and j indexes the plot. Under the CRE approach, cs is assumed to 

be a function of the SEA-level averages (across all time periods) of the time-varying covariates, 

i.e., , where , 
2

a
  is the conditional variance of as, 

and y and  are parameters. Under these assumptions and strict exogeneity, we can control for 

cs by including the SEA-level time averages, 
  
W

s
, as additional regressors in equation (2).13 See 

Wooldridge (2010) for further details on the CRE approach to controlling for time invariant 

unobserved heterogeneity.     

 

4.3.2. Testing for remaining endogeneity of minimum tillage choices 

While the CRE approach described above allows us to control for correlation between the time-

invariant SEA-level heterogeneity and plot- or household- level unobserved factors affecting 

                                                                 
12

 While a fixed effects (FE) approach would also have been possible, a CRE approach is generally preferred when 

using meso-panel data with time-varying sampling weights , as in the current application (personal communication, J. 

Wooldridge, June 2014). Nonetheless, as a robustness check, we estimated the models without sampling weights using 

both FE and CRE approaches and the results are very similar. Note that both the FE and CRE approaches allow the 

unobserved time invariant heterogeneity and the observed covariates to be correlated. This is a key difference between 

the CRE and ‘regular’ random effects approaches.  
13 As an example, the SEA-level time average of the planting basins dummy would be the proportion of maize plots 

in the SEA under planting basins over the 2008-2011 study period. 



 
 
 
  
 
   

 

maize yields (cs), there still may be correlation between the farmer’s choice of tillage method and 

timing (tillage) and input use decisions (X), and the idiosyncratic error term (usij). This is a 

common challenge in estimating production functions because most right-hand-side variables are 

under the control of the farmer. While some authors acknowledge this potential endogeneity, 

possibly use CRE, and move on (e.g., Xu et al., 2009, and Sheahan et al., 2013), others try to go 

further and combine the CRE approach with instrumental variables or control function 

techniques to test and control for the endogeneity of the key covariate(s) of interest (e.g., Burke 

(2012) for inorganic fertilizer).  In our study, the key covariates of interest are the planting basins 

and ripping dummy variables. We attempted to follow the latter approach by using a control 

function approach (Wooldridge, 2010) and instrumenting for a farmer’s use of planting basins 

with a dummy variable equal to one if the household is in a district where the CFU has promoted 

CA and equal to zero otherwise; and by instrumenting for ripping using a dummy variable equal 

to one if the household is in a district where Dunavant Cotton/NWK Agri-Services Zambia has 

promoted CA and equal to zero otherwise.14 The argument for these IVs is that CFU’s and 

Dunavant’s choice of where to promote CA should be exogenous to plot-level yields after 

controlling for observed input use levels (X), other observed factors (Z), and SEA-level time 

invariant unobserved heterogeneity. CFU and Dunavant promotion of CA is likely to affect a 

farmer’s decision to use planting basins or ripping but is unlikely to be correlated with the 

idiosyncratic plot-level error term in the yield function. Unfortunately, these IVs were only 

weakly correlated with farmer’s use of planting basins and ripping (0.05 < p < 0.10). 

Nonetheless, inclusion of the control function residuals in the yield functions suggested that 

ripping and planting basin decisions are exogenous to maize yields after controlling for the 

aforementioned observed and unobserved factors.15 Given these indicative results that ripping 

                                                                 
14

 Household- or plot-level IVs would have been better but no such IVs are available. 
15 These results are available from the authors upon request. 



 
 
 
  
 
   

 

and planting basins are exogenous, and to avoid the bias and inconsistency created by weak IVs 

(Cameron and Trivedi, 2010), we did not pursue this approach further. 

5. Results 

5.1. Descriptive results 

5.1.1. Are there systematic differences between minimum tillage plots and conventional 

tillage plots in maize yields and key determinants thereof? 

As a prelude to the econometric results of the paper, the bivariate mean comparisons in Table 2 

seek to answer the question of whether there are systematic differences between MT and non-

MT plots in terms of maize yields and/or the main covariates used in the econometric analysis. 

