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Abstract.  

High fuel prices combined with legislative policies have increased biofuel production 

causing high food prices and establishing a link between energy and agricultural 

markets. This paper examines price relationships between agricultural food and 

energy commodities over the recent decade. A structural change analysis on weekly 

prices of crude oil, gasoline, ethanol, corn and wheat is conducted. The presence and 

the nature of structural breaks are empirically tested on single prices and on the price 

relationships. A cointegration analysis is conducted accounting for the presence of 

structural breaks. We find that commodity prices have experienced structural changes 

both at price levels and in the price relationships. The energy and food commodity 

prices exhibit long run relationships when structural breaks are considered. The 

break dates identified are in line with biofuel policy interventions and changes in 

policy regimes in the United States. 
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1. Introduction 

Agricultural commodities experienced substantial increases in prices over the most recent decade 

with major surges in both 2007-08 and again in 2010-11. The prices of food commodities such as 

maize, rice and wheat increased dramatically from late 2006 through to mid-2008, reaching their 

highest levels in nearly thirty years. In the second half of 2008, the price upswing decelerated 

and prices of commodities decreased sharply in the midst of the financial and economic crisis. A 

similar price pattern emerged in early 2009 when the food commodity price index slowly began 

to climb. After June 2010, prices shot up, and by January 2011, the index of most commodities 

exceeded the previous 2008 price peak These price movements coincided with sharp rises in 

energy prices, in particular crude oil. 

 

Several authors have discussed the factors lying behind the recent sharp increases though no 

consensus has been reached on the cause of these phenomena. Rapid economic growth in China 

and other Asian emerging economies, decades of underinvestment in agriculture, low inventory 

levels, poor harvests, depreciation of the U.S. dollar, and financializiation and speculative 

influences are among the factors cited as leading to high levels of commodity prices (Abbot et al, 

2008, Cooke and Robles, 2009; Gilbert, 2010; Wright, 2011). 

  

The diversion of food crops as biofuels stands out as an important and new factor that many have 

seen as accounting for the recent food price spikes (Mitchell, 2008). Global biofuel production 

has increased rapidly over the last twenty years (Wright, 2014). In the United States biofuel 

production began to rise rapidly in 2003 while in the European Union it accelerated from 2005 

(USDA, 2008). Ethanol production (mainly in the United States and Brazil) tripled from 4.9 

billion gallons to almost 15.9 billion gallons between 2001 and 2007. In the U.S., corn 

production used for ethanol production increased from 12.4 percent in the 2004/05 crop year to 

over 38.5 percent in the 2010/11 crop year (USDA, 2011). Over the same period, biodiesel 

production, mainly in the European Union and deriving from vegetable oils, rose almost ten-fold, 

to about 2.4 billion gallons. 

 



 
 
 
  
 
   

 

This expansion in biofuels production has been driven by a number of economic and 

environmental factors. High crude oil prices and keenness to promote non-petroleum energy 

sources to reduce dependence on oil imports have been important policy drivers in the United 

States, Brazil, and the European Union. Environmental concerns over greenhouse gas emissions 

and the urge to slow down global warming due to fossil fuel emissions have also contributed to 

this expansion. In Brazil, the presence of large areas of poorly utilized land allowed rapid growth 

of the sugar cane production for use as the biofuel feedstock. Debate remains on whether the 

increase in biofuels production was primarily market or policy-driven. Some authors believe that 

the boom was mainly driven by the increase in crude oil prices. Others sustain that the boom 

resulted from government policies, such as mandates and tax credits in the U.S. aimed at 

increasing energy self-sufficiency and, in Europe, environmental pressures to reduce emissions 

(DeGorter and Just, 2009; Abbot, 2013; Peri and Baldi, 2013). 

 

It has been argued that increased biofuel production has contributed to the increases in the prices 

of the main food commodities by increasing the demand for grains and oil seeds used as 

feedstocks (Rosegrant et al., 2008). According to FAO (2008), the demand for cereals for 

industrial use, including biofuels, rose by 25 percent from 2000 to 2008 against a 5 percent 

increase in global food consumption. The IMF estimated that by 2008, the increased demand for 

biofuels accounted for 70 per cent of the increase in maize prices and 40 per cent of the increase 

in soybean prices. Increased international food commodity prices were in large measure 

transmitted back to domestic markets in developing countries where poor households, 

particularly those in urban areas, spend a large proportion of their incomes on food (World Bank, 

2008). It is argued that this rightward shift in the demand function for grains and vegetable oils 

has put upward pressure on the entire range of food prices (Tyner, 2010; Serra, 2011a). 

 

We investigate the claim that the advent of biofuels has altered the nature of the relationship 

between energy and agricultural markets – see Taheripuor and Tyner (2008) and Gilbert and 

Mugera (2012). In the past, this relationship largely reflected cost factors. Crude oil enters the 

aggregate production function of most primary commodities through the use of various energy-

intensive inputs such as fertilizers, heating, pesticides as well as through costs of transportation. 



 
 
 
  
 
   

 

Baffes (2007) estimated the pass-through of oil prices into agricultural commodity prices as 17 

per cent. Mitchell (2008) estimated that energy and transport costs amount of between 15 per 

cent and 20 per cent of overall agricultural production costs in the U.S. (Gilbert, 2010) concurred 

with these estimates and argued that there was little reason to believe that this proportion had 

increased significantly over recent years. 

 

Increased biofuel production and consumption over the recent decade may have created a new 

demand side link between energy markets and food commodities by making the demand for 

grains and vegetable oils sensitive to the price of crude oil. A number of authors have documents 

the increased co-movement and correlation between crude oil prices and food commodity prices 

over the most recent decade (Tyner, 2010; Serra et al., 2011c; Gilbert and Mugera, 2013). This 

increase in co-movement appears to have commenced at around the same time as biofuels 

production took off. In particular, July 2005 marked the beginning of what Abbot (2013) termed 

as the “ethanol gold rush.” Moreover, in 2005, the Renewables Fuels Standards was enacted 

(U.S. Congress, 2005). In 2007 then followed the Energy Policy Act which significantly 

increased the mandated RFS minimum levels of ethanol production (U.S. Congress, 2007). 

Tyner (2010) confirms that the correlation between energy and agricultural markets has been 

strong since the 2006 start of the ethanol boom. He highlights the summer of 2008 as the period 

where these two markets were closely linked. As the crude oil price increased so did the price of 

corn and other agricultural commodities.  

 

Other commentators claim that the increased comovement with oil prices is not confined to food 

commodities and attribute these changes to financialization which affects all those commodities 

which are traded on liquid futures markets. According to this view, food commodities have come 

to be seen as part of the “commodity asset class”. Financial flows into commodity futures, 

including those for food commodities result from calculations of likely returns on commodities, 

generally considered as a group, relative to those on equities and bonds. The consequence is that 

there is now a new set of demand shocks common to the entire range of traded commodity 

futures. (Büyükşahin, Haigh and Robe, 2010; Tang and Xiong, 2010; Bicchetti and Maystre, 

2012). 



 
 
 
  
 
   

 

 

Increases in energy prices, the boom in biofuel production and government policy interventions 

have led to questions in relation to the stability in the long run relationships between food and 

energy commodity prices. The main hypothesis of this research is that recent market and policy 

events may have induced changes in the relationship between food and energy markets. We ask 

whether there have been any structural changes in relationships between energy and commodity 

prices and if so, whether any such breaks may be modelled as shifts in the mean of the food price 

processes. We test for the presence of multiple structural breaks in the single price series of 

crude oil, gasoline, ethanol corn, and wheat without pre-specifying the dates of any such breaks. 

We also examine the evolution of the price relationships over the recent decade. Our main focus 

is the United States. This choice is driven by several factors. Firstly, the United States is one of 

the largest producers and exporters of grains and oilseeds. Secondly, the United States is the 

world’s largest producer and consumer of biofuels. Thirdly, in the recent decade, the United 

States has experienced a large number of policy and regulatory changes that may have affected 

both the energy and food commodity markets and their inter-relationship.   

The structure of the paper is as follows. Section 2 documents the relationship between food and 

energy markets. Section 3 provides details of U.S. biofuels policy. Section 4 examines the 

structural break methodology. Section 5 defines our data. Section 6 reports the results from 

univariate tests and section 7 reports multivariate (cointegration) results. Section 8 provides 

conclusions. 

 

2. The relationship between food and energy commodities 

Evidence on the relationship between food and energy markets is mixed. A number of authors 

conclude that the linkage is weak or absent (Dillon and Barrett, 2013; Zilberman et al., 2012; 

Zhang et. al., 2010). Others have argued that there is support for the hypothesis that energy 

prices are an important driver of long-run world food price levels (Secchi and Babcock, 2007, 

Tokgoz et al., 2007 Ciaian and Kanks, 2011; Natalenov et al., 2011). Most econometric studies 

are based around the existence or non-existence of cointegration between grains and energy 

prices. Cointegration results when it is possible to find a stationary linear combination of two or 

more series each of which is non-stationary.  



 
 
 
  
 
   

 

 

Cointegration results when it is possible to find a stationary linear combination of two or more 

series each of which is non stationary. The presence of cointegration also indicates that a long-

run equilibrium relationship exists between these  series which therefore must adjust to ensure 

the elimination  over time of departures from the long run relationship (Engel and Granger, 

1987). The results we report in section 7 stand in this tradition. 

Serra et al., (2011b) evaluate price linkages and transmission patterns in the U.S. ethanol 

industry from  1990 to 2008, a period that saw significant changes in U.S. ethanol and related 

markets. Their study concentrates on the relationships between ethanol, corn, crude oil and 

gasoline prices. They found that the four prices are related in the long run through two 

cointegrating relationships: one between corn and ethanol representing the equilibrium within the 

ethanol industry and second one between crude, oil and gasoline, representing the equilibrium in 

the oil-refining industry. The ethanol market provides the link between corn and energy markets, 

and the price of ethanol increases as the prices of both corn and gasoline increase, with the price 

of corn being the dominant factor when it is relatively high. 

Biofuels production has also been important in Brazil which is currently the leading worldwide 

producer of ethanol from sugarcane. Strong ethanol demand and less attractive sugar prices have 

led the Brazilian industry to divert increasing quantities of sugar cane to ethanol production. In 

the 2007/08 marketing year, the use of sugarcane for alcohol production (55%) slightly exceeded 

the use for sugar production (45%). Brazilian ethanol production in the 2007/08 marketing year 

was 22.4 billion liters, while Brazilian ethanol exports were around 3.6 billion liters with the 

U.S. and Europe being the main destinations (USDA, 2008). In a study on Brazil, Serra (2011c) 

uses nonparametric corrections to time series estimations to provide support for the presence of a 

long-run linkage between ethanol and sugar-cane prices. The paper confirms the role of both 

crude oil and sugarcane prices in as drivers of Brazilian ethanol prices. Balcombe and 

Rapsomanikis (2008) used ethanol, sugar and crude oil prices to investigate price inter-

relationships in the Brazilian ethanol market. They adopt a generalized bivariate error correction 

models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic 

adjustments are potentially nonlinear functions of the disequilibrium errors. They find evidence 

of cointegration between sugar, crude oil and ethanol prices.  



 
 
 
  
 
   

 

 

Using weekly prices of corn, sorghum, soybeans, soybean oil, palm oil, world sugar and crude 

oil prices from 2003 to 2007 Campiche et al. (2007) find corn and soybean prices to be 

cointegrated with crude oil prices in the period subsequent to the boom in biofuels, with crude 

prices driving feedstock prices. Saghaian (2010) also find evidence for cointegration between 

crude oil, ethanol, wheat, corn and soybean prices in the US for monthly crude oil, ethanol, 

wheat, corn, and soybeans prices between December 1996 and December 2008. He finds that 

crude oil as a driver of corn, soybean, wheat and ethanol prices, while ethanol affects long-run 

corn prices. Ciaian and Kanks (2011) find cointegration between crude oil and a range of weekly 

food commodity prices between January 1994 and December 2008. Using weekly German 

diesel, biodiesel, rapeseed oil and soy oil prices from 2002 to 2007, Busse et al. (2007) conclude 

that equilibrium feedstock prices of biodiesel are influenced by energy prices (Busse et al., 

2009).  