Based on these bivariate comparisons, there is no statistically significant difference between 

yields on MT and non-MT plots.16 Among the explanatory variables, the only statistically 

significant difference among MT and non-MT plots was in the gender of the household head 

(MT plots had a slightly higher percentage of male-headed households (83%) compared to non-

MT plots (79%)).  

[Table 2] 

Although there are no statistically significant differences between mean yields on MT and non-

MT plots in general, there may be differences between specific MT practices and their 

conventional tillage counterparts – i.e., between planting basins and hand-hoed plots, and/or 

between ripped and plowed plots. We explore these differences using first order stochastic 

dominance tests following Tatwangire (2011). Figure 1  shows the cumulative distribution 

functions (CDF) of maize yield under the different tillage options. The ripping CDF does not lie 

to the right of the plowing CDF at all yield levels, suggesting that ripping does not first-order 

stochastically dominates plowing.   

                                                                 
16 Throughout the paper and unless otherwise specified, we use p<0.10 as the cutoff of statistical significance. 



 
 
 
  
 
   

 

While Figure 1 suggests that ripping might offer a yield advantage over plowing, the figure 

suggests that yields on planting basin plots (without controlling for other factors) are consistently 

below the yields on conventional hand-hoed plots. This is evident from the planting basins CDF 

consistently lying to the left of the hand-hoe CDF.   

 [Figure 1] 

5.2. Econometric results  

While the descriptive results in Figure 1 are interesting and suggest that there may be yield 

advantages associated with ripping and yield disadvantages associated with planting basins, we 

cannot infer causality from the descriptive results because other factors that affect yields may be 

changing along with the tillage methods. In contrast, the multivariate econometric analysis 

allows us to isolate the effects of planting basins and ripping by holding other factors constant. In 

the econometric analysis, we estimated three different specifications of the model in equation 

(2). The first specification (spec.1) excludes interaction and squared terms. The second 

specification (spec.2) includes interactions and squared terms for many of the variables but 

excludes interactions between the tillage method dummies and fertilizer application rate 

variables. The third specification (spec.3) is similar to spec.2 but includes tillage-fertilizer 

interactions. The results are robust to alternative model specifications, so we focus our 

discussion of the results mainly on spec.3, which is the most fully elaborated model.   The 

estimated average partial effect (APE) of each covariate is reported in Table 4. Each table reports 

the results from the national and AEZs 1/2a models. Because of the large number of interactions 

and squared terms included in spec.2 and spec.3, caution must be exercised when interpreting 

individual coefficient estimates17. If one is interested in the overall effect of a given variable 

(e.g., the basal dressing fertilizer application rate), one should refer to the APE in Table 4 and 

not simply to the parameter estimate on that variable (e.g., the coefficient on brate). 

                                                                 
17 Not included here but coefficient estimates are available from the authors  



 
 
 
  
 
   

 

 

 [Table 4] 

The APEs in Table 4 suggest that, overall, maize yields on plots using planting basins are not 

statistically different from the yields on plots using conventional hand hoe tillage, ceteris 

paribus. We therefore conclude that, compared to hand hoe tillage, use of basins in and of itself 

does not significantly increase maize yields in Zambia.18 This result does not necessarily 

condemn use of basins but merely shows that after controlling for input use, labor availability, 

rainfall conditions, and various important agronomic interactions, improper use of planting 

basins – which results in late planting and additional weedpressure -- does not confer yield 

advantages over hand hoe tillage, on average. In contrast, the APEs for all specifications in Table 

4 suggest statistically significant and positive ripping effects on maize yields, even after 

controlling for other factors. For example, at national level and in AEZs 1/2a, respectively, the 

maize yields on ripped plots are 234 kg/ha and 330 kg/ha higher than on conventional hand hoed 

plots. Moreover, compared to yields on plowed plots, yields on ripped plots are 238 kg/ha and 

332 kg/ha higher at national level and in AEZs 1/2a, respectively (Table 4).  