 

A separate strand of research has relied on computable partial and general equilibrium (CGE) 

models in order to examine the impact of policies on the energy-food commodity relationship 

(Janda et al., 2012). CGE models focus on equilibrium relationships more than short-run price 

dynamics. They are well-suited to the examination of the medium and long term impacts of 

policy changes which can be accurately reflected in the model structure. However, they are less 

well suited to the explanation of short term price movements in periods of high price volatility 

where prices may differ substantially from their equilibrium values (Beckman et al., 2011). In 

that sense, CGE models may be seen as complementing the more data-based models which 

emerge from the time series econometric approach. We review that CGE literature on U.S. 

biofuels policy in section 3. 

 

3. U.S. biofuels policies 

The United States began subsidizing biofuels in 1978 with the passage of the National Energy 

Policy Conservation Act of 1978 (Tyner, 2008; U.S. Congress, 1978). However, it is only in the 

most recent decade that U.S. production of biofuels increased dramatically. In 1983, ethanol 

production was 375 million gallons, growing to almost three billion gallons by 2000 and by 2010 



 
 
 
  
 
   

 

it had reached 13 billion gallons. Key policy measures aimed at encouraging biofuel production 

included the Renewable Fuels Standard (RFS), subsidies to ethanol blenders, the blend wall, 

regulations on gasoline chemistry and import tariffs. Many believe that these interventions 

helped to create this new, persistent demand for corn and contributed to incentives to create the 

capacity to produce ethanol and to use corn for fuel rather than food (DeGorter and Just, 2009; 

Abbot, 2013).  

 

RFS Mandates 

2005 saw the enactment of significant changes in the legislation governing ethanol production 

(Tyner, 2008). The Renewable Fuels Standard (RFS), which mandated minimum production 

levels for future years for ethanol, was passed (U.S. Congress, 2005). This legislation also 

included continued subsidization of ethanol production which initiated in 2004. Gasoline 

blenders were offered a tax credit of $0.51 per gallon referred to as the Volumetric Ethanol 

Exercise Tax Credit – (VEETC), and import tariffs of $0.45 per gallon plus 2.5% of imported 

value were imposed on imported ethanol, to insure foreign producers did not get the subsidy. In 

December 2007, the U.S. Congress passed a major new energy legislation mandating widespread 

improvements in energy efficiency (U.S. Congress, 2007). The Energy Policy Act (EPA) of 2007 

substantially increased RFS mandated minimum ethanol production levels for the future. The 

VEETC tax credit was later reduced to $0.45 per gallon in 2007-08 food crises, and expired in 

December 2011. Moreover, the import tariffs on ethanol for fuel were cut in January 2012. 

  

The Blend Wall 

EPA regulations also imposed a limit on the amount of ethanol used in reformulated gasoline 

produced and sold by blenders. This is because ethanol is corrosive and may damage older 

engines or engines that have not been designed to tolerate high concentrations of ethanol. 

Modern flex-fuel vehicles use blends including up to 85% ethanol while many vehicles with 

conventional engines tolerate between 10 and 20 per cent without being damaged. The EPA thus 

set a limit at 10% (E10) for gasoline not explicitly marketed as E85, and permitted up to 15% of 

ethanol (E15) to be blended for newer vehicles. Tyner and Viteri (2009) analyze how this affects 

ethanol and gasoline markets, and refer to this limitation as the “blend wall”. This constraint is 



 
 
 
  
 
   

 

imposed on gasoline blenders, generating a ceiling on ethanol demand for fuel use. The effects of 

this ceiling are felt all along the ethanol supply chain. The blend wall restricts ethanol use and 

therefore reduces demand for corn for ethanol. 

 

The blend wall thus affected the link between crude oil and corn prices. The effect of the blend 

wall was more influential at high crude oil prices, where ethanol production was limited by the 

wall level thereby limiting the impact on corn prices. The blend wall was thus an effective 

constraint on demand, so an increase in the wall limit affected the linkage between crude oil and 

corn (Tyner, 2010). 

 

MTBE/Oxygenate Substitution 

In the early 1990s, the Clean Air Act required additives to reduce carbon monoxide emissions 

and reduce atmospheric pollution by including either a fuel oxygenator Methyl Tert-Butyl Ether 

(MTBE) or ethanol. It was subsequently discovered that MTBE was carcinogenic implying a 

possible threat to drinking water safety (EIA, 2000). Gasoline blenders, who were using MTBE 

to meet clean air regulations, sought waivers from liability but in 2006 it became clear that such 

waivers would not be granted. By mid-2006, 25 states had banned the use of MTBE in gasoline. 

This encouraged blenders to use ethanol rather than face the potential liability costs from MTBE. 

This contributed to the rapid expansion of ethanol production after 2005 (Hertel and Beckman, 

2012). 

 

The timing of the policy changes in regime switches is crucial as they may have led to changes in 

the relationship between energy and food commodity prices (Abbot, 2013). Key policy 

intervention dates are reported in the Table1. The econometric analysis which we report in 

section 6 of the paper has the aim of relating these policy changes to changes in the relationship 

between grains and energy prices. 

 

As discussed in section 2, CGE analysis is well-suited to the analysis of the impact of policy 

changes. Adopting the CGE approach, Elobeid and Tokgoz (2008) estimate the effects of a 

hypothetical removal of federal tax credit and trade liberalization on the U.S. ethanol industry. 



 
 
 
  
 
   

 

According to their results, U.S. ethanol prices would have been substantially higher in the 

absence of these credits. DeGorter and Just (2009a) find that the combined impact of tax credits 

and the blend mandate effectively subsidize fuel in the U.S. In DeGorter and Just (2009b), the 

same authors conclude that ethanol would not be commercially viable without government 

intervention. In DeGorter and Just (2010), they argue that U.S. biofuels mandates have increased 

the retail prices of gasoline and generate transfers to ethanol producers. Feng and Babcock 

(2010) analyze land use changes induced by the expansion of ethanol production taking into 

account acreage allocations. They concluded that elasticities of crop demand are crucial in 

determining the eventual impacts of yield increases. Hertel and Beckman (2011) argue that the 

binding U.S. Renewable Fuels Standard has increased the inherent volatility in U.S. coarse 

grains prices by about one quarter. Jingbo et al., (2011) construct a simplified general 

equilibrium (multimarket) model of the United States and the rest-of-the-world economies that 

link the agricultural and energy sectors to each other and to the world markets. Their results 

show that the largest economic gains to the United States from policy intervention come from the 

impact of policies on U.S. terms of trade, particularly on the price of oil imports. 