Although the overall effects of planting basins are not statistically significant, the positive and 

statistically significant interaction effect between planting basins and tillage before the rains  

suggest that planting basins have a more positive effect on yields when tillage is done before the 

rains. For example, in the national model (spec.3), the yield boost from planting basins over 

conventional hand-hoe tillage is 371 kg/ha larger when tillage is done before the rains than when 

tillage is done after the rains. A similar result holds for the AEZs 1/2a model (spec.3) . We used 

the spec.3 regression results to simulate the marginal effects of planting basins on maize yields 

(compared to conventional hand-hoeing) when tillage is done before versus after the rains. These 

                                                                 
18 Timing of basin tillage, how well basins are done, timely planting and input use are key. How long the planting 

basins have been in place could also affect the yield impacts thereof. However, as mentioned above, the data do not 

include information on the latter. 



 
 
 
  
 
   

 

results are reported in panel A of Table 5 and suggest that when tillage is done before the rains, 

planting basins result in yield gains over conventional hand-hoeing of 191-194 kg/ha. This result 

is statistically significant at the 10% level in the national results but only weakly significant in 

AEZs 1/2a (p=0.17).  When tillage is done after the rains, yields are 179 kg/ha and 168 kg/ha 

lower on planting basin plots than hand-hoed plots in the national-level and AEZs 1/2a models, 

respectively (Table 5, panel A). These results provide some evidence that when tillage is done 

early, planting basins can raise smallholders’ yields relative to conventional hand-hoeing. This 

finding is consistent with the notion that dry season land preparation under CA facilitates early 

planting and allows maize plants to benefit from the nitrogen flush associated with early rains 

(Haggblade et al., 2011). 

There are at least three explanations for the finding that maize yields are lower under planting 

basins than conventional hand hoe when tillage is done during the rains. First, it may not be easy 

for farmers to dig basins to the required dimensions during the rainy season especially under 

water logged conditions and in clay loamy soils. This has implications on attainment of optimal 

plant populations and input use. Second, digging basins after the onset of the rainy season may 

lead to late planting which may negatively affect yields. And third, hand hoe farmers are likely to 

use conventional hand hoe tillage compared to basins (if tillage is done after the onset of the 

rains) because the former also helps clear all emerging weeds since it involves complete tillage 

of the entire soil surface (especially for farmers without access to herbicides). 

Does the timing of tillage affect the impacts of ripping on maize yields, as it does for planting 

basins? Our results suggest that it does. The statistically significant, positive interaction effect 

between ripping and the timing of tillage variables provide evidence of such effects. More 

specifically, ripping yield gains over plowing are 481 kg/ha and 653 kg/ha larger when practiced 

before the rains compared to after the rains at the national and AEZ 1/2a levels, respectively . As 

was done for planting basins, we also used the results to simulate the marginal effects of ripping 

on maize yields (compared to conventional plowing) when tillage is done before versus after the 



 
 
 
  
 
   

 

rains. These results are summarized in panel B of Table 5 and show that yields on ripped fields 

are 627-814 kg/ha higher than on plowed fields when tillage is done before the rains, ceteris 

paribus. This result is highly statistically significant (p<0.01) in both the national and AEZs 1/2a 

models. However, when tillage is done after the rains, there is no statistically significant 

difference between yields on ripped plots versus plowed plots. In other words, like planting 

basins, ripping only confers yield benefits over its conventional analogue when tillage is done 

before the rains. 

 

   [Insert Table 6] 

Our findings that combining MT with early land preparation (early planting) boosts yields are 

consistent with the CA literature (Haggblade et al., 2011) and are consistent with farmer 

experiences from the focus group discussions (FGDs). Our econometric results for ripping 

corroborate bivariate findings in (Umar et al., 2011, 2012; Thierfelder et al., 2013) that indicate 

ripping provides yield benefits over conventional plowing. Our results are contrary to 

econometric results in Burke (2012), who finds that use of basins and ripping had no statistically 

significant on yields. Our results are somewhat different from those of Hagglade and Tembo 

(2003), who find positive planting basin effects but no ripping effects on yields.    Our 

econometric results for basin tillage are also in contrast to bivariate results for planting basin 

tillage in Umar et al. (2011) that indicate higher maize yields on basin tilled plots compared to 

hand hoe tilled plots.  A plausible explanation for these differences in the results may be the 

omission of key interaction terms involving all tillage options, timing of tillage, and fertilizer 

application rates in Burke (2012) and Haggblade and Tembo (2003), and the failure to control for 

other yield determinants in the studies that rely on bivariate mean comparisons. Other potential 

reasons for the differential yield effects of ripping and basins depending on the timing of the 

tillage may be associated with differing knowledge requirements of the two MT tillage options. 