 

This body of literature demonstrates that U.S. biofuels policy has had the potential to 

substantially raise corn prices and to change the relationship between grains and energy prices. 

There is less comparable work on the impact of European policy on vegetable oils but the same 

types of impact may be foreseen. In what follows we show that these changes in U.S. biofuels 

policy have induced breaks in the time series properties of important grains price series and the 

relationship of these prices to energy prices. 

 

4. Structural break analysis 

As outlined in section 3, there have been major changes in U.S. biofuels policy since the start of 

the new century. Policy changes have the potential to induce structural breaks both in univariate 

relationships characterizing the time series property of a price and in multivariate relationships 

linking different prices. A number of empirical analyses demonstrate that failure to account for 

structural breaks may lead to incorrect policy implications and predictions. In analyzing the U.S. 

post-war quarterly real GNP series (1947:1-1986:III), Perron (1989) finds that only two policy-



 
 
 
  
 
   

 

driven events had a permanent effect on the macroeconomic variables. First, the 1929 Great 

Crash generated a dramatic drop in the mean of most aggregate variables. Second, the 1973 oil 

price shock was followed by a change in the slope of the trend for most aggregates such as a 

slowdown in growth. Hansen (2001) finds evidence on a structural break in labour productivity 

in U.S. manufacturing and durables sectors between 1992 and 1996. Analysing the market 

response of interest rates to discount rates Bai (1997) finds that the response is consistent with 

the policy interventions by the Federal Reserve Board on its operating procedures. Garcia and 

Perron (1996) examine the time series behaviour of the U.S. real interest rate from 1961 to 1986 

by allowing three possible regimes affecting both the mean and variance. They find that the 

average interest rate value experienced occasional jumps caused by important structural events. 

One such jump is associated with the sudden rise in the oil price in 1973 while the mid-1981 

second jump is more in line with a federal budget deficit explanation than with the change of 

monetary policy that occurred in the end of 1979. 

 

Defining Structural Breaks 

Breaks can be defined as events which change the structure of the econometric model under 

consideration. Consider the most simple univariate representation, the first-order autoregression:  

𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝑢𝑡 

𝐸𝑢𝑡
2 = 𝜎2      (1) 

where 𝑢𝑡 is a time series of serially uncorrelated shocks 𝛼, 𝜌, 𝑎𝑛𝑑 𝜎2 are the parameters with 

 -1     1. Stationarity requires that these parameters be constant over time (Hansen, 2001). We 

say that a structural break has occurred if at least one of these parameters changes at some date - 

the break date - in the sample period. A structural break may affect either or both of the 

parameters 𝛼 and 𝜌. Changes in the autoregressive parameter 𝜌 reflect changes in the serial 

correlation in 𝑦𝑡 while the intercept 𝛼 controls the mean of 𝑦𝑡 through the relationship 𝐸(𝑦𝑡) =

𝛼/(1 − 𝜌). In the general case, neither the timing nor the magnitude of these breaks will be 

known   

 

 



 
 
 
  
 
   

 

Over the past fifteen years, there have been important contributions to the structural breaks 

literature. These include tests for the presence of structural breaks when the break date is 

unknown and the subsequent estimation of the break dates when any such changes occur. In 

addition to this, work has been reported on the nature of the breaks. The simplest form of break 

is that of a sharp jump to new parameter values at the break date (Chow, 1960; Andrews and 

Ploberger, 1994; Bai and Perron, 1998; Perron, 1989; Bai and Perron, 2003). Sharp breaks may 

be induced if there is an unanticipated change in government or administration policy is 

announced. In section 6, we follow this approach in relating breaks in grains price 

representations to changes in U.S. biofuels policy. The alternative approach is to allow breaks to 

be smooth or fuzzy (Gallant, 1984; Becker, Enders and Hurn, 2004, 2006; González and 

Teräsvirta, 2008; Enders and Holt, 2012). In this framework breaks are seen as slowly evolving 

changes in parameters which take place around a break date.  

 

Moving to a multivariate context, one may be interested in whether related series have common 

break dates. In that case, we can describe the series as co-breaking. In section 7 we show that 

grains prices co-break in that the relationship between the prices is unaffected by breaks in their 

respective univariate representations. 

Consider the equations 
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The implied line of regression linking yt to xt is   

   t t ty x u    (3) 

where 
y

x





  and  y x   . A  change in x to mx will induce a corresponding change in 

α to y xm  . We say that the series x and y are co-breaking if y also changes, say to my such 

that  y xm m   remains invariant (Hendry and Massman, 2007). In that case, the line of 

regression (3) continues to hold despite the structural breaks in both the x and y processes.  



 
 
 
  
 
   

 

This argument generalizes in a straight forward manner if the relationships (2) become 

autoregressive or contain exogenous regressors. 

 

Testing for Structural Breaks 

One-time structural change when the break-date is known 

The classical test for structural change at a known date is due to Chow (1960). This procedure 

splits the sample into two sub-periods, estimates the parameters for each sub-period, and then 

uses a Wald F test to ask whether the two sets of parameters are equal. The Chow test is 

performed splitting the sample at the  known break-date (Chow, 1960; Enders, 2010).  In the 

model 

𝑦𝑡 = 𝛽1
′𝑥𝑡𝐼(𝑡 ≤ 𝑡0) + 𝛽2

′ 𝑥𝑡𝐼(𝑡 > 𝑡0) + 𝑢𝑡     (4) 

 

where 𝑢𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2) and 𝐼(𝑥) is the indicator function the Chow test sets the null hypothesis 

H0: 𝛽1 = 𝛽2 against the alternative hypothesis H1: 𝛽1 ≠ 𝛽2. This is an F-test with n and T-2n 

degrees of freedom (Teräsvirta, et al., 2010). 