Planting basins have to be dug to specific dimensions using hand hoes and few farmers manage 



 
 
 
  
 
   

 

to follow the specifications to the letter as was found in Umar et al. (2012) and Haggblade and 

Tembo (2003). This was also confirmed by farmers during the FGDs where it was mentioned 

that yield benefits are realized only if basins are dug to specifications and all field operations 

done on time.  

If ripping confers higher yields than plowing on average (Table 4) and when tillage is done 

before the rains (Table 5), and planting basins confer higher yields than conventional hand-hoe 

when tillage is done before the rains, ceteris paribus, why are so few farmers practicing MT? 

Two major explanations are farmers’ resource constraints and resistance to change. Adopting 

MT requires higher financial resources to address the higher weed pressure under MT.  For 

example, farmers mentioned during the FGDs that they weed up to three times on MT plots 

compared to only once on plowed or hand-hoed plots per season.  They added that MT plots had 

higher weed pressure because of reduced tillage at land preparation. The majority of the farmers 

resort to using family labor for weeding because they can neither afford to hire (that much) labor 

nor buy herbicides. And even among the few (ca. 2% according to RALS12) who buy herbicides, 

there are still knowledge gaps on appropriate application and handling. Similar results are 

reported in Umar et al. (2012).   

Other potential impediments to increased adoption of MT relate to challenges of keeping 

residues on the fields. This is because these fields are open grazing land during the dry season 

under the prevalent communal land tenure systems. Another major problem especially when MT 

is done early in the dry season relates to basins and rip lines being trampled or buried by free-

range livestock during the dry season. This necessitates redoing the basins and rip lines just 

before the rains, which adds to the high labor demands under MT. Moreover, dry season land 

preparation is very arduous on the dry, hard soils (especially when tillage is done just before the 

rains instead of shortly after harvest). This could further discourage use of planting basins and 

ripping, and, as our results in Table 5 show, if farmers wait to prepare planting basins or rip lines 

until after the rains, the yield benefits of MT evaporate.   



 
 
 
  
 
   

 

Because of these challenges, few farmers have adopted MT and even among the adopters, the 

majority use MT on smaller portions of their total cropped land.  Another major impediment that 

came out of the FGDs is the farmer’s mindset: wealthy farmers see basin tillage as an ancient 

poor mans’ technology, and other farmers have an entrenched belief in plow tillage.  A 

participant during the FGDs summarized the latter thought by saying “plow nipatali” meaning 

plow tillage is the best. Because farmers cultivate larger areas (and hence have higher total 

production) with conventional hand-hoe or plow tillage compared to MT, they suggested that the 

per unit yield advantages from MT do not seem adequate to cover the costs of scaling up MT use 

to the farm level.   

For ripping, another constraint to adoption could be limited availability of rippers or ripping 

services. As shown in Table 6, which presents descriptive results from the 2008 SS and 2012 

RALS on receipt of extension information related to CA and on ripper ownership, as of 2012 less 

than 3% of smallholder households owned a ripper, even in the major MT agro-ecological zones, 

1 and 2a. At the SEA level (typically 2-4 villages), ripper ownership increased from 2008 to 

2012 but even in AEZs 1 and 2a, only 45% of SEAs contained at least one household that owned 

a ripper as of 2012. Further research is needed to understand the availability and affordability of 

ripping services.  

Access to information on MT could also constrain its practice. As shown in Table 6, as of 2008, 

only 28% and 19% of Zambian smallholder farmers had ever received extension information on 

planting basins and ripping, respectively. These percentages were higher in AEZs 1 and 2a but 

the majority of farmers in these areas had not received information on MT as of 2008. By 2012, 

the percentage of farmers that had ever received extension advice on CF had risen to 50% 

nationally and 62% in AEZs 1 and 2a. So the word on CF is gradually getting out but as of yet, 

this has not translated into high MT use rates.  

Moving beyond the tillage method effects on maize yields, the results for the other covariates in 

equation (2) are generally consistent with a priori expectations. Using hybrid maize seed 



 
 
 
  
 
   

 

significantly increased average maize yield by 146 kg/ha and 135 kg/ha at national level and in 

AEZs 1/2a, respectively (Table 4). Similar positive effects of hybrid seed use on yield are 

reported in (Xu et al., 2009; Burke, 2012) for Zambia, and in Sheahan et al. (2013) for Kenya. 

Additionally, results suggest that average maize yield increases by 3-4 kg and 5 kg per additional 

kg of basal and top dressing fertilizer, respectively (Table 4).  

Results in Table 4 suggest the existence of a negative plot size-productivity relationship among 

smallholder farmers in Zambia. Increasing plot area by one hectare significantly reduces average 

maize yields by 40 kg/ha and 44 kg/ha at national level and in AEZs 1/2a, respectively. 

Additionally, all else constant, an increase in the number of rainfall stress periods significantly 

reduced maize yields by 40 kg/ha on average at national level. These results bring to light the 

need to adapt agricultural systems to cope with increasing rainfall variability in Zambia as 

highlighted in Chabala et al. (2013) and are also in line with findings in Lobell et al. (2008) that 

yields in SSA are projected to decline by 30% owing to climate variability.19   

In summary, our overall results (Table 4) suggest that use of rip tillage confers statistically 

significant maize yield benefits over common conventional tillage options (especially plowing 

and hand hoe). Moreover, we found that both ripping and planting basins confer yield benefits 

over their conventional counterparts (plowing and hand-hoeing, respectively) when tillage is 

done before the rains, but not when tillage is done after the rains (Table 5).  

 

6. Conclusions and Policy Implications 

Raising agricultural productivity to meet growing food demands while increasing the resilience 

of rain-fed farm systems to climate variability is perhaps one of the most pressing contemporary 

development challenges in sub-Saharan Africa. Conservation agriculture (CA) technologies have 

been actively promoted over the last two decades as potential solutions to these problems in the 

                                                                 
19 We tested for interaction effects between minimum tillage methods and the rainfall stress variable but found no 

statistically significant effects.  



 
 
 
  
 
   

 

region. Our results suggest that minimum tillage dimensions of CA practices offer viable options 

for improving smallholder cereal yields.   

 

After controlling for time invariant unobserved heterogeneity at the enumeration area level by 

applying the correlated random effects-pooled ordinary least squares estimator to nationally-

representative survey data from nearly 48,000 smallholder maize plots from 2008-2011, we find 

positive maize yield gains from minimum tillage over conventional tillage methods when tillage 

is done before the onset of the rains. Relative to tillage before versus after the onset of the rains, 

rip tillage conferred average maize yield gains of 577-821 kg/ha over conventional plow tillage, 

while basins tillage conferred average maize yield advantages of 191-194 kg/ha over 

conventional hand-hoe tillage. These results reinforce the importance of early land preparation 

and planting to maize productivity and highlight the overall potential significance of minimum 

tillage to improving smallholder productivity in Zambia and the region.  Results also suggest that 

the realizable ceteris paribus yield gains of minimum tillage under smallholder farm conditions 

are only attainable if farmers do early land preparation and presumably plant early. While the 

results in this paper suggest that minimum tillage could help to raise maize yields in Zambia, 

further analysis is needed to establish whether these yield gains are large enough to offset the 

potentially higher costs associated with minimum tillage. 