 

The Chow test requires the potential break-date 0 0t T   to be known. A researcher who does 

not know the break date in advance would be obliged either to pick an arbitrary candidate break-

date or to choose a break-date based on some feature of the data. In the first case, the Chow test 

may be uninformative and imprecise, as the true break-date may be missed. In the second case, 

the Chow test can be misleading, as the candidate break-date is correlated with the data and thus 

lead to a pre-test selection bias of the data (Hansen, 2001). 

 

Testing for a single structural change when the break date is unknown 

In practice, we seldom have precise knowledge on potential break dates. Quandt (1960) 

suggested taking the largest Chow statistic over all possible break-dates. He proposed to split the 

sample at a break-date and estimate the model parameters separately on each subsample. If the 

parameters are constant, the subsample estimates should be the same across candidate break-

dates, subject to estimation error. On the other hand, if there is a structural break, then the 

subsample estimates will vary systematically across candidate break-dates, and this will be 



 
 
 
  
 
   

 

reflected in the Chow test sequence. However, the Quandt statistic was seldom implemented 

because critical values were unavailable. Andrews (1993) and Andrews and Ploberger (1994) 

proposed a solution to this problem. They derive optimal tests for structural change with an 

unknown change point. Their procedure involves searching for a break-date by performing the 

Chow test for every possible date. As in Quandt’s (1960) procedure, the break date is identified 

as the date at which the Chow statistic attains its maximum (or supremum) value.  

 

Consider a model indexed by parameter 𝛽𝑡 for t = 1,2,...., T, where T is the sample size. The null 

hypothesis of parameter stability and thus of no structural change is given by:  

𝐻0: 𝛽𝑡 = 𝛽0 for all 𝑡 ≥ 1 for some value of  𝛽0.  

The alternative hypothesis of interest may take a number of different forms. In the case of a one-

time structural change alternative with change point 𝜋 ∈ (0,1) the alternative with change point 

𝜋 is given by 

     1 1 020:          T t IH I     (5) 

where β1 and 2 1   are parameters to be estimated, T is the break date, and  0,1  is 

referred to as the break point. This test procedure falls outside the standard testing framework 

because the parameter 𝜋 only appears under the alternative hypothesis and not under the null. 

Consequently, Wald, LM, and LR-like tests constructed with 𝜋 treated as a parameter do not 

possess their standard large sample asymptotic distributions. Critical values are obtained by 

simulation. 

 

Some restrictions need to be imposed on the break point  to ensure that there is an adequate 

number of observations in each of the two subsamples. This requires that the break date neither 

not occurs near the very beginning (𝑡0) nor near the end of the sample (𝑇 − 𝑡0). In particular, 

Andrews (1993) showed that if no restrictions are imposed on 𝜋 for instance then the test 

diverges to infinity under the null hypothesis. This indicates that critical values grow and the 

power of the test decreases as 𝜋 gets smaller. Hence, the range over which one searches for a 

maximum must be small enough for the critical values not to be too large and for the test to 

retain decent power, yet big enough to include potential break dates.  



 
 
 
  
 
   

 

Andrews (1993) recommended restriction of the break-date π to an interval such as [0.15, 0.85] 

and this restriction has now become standard practice. 

 

Testing for multiple unknown break dates 

Allowance for multiple breaks at unknown dates are a natural extension to the Andrews (1993) 

and Andrews and Ploberger (1994) procedure. Bai and Perron (1998; 2003) extended Andrews 

and Ploberger’s (1994) supremum test for a one-time break to allow for 𝑘 ≥ 1 possible break 

dates. In their earlier work Bai and Perron (1998) the build a theoretical model on the limiting 

distribution of estimators and the statistics in linear regression models with structural breaks. In 

particular, they examined the properties of the estimators such as the nature of the break dates 

and their respective tests. In their subsequent research, they proposed a dynamic programming 

algorithm that enables the investigator to obtain the global minimizers of the sum or squared 

residuals. They also discuss estimation of the number of break dates and  the construction of  

confidence intervals for the break dates given different conditions on the structure of the data and 

error terms across subsamples and (Bai and Perron, 2003). 

 

The procedure is based on sequentially applied least squares. The initial step is to test for a single 

structural break. If the test rejects the null hypothesis that there is no structural break, the sample 

is split in two and the test is reapplied to each subsample. This sequence continues until each 

subsample test fails to find evidence of a break. In the presence of multiple structural breaks, the 

sum of squared errors which is a function of the break date can have a local minimum near each 

break date. The sample is then split at the break date estimate, and analysis continues on the 

subsamples. In the context of the regression model with up to k breaks: 

  1' 1, ,t j t t j jy x u t T T             (6) 

 Relative to the k-partition,  1,..., k  , parameter estimates  are obtained by minimizing the sum 

of squared residuals:  
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where 0 0   and  1 1 k .Substituting these estimates in the objective function and denoting 

the sum of squared residuals as  1,...,T kS   , the estimated break points  1
ˆ ˆ, , k   are such 

that 

   
11 , , 1

ˆ ˆ, , argmin , ,
kk T kS                   (8) 

where the minimization is taken over all partitions 1, , k  .Thus the break-point estimates are 

global minimizers of the sum of squared residuals of the objective function. Given the sample 

size T, the global sum of squared residuals for the k-partition  1,..., k  for any value of k would 

be a linear combination of the  1
2

1T T  sums of squared residuals and the estimates of the 

break points  1
ˆ ˆ, , k  correspond to the minimum value of this linear combination. The 

dynamic programming algorithm compares all the combinations corresponding to the k-partitions 

in order to minimize the global sum of squared residuals.
1
 

 

In the application of their model Bai and Perron (2003) consider a number of different cases. In 

particular, the test statistic for the null hypothesis 𝐻0 of no structural break k=0 versus the 

alternative hypothesis 𝐻1  that there are k=v breaks for some fixed number of breaks is a supF 

type test. The preferred choice for number k of breaks can result by reference to the Schwartz 

Bayesian Information Criterion (BIC) or the modified Schwartz information criteria proposed by 

Liu et al. (1997).  