 

Given the main findings of the paper that minimum tillage can boost yields over conventional 

tillage methods if tillage is done before the onset of the rains, there is need to emphasize this 

critical factor in extension messaging about ripping and planting basins. Moreover, although 

extension messaging about CA had reached approximately 62% of Zambian smallholders in the 

drier agro-ecological zones 1 and 2a by 2012, additional extension efforts are needed to further 

spread information about CA and to demonstrate its potential benefits where the technologies are 

appropriate. Finally, given the larger yield benefits of ripping over conventional plowing 

(compared to the yield benefits of planting basins over conventional hand-hoeing), policies and 



 
 
 
  
 
   

 

programs to improve the availability and accessibility of rippers and ripping services could play 

a key role in boosting smallholders’ maize yields in Zambia.  
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Tables and Figures  

Table 1: Variables used in the econometric analysis 

Variable Description Mean 

Std. 

dev. p10 p25 p50 p75 p90 

yield Maize yield (kg/ha) 1796.52 1460.26 283.95 690.00 1419.75 2555.56 3904.32 

age_hh Age of hh head (years) 43.84 14.45 27.00 32.00 41.00 53.00 65.00 

sex_hh Male hh head (=1) 0.79 0.41 0.00 1.00 1.00 1.00 1.00 

p_married Polygamously married (=1) 0.07 0.26 0.00 0.00 0.00 0.00 0.00 

m_married Monogamously married (=1) 0.70 0.46 0.00 0.00 1.00 1.00 1.00 

adults # adults 14 - 65 years 3.94 2.50 2.00 2.00 3.00 5.00 7.00 

b_fert Used basal fertilizer (=1) 0.43 0.50 0.00 0.00 0.00 1.00 1.00 

tp_fert Used top fertilizer (=1) 0.45 0.50 0.00 0.00 0.00 1.00 1.00 

brate Basal fertilizer rate (kg/ha) 60.50 87.38 0.00 0.00 0.00 100.00 200.00 

tprate Top fertilizer rate (kg/ha) 62.74 87.46 0.00 0.00 0.00 123.46 200.00 

seedingrate Seed rate (kg/ha) 21.06 17.16 4.68 10.00 17.40 25.00 46.40 



 
 
 
  
 
   

 

hyb_seed Used hybrid seed (=1) 0.45 0.50 0.00 0.00 0.00 1.00 1.00 

aez3 AEZ 3 (=1) 0.34 0.21 0.00 0.00 0.00 1.00 1.00 

aez2a AEZ 2a  (=1) 0.48 0.07 0.00 0.00 0.00 1.00 1.00 

aez2b AEZ 2b (=1) 0.07 0.50 0.00 0.00 0.00 0.00 0.00 

aez1 AEZ 1  (=1) 0.11 0.47 0.00 0.00 0.00 0.00 1.00 

rain Season rainfall (mm) 1020.46 0.50 666.00 792.00 982.00 1172.00 1329.00 

rain_stress Rainfall season stress periods (#) 1.03 0.25 0.00 0.00 1.00 2.00 3.00 

plot_size Plot size (ha) 0.93 0.31 0.25 0.38 0.60 1.00 2.00 

t_till Tillage before rains (=1) 0.30 0.46 0.00 0.00 0.00 1.00 1.00 

bund Used bunding (=1) 0.02 0.14 0.00 0.00 0.00 0.00 0.00 

ridge Used ridging (=1) 0.28 0.45 0.00 0.00 0.00 1.00 1.00 

pl_basins Used planting basins (=1) 0.01 0.12 0.00 0.00 0.00 0.00 0.00 

ripping Used ripping (=1) 0.01 0.08 0.00 0.00 0.00 0.00 0.00 

plow Used plowing (=1) 0.33 0.47 0.00 0.00 0.00 1.00 1.00 

hhoe Used hand hoe (=1) 0.31 0.46 0.00 0.00 0.00 1.00 1.00 

Source: Authors’ computations from CFS 2008-2011 

 

Table 2: Bivariate mean comparisons of key variables between minimum tillage plots and 

non-minimum tillage plots between 2008 and 2011 

Variable  Description 

Used minimum tillage on 

plot 

t-stat. 

for diff. 

(Yes-No) p-value  No Yes 

yield Maize yield (Kg/ha) 1796.99 1772.97 -0.38 0.701 

plot_size Plot size in ha 0.93 0.95 0.57 0.568 

age_hh Age of hh head 43.85 43.58 -0.40 0.685 

sex_hh Male hh = 1 0.79 0.83 2.44 0.015 

adults Number of adults per hh 3.95 3.81 -1.27 0.204 

p_married Polygamously married 0.07 0.08 0.81 0.416 

m_married Monogamously married 0.70 0.73 1.48 0.140 

b_fert Used basal mineral 

fertlizer 

0.43 0.42 -0.24 0.810 



 
 
 
  
 
   

 

tp_fert Used top mineral 

fertilizer 

0.45 0.46 0.30 0.762 

brate Basal fertilizer  rate 

(kg/ha) 

60.50 60.38 -0.03 0.976 

tprate Top fertilizer rate 

(kg/ha) 

62.70 64.28 0.37 0.710 

hyb_seed Used hybrid maize seed 0.45 0.46 0.45 0.651 

seedingrate Seeding rate (kg/ha) 21.07 20.75 -0.46 0.648 

rain Growing season rainfall 1019.83 1052.00 1.60 0.110 

rain_stress # of 20 day periods with  

< 40mm 

1.02 1.07 0.79 0.431 

Source: Authors’ computations from CFS 2008-2011 

Table 3: Maize production function average partial effect (APE) estimates (dependent 

variable: maize yield in kg/ha) 

  National Agro-ecological zones 1 and 2a 

Variables Spec.1 Spec.2 Spec.3 Spec.1 Spec.2 Spec.3 

used pl_basins (= 1) -41.417 -109.654 -112.264 -5.561 -83.107 -73.763 

 (69.421) (70.607) (75.249) (74.999) (68.546) (71.244) 

used ripping (=1) 186.190* 187.298* 233.789** 276.028** 266.637** 329.941** 

 (110.531) (107.872) (108.591) (139.718) (134.146) (135.323) 

used plow (=1)  -0.212 -6.720 -4.457 5.162 -6.893 -1.808 

 (29.216) (29.653) (30.078) (36.964) (38.343) (39.095) 

used bunding (= 1) 178.598** 144.869 77.369 496.252*** 463.384*** 459.146*** 

 (85.104) (91.881) (92.889) (148.980) (149.626) (140.091) 

used ridging (=1) 114.475*** 103.386*** 98.295*** 115.305*** 98.279** 100.875** 

 (27.539) (27.959) (27.862) (37.262) (38.744) (39.837) 

Tillage before rains (=1) -22.486 -24.298 -24.450 36.195 19.623 20.203 

 (21.171) (22.812) (22.732) (29.686) (33.435) (33.374) 

Used hybrid seed (=1) 180.629*** 147.735*** 146.055*** 158.678*** 137.000*** 134.754*** 

 (22.693) (23.034) (22.985) (29.072) (29.854) (29.824) 

Seeding rate (kg/ha) 1.879*** 0.691 0.749 1.946*** 0.583 0.706 

 (0.557) (0.939) (0.935) (0.675) (1.172) (1.161) 

basal fert use rate (kg/ha) 3.128*** 4.072*** 4.113*** 3.180*** 3.868*** 3.922*** 



 
 
 
  
 
   

 

 (0.328) (0.386) (0.382) (0.383) (0.459) (0.447) 

top fert use rate (kg/ha) 4.832*** 4.927*** 4.822*** 4.962*** 5.162*** 5.047*** 

 (0.320) (0.389) (0.387) (0.369) (0.478) (0.470) 

plot size in ha -12.730 -39.094*** -39.636*** -13.270 -42.975*** -43.947*** 

 (9.187) (13.037) (12.998) (11.390) (16.551) (16.526) 

Growing season rainfall (mm) 0.001 -0.008 -0.009 0.014 0.017 0.011 

 (0.106) (0.108) (0.108) (0.145) (0.147) (0.148) 

# of 20 day periods with 

 < 40mm rainfall 

-30.277* -40.335** -40.213** 9.666 0.146 -1.978 

 (15.913) (19.994) (19.917) (19.554) (23.420) (23.455) 