 

Testing for a structural change in cointegrating relationships with unknown break-date 

Our interest is in the relationship between grains and energy prices. The stability of long-run 

equilibrium relationships of variables has always been open to question. In particular, there is 

vast literature on the stability of the money demand equation, some of which include works of 

Lucas (1988) and Stock and Watson (1993).  Perron (1989) argued that if there is a break in the 

deterministic trend then the conclusion of the presence of a unit root is misleading. Models with 

constant coefficients have been found to perform poorly in terms of their ability to examine the 

                                                           
1 Becker, Enders and Hurn (2004) model multiple breaks as smooth or fuzzy. They use a trigonometric expansion to approximate the known 

functional form of the time-varying regression coefficient. González and Teräsvirta (2008) propose a different and simpler specification which 
can accommodate both sharp and smooth shifts in the mean giving what they term a time-varying autoregressive (TV-AR) process. 



 
 
 
  
 
   

 

effects of policy changes or forecasting in the context of oil price shocks and other major regime 

changes. These issues can be addressed within the cointegration framework. 

 

Standard tests for cointegration are either residual-based or VAR-based. Residual-based tests are 

appropriate if it is known that the variables under investigation are linked by at most a single 

cointegrating relationship. The Engel and Granger (1987) test consists of application of the ADF 

test to the residuals from the supposed cointegrating regression estimated by OLS. The critical 

values are given by Mackinnon (1991) In the more general case in which there may be multiple 

cointegrating relationships, the Johansen (1988) reduced rank VAR procedure is employed. 

Consider a VAR(k) in m variables denoted by the vector y which may be written as  

                                   
1
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                                                                    (9)    The number of independent cointegrating vectors is known as the cointegrating rank and it is equal to the rank of the matrix Π. The  matrix is given by: ∏ = αβ' where  and  are n by q matrices. Each 

column of  gives the weights of the variables in the relevant cointegrating vector and each 

column of  gives the reaction of the n variables to departures of this vector from its equilibrium 

value. The number of cointegrating vectors (r) can be obtained by verifying the significance of 

the characteristic roots of Π.  If the variables in 𝑦𝑡 are not cointegrated then the rank of Π equals 

zero and the characteristic roots will be equal to zero. Johnansen suggested two tests for 

determining the cointegrating vectors:  

 

In the context of the grains-energy nexus, the changes in U.S. biofuels policy listed in Table 1 

may have resulted in structural breaks which in turn  may have affected the cointegration 

properties of these prices.  The stability of long-run relationships can be statistically assessed by 

testing for structural change of the cointegrating vector between the variables. The standard tests 

for cointegration are not appropriate, since they suppose that under the alternative hypothesis the 

cointegrating vector is time-invariant (Gregory and Hansen, 1996).  Tests will therefore fail to 

reject the null hypothesis of no cointegration. They propose a test for cointegration that allows 

for a single shift in either the intercept alone or the entire coefficient vector with an unknown 

break date.  

 



 
 
 
  
 
   

 

The Gregory and Hansen (1996) null hypothesis is no cointegration against the alternative 

hypothesis of cointegration with a single unknown break-date. This extends the Engel and 

Granger (1987) test but continues to suppose a single and known candidate cointegrating vector  

   0 01 2 ' TyI I              (10) 

Their procedure computes the ADF test statistic for each possible break-date and takes the 

smallest value (the largest negative value) across all the possible break dates. The test statistic is

 
 *

0,1
infADF ADF


  . They report critical values for up to four regressors.  

 

5. Data 

We analyze the logarithms of nominal average weekly cash prices of corn, wheat, crude oil, and 

gasoline from 2000 to 2012 and ethanol prices from January 2003 to December 2012 giving a 

total of 678 observations (and 475 observations for ethanol prices observations prior to the 

construction of lags.
 2

 We choose spot rather than futures prices since we are keen to represent 

transactions prices
3
 and because we have only a very limited history for ethanol prices, where 

weekly U.S. ethanol cash prices are only available from November 2003.  Data sources are as 

follows:  

Corn (CBOT and US), crude oil and wheat cash prices: USDA and Chicago Mercantile 

Exchange. Ethanol cash price: Illinois Department of Agriculture.Gasoline cash price: U.S. 

Energy Information Administration (EIA).
4
 

 

Table 2 reports the non-stationarity tests. The ADF tests fail to reject the null hypothesis of the 

presence of a unit root at the 5% level for crude oil, gasoline, corn and wheat but not got ethanol. 

We also report the Phillips-Perron (1988) test, which may be more robust to the equation 

specification.  The results are similar but this test now marginally fails to reject non-stationarity 

for ethanol at then 5% level. In summary, these results clearly demonstrate non-stationarity of 

the crude oil, gasoline, corn and wheat prices but indicate that it may be problematic to regard 

                                                           
2 In an earlier draft of the paper, we also included the soybeans price. 

 
3 Irwin et al. (2009) document convergence problems in the U.S, wheat futures market. This may imply additional noise in the wheat cash prices 

around that time.  

 
4 Corn, wheat crude oil prices:www.bloomberg.com; ethanol prices: www.agr.state.il.us; gasoline prices: www.eia.gov.   

http://www.bloomberg.com/
http://www.agr.state.il.us/
http://www.eia.gov/


 
 
 
  
 
   

 

the ethanol price appear to be stationary. It is possible the difference in the results for ethanol and 

the other four commodities is a consequence of the relatively short sample that we have available 

for ethanol prices. 

 

6.  Univariate test results 

The discussion in section 3 underlined that there have been a large number of policy changes 

affecting the U.S. biofuels market. These changes were summarized in Table 1. Other 

developments may have also affected energy and grains prices in both energy and grains 

markets. These may include rapid economic growth in China and other Asian emerging 

economies, depreciation of the U.S. dollar, decades of underinvestment in agriculture, low 

inventory levels, poor harvests, financializiation and speculative forces – see the discussion in 

section 3. Any of these changes may have resulted in structural breaks in the time series 

representations of these series. The initial step of our analysis is to look for breaks in the 

autoregressive representations of these prices. 

 

We implement the Bai and Perron procedure (2003) to test for the presence of multiple breaks in 

each of these price series setting the maximum of breaks to be five. The sup-F test rejects this 

null hypothesis of no breaks against the alternative of five breaks.  We use the BIC to select the 

preferred number of breaks for each of the prices. The BIC selects five breaks for crude oil 

gasoline, corn and wheat and four breaks for ethanol. The results, reported in Table 3, confirm 

that each of the series saw multiple breaks over the sample period. 

 

Table 4 reports the month in which the Bai and Perron (2003) tests identify breaks. There is 

considerable commonality in the break dates. The first set of breaks occurs in the summer of 

2002 with a common break month for corn and wheat. This may be associated with the U.S. 

Farm Bill provisions on Farm Security and Rural Investment which was passed on and become 

effective in May 2002 – see Table 1. This act directed the increase agricultural subsidies by 

about 16.5 billion dollars resulting in a probable increase in the production of grains such as corn 

and wheat as well as the oil seeds. 

 



 
 
 
  
 
   

 

The second set of breaks occurs in the summer of 2004 and appears common across both the two 

energy commodities and the two grain. The breaks in the summer may be associated  with the 

introduction of the tax credit in the beginning of 2004 that was given to blenders for each gallon 

of ethanol mixed with gasoline – see Table 1. The August 2005 break in the ethanol series 

follows closely after the July 2005 enactment of the RFS1 standard – see section Table 1.  

 

The third set of breaks, which occurs in the fall of 2006, and which is again common to the two 

grains as well as crude oil, comes shortly after the June 2006 MTBE ban and hence may reflect 

biofuels developments – see section Table 1.  

 

The fourth group of breaks occurs in the fall of 2008. It seems likely that these reflect the effects 

of two important acts that were both passed in 2008, the Food, Conservation, and Energy Act, 

and The Energy Improvement and Extension Act of 2008  – see Table 1. The former was a 288 

billion dollar, five-year agricultural policy bill and was a continuation of the 2002 Farm Bill. It 

included agricultural subsidy as well as pursuing areas such as energy, conservation, nutrition, 

and rural development. The latter extended existing tax credits for renewable energy initiatives, 

including cellulosic ethanol and biodiesel development, and wind, solar, geothermal and hydro-

electric power.  

 

The final set of breaks occurs in 2010 after EPA. These breaks are seen as coming after the 

finalization of the National Renewable Fuel Standard Program (RFS2) for 2010 and beyond in 

February 2010. Among its interventions, it increased the required renewable fuel volume to 

 be achieved by 2022 see Table 1 and the discussion in section 3.  

 

In summary, the univariate structural break analysis shows that the price series under study to 

have been subject to multiple breaks over the sample period. Inference on the origin of these 

breaks within a univariate framework is necessarily casual and based on temporal coincidence. 

However, these estimates do suggest that biofuels-related legislation in 2006 may have been the 

key event that impacted both the crude oil and the grains markets. 

 



 
 
 
  
 
   

 

7. Multivariate test results 

The multivariate methodology set out in section 4 requires that the price series are non-

stationary. This is unclear for ethanol. Inclusion of ethanol in the cointegration-based analysis is 

therefore problematic both because it would force use of a shorter sample and because the 

analysis throws up the ethanol price itself as a trivial cointegrating vector. We therefore, 

reluctantly, drop the ethanol price from the remainder of the analysis. 

 

We have established that the remaining four price time series under consideration are non-

stationary and have shown that they experienced structural breaks over the period under 

consideration. We are interested in the long run relationships, if any, between these series. We 

consider three questions: 

a) Can we consider the two grains series (corn and wheat) as moving together over the long 

run? Since they are both non-stationary this requires that they should be cointegrated. 

Since they experience breaks, these breaks must be common, i.e. they must co-break. If 

these conditions are satisfied, we can think of a common long run grains price.  

b) Can we consider the two energy series (crude oil and gasoline) as moving together over 

the long run? The same considerations apply as with corn and wheat. If these conditions 

are satisfied, we can think of a common long run energy price.  

c) Supposing an affirmative answer to the first two questions, is there any long run 

relationship between the grains prices and energy prices? If not, can we identify such a 

relationship once we allow for structural breaks? 

 

Table 5 reports the Johansen (1989) cointegration tests for the four-vector of prices. We fail to 

reject the null hypothesis that the '  matrix in equation (9) is of rank 1 or less at the 10 per 

cent level and at rank 0 at the 5 per cent level. This suggests that the four prices are related by 

one or two stationary combinations of cointegrating vectors. 

 

The hypotheses set out at the start of this section indicate that there may be two such vectors, the 

first linking crude oil and gasoline and the second corn and wheat. The first two columns of 

Table 6 therefore report the results of two bivariate reduced rank tests which confirm the 



 
 
 
  
 
   

 

presence of both energy and a grains cointegrating vector. We conclude that the weaker evidence 

in Table 5 arises out of the lower power associated with implementation of the test with four 

price series. 

 

The cointegration of corn and wheat implies that these two series must co-break. Any structural 

breaks in one of the two series must correspond with breaks in the other series since otherwise 

cointegration would fail – see the discussion in section 5. Taking the grains cointegrating 

relationship, we can test for co-breaking by imposing the estimated break dates reported for 

wheat in Table 4 on the corn price series. Regarding these dates as known, we perform a set of 

Chow tests for five structural breaks. We perform these tests sequentially. Denote the five 

estimated corn break dates as 1T, 2T …, 5T. We first consider the sub-sample [1: 2T] and test 

for a break at 1T. We then consider the sub-sample [1T+1: 3T] and test for a break at 2T and 

so forth to the sub-sample [4T+1: T] and test for a break at 5T.  We follow the same procedure 

for crude oil and gasoline using the estimated gasoline break dates from the same table.  

 

Table 7 reports the Chow test for wheat breaks on corn prices. The test statistic shows that we 

reject the null hypothesis of no structural breaks for all the five break dates. This results confirms 

that corn and wheat co-break. Similar results are obtained when we impose gasoline breaks dates 

on crude oil prices implying that also crude oil and gasoline co-break. The results are reported in 

Table 8. 

 

Returning to Table 6, the final column repeats the Johansen bivariate cointegration exercise for 

crude oil and corn where we fail to reject the null hypothesis that the αβ’ matrix is of rank zero 

implying no cointegration. The same conclusion results from the other three possible bivariate 

combinations (gasoline-corn; gasoline-wheat and crude oil-wheat) since if both the two energy 

prices and the two grains price are cointegrated but crude oil and corn are not cointegrated, no 

other energy-grain combination can be cointegrated. These results allow us to take the crude oil – 

corn relationship as representing the entire energy-grains link for the remainder of this analysis. 