Male head (=1) 37.179 45.866 44.331 17.066 22.335 19.409 

 (29.562) (29.683) (29.664) (40.368) (40.383) (40.330) 

Age of hh head (years) -0.290 0.993 0.970 -0.789 -0.080 -0.151 

 (0.550) (0.717) (0.717) (0.753) (1.010) (1.007) 

Polygamously married (=1) 44.937 42.823 41.631 54.684 51.440 50.420 

 (39.070) (39.117) (39.106) (48.425) (48.439) (48.369) 

Monogamously married (=1) 20.046 20.514 20.893 31.095 33.561 34.286 

 (28.883) (29.119) (29.056) (38.584) (38.818) (38.711) 

Number of adults (15-65 

years) 

-0.733 -3.044 -2.933 -2.487 -3.984 -3.819 

 (3.995) (5.178) (5.128) (4.914) (6.721) (6.617) 

2009.year  252.316*** 237.026*** 239.449*** 377.950*** 367.354*** 370.649*** 

 (40.945) (40.979) (40.921) (51.572) (52.882) (52.394) 

2010.year  565.090*** 541.306*** 543.539*** 792.754*** 779.171*** 776.082*** 

 (46.990) (48.263) (48.302) (67.339) (70.312) (70.444) 

2011.year  533.487*** 519.053*** 519.221*** 576.920*** 577.220*** 581.136*** 

 (42.154) (41.840) (41.439) (58.691) (58.404) (57.552) 

AEZ 2a (=1) 17.997 45.055 59.577    

 (50.775) (54.239) (54.045)    

AEZ 2b (=1) 15.609 15.716 -21.610    

 (67.342) (77.257) (76.277)    

AEZ 3 (=1) 355.503*** 345.079*** 334.802***    

 (63.136) (65.732) (63.375)    

Observations 47,838 47,838 47,838 25,808 25,808 25,808 



 
 
 
  
 
   

 

Notes: Standard errors clustered at the SEA level in parentheses; ***, **, * statistically 

significant at 1%, 5% and 10%, respectively; base tillage method, based year, and base agro 

ecological zone are conventional hand hoe, 2008, and AEZ 1, respectively. 

Source: Authors’ computations from CFS 2008-2011 

 
 
 
 
 
 
 
 
 
 
 

Table 4: Marginal effects on yields of planting basins vs. hand hoe tillage, and ripping vs. 

plowing, by timing of tillage (based on specification 3) 
Panel A: Simulated average yield differences (kg/ha) for planting basins (compared to hand hoe tillage) for 

tillage done before vs. during the rainsa 

 Tillage before the rains  Tillage during the rains 

 Marginal effect t-stat.  Marginal effect t-stat. 

National results 191.45* 1.71  -179.25** -2.21 

AEZs 1 and 2a results  194.01 1.42  -168.41* -1.88 

      

Panel B: Simulated average yield differences (kg/ha) for ripping (compared to plowing) for tillage done before 

vs. during the rains, and with average inorganic fertilizerb 

 Tillage before the rains  Tillage during the rains 

 Marginal effect t-stat.  Marginal effect t-stat. 

National results 576.54*** 2.96  95.79 0.77 

AEZs 1 and 2a results  820.94*** 3.30  167.77 1.11 

Note: aThe planting basins-fertilizer application rate interaction effects are not statistically 

significant in specification 3, and so are set to zero in these simulations. bThe ripping-fertilizer 

application rate interaction effects are statistically significant in specification 3; the marginal 

effects of ripping vs. plowing in the table above are evaluated at the average basal and top 

dressing fertilizer rates in the sample (61 kg/ha basal and 63 kg/ha top dressing in the national 

model, and 56 and 59 kg/ha, respectively, in the AEZs 1 and 2a model). ***, **, * statistically 

significant at 1%, 5% and 10% respectively. 



 
 
 
  
 
   

 

Source: Authors’ computations from CFS 2008-2011 

 

 

Figure 2: Cumulative distribution functions of smallholder farmer yields by all tillage 

options between 2008 and 2011 in Zambia 

Source: Authors’ computations from CFS 2008-2011 
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