 



 
 
 
  
 
   

 

The absence of cointegration between the grains and energy prices leads us to the third question 

posed at the start of this section, namely whether cointegration results if we allow for structural 

breaks in the cointegrating relationship. As above, we look at the crude oil – corn relationship 

and report results from the Gregory and Hansen (1996) test for cointegration in the presence of a 

structural break over the sample (weekly, 7 January 2000 to 28 December 2012) and using a lag 

length of  nine lags selected using the AIC. We run this test in GAUSS. The modified ADF test 

given by equation 15 is -5.1639 which is to be compared with the 5 per cent critical value 

provided by Gregory and Hansen (1996) of -4.61. We reject the null hypothesis of no 

cointegration in the corn-crude oil price relationship once allowance is made for structural a 

break. This allows us to conclude that corn and crude oil are cointegrated in the presence of one 

break.. Given the presence of multiple breaks in both corn and crude oil, it seems possible that 

there could be more than one break date in the corn crude oil cointegrating vector.  

 

We conduct a Bai and Perron (2003) multiple break date analysis on the corn-crude oil 

cointegrating vector. As in the corresponding univariate tests reported in section 6, we set a 

maximum of five breaks and select an actual number using the BIC criteria. The procedure 

selects four as the ideal number of break dates. The break dates in the cointegrated vector are 

reported in the final column of Table 4 (see section 6). The 2008 break is therefore the sole 

instance of co-breaking in that relationship while the remaining four breaks define five energy-

grains price regimes. The identified break dates are similar to the ones we identified in the single 

price series confirming that corn and crude oil do co-break. Moreover, the break dates stay in 

line with policy interventions in the agricultural and energy markets. The 2006 break date occurs 

after the RFS1 was enacted and the MTBE band became effective. Both these two factors 

contributed to the increase in ethanol production which in turn increased the demand for corn 

and its price thus affecting its relationship with crude oil prices. The VEETC tax credit is 

reduced and the blend limit becomes eminent in January 2010. The combination of these two 

factors induced a reduction in biofuel production and this imposes a break in the corn-crude oil 

price relationship. Importantly, one of the regime changes is coincident with the introduction of 

the MTBE ban in June 2006 – see section 3.  



 
 
 
  
 
   

 

These results imply that the cointegrating vector linking crude oil and corn should be stationary 

within each of the five regimes defined by the break points listed in the final column of Table 4. 

In Table 8, as a robustness check, we report the ADF and Phillips-Perron tests for non-

stationarity within these regimes. Both the ADF and PP tests reject the null hypothesis of the 

presence of a unit root. On the basis of these results, we conclude that there has been a 

relationship between energy and grains prices over the period we have investigated but that this 

relationship has been subject to regime changes. We can relate one of these changes, that which 

is identified as having taken place in the fall of 2006, with a prior change in U.S. biofuels policy, 

namely the June 2006 introduction of the MTBE ban.  

 

The identified break dates Moreover, stay in line with policy interventions in the agricultural and 

energy markets. The 2006 break date occurs after the RFS1 was enacted and the MTBE band 

became effective. Both these two factors contributed to the increase in ethanol production which 

in turn increased the demand for corn and its price thus affecting its relationship with crude oil 

prices. The VEETC tax credit is reduced and the blend limit becomes eminent in January 2010. 

The combination of these two factors induced a reduction in biofuel production and this imposes 

a break in the corn-crude oil price relationship. Importantly, one of the regime changes is 

coincident with the introduction of the MTBE ban in June 2006 – see table 1. On the basis of 

these results, we conclude that there has been a relationship between energy and grains prices 

over the period we have investigated but that this relationship has been subject to regime 

changes. We can relate one of these changes, that which is identified as having taken place in the 

fall of 2006, with a prior change in U.S. biofuels policy, namely the June 2006 introduction of 

the MTBE ban.  

 

8. Conclusions  

Food commodities prices increased over the recent decade attracting the attention of market 

participants and policy makers. Biofuels have been identified as one of the main drivers of high 

food prices over the most recent decade. High fuel prices combined with legislative policies have 

been accused of increasing biofuel production causing high food prices and establishing a link 

between energy and agricultural prices. There has been a huge controversy on the food versus 



 
 
 
  
 
   

 

fuel debate and the role of biofuels as well as biofuel policies. The United States has undergone 

major policy changes over the recent decade, changes that have affected both the energy and 

agricultural sector. The June 2002 Farm Bill, the two RFS Energy Acts in 2005 and 2007, the 

2006 MTBE Ban and the Energy Improvement and Extension Act are some of the policy 

interventions that the US implemented in the recent decade.  

We conduct a rigorous econometric analysis to verify whether there has been a structural change 

in both the prices and price relationships of grains and energy commodities. We are motivated by 

the fact that prices and price relationships react to both market factors and policy regimes. These 

factors are not static over time and may change in response to policy and market developments. 

In addition, the failure to detect and consider breaks induces misspecification which may 

adversely affect the inference procedure leading to poor forecasting. In particular, ignoring 

existing breaks in the prices would lead to a biased rejection of the null hypothesis of stationarity 

in the series. Our multiple structural breaks analysis on both food energy commodity prices show 

that the commodities experienced the breaks in line with the policy interventions. In particular, 

the 2006 break date common in the commodities analyzed marks the “ethanol gold rush” which 

was induced by the 2006 MTBE ban and the 2005 RFS1 Energy Act.  

 

Our analysis also provides evidence of long-run cointegrating relationship between corn and 

wheat on the one hand and crude and gasoline on the other. Cointegration implies that the series 

co-break. We find that corn and wheat do co-break, and crude and gasoline co-break. We 

however find that corn and crude are not cointegrated and thus do not co-break. Given this last 

result we attempt to verify whether corn and crude are cointegrated if we incorporate structural 

breaks. We find that corn and crude are cointegrated when we allow for two break dates. The 

first break date in June 2006 matches the MTBE ban while the January 2009 break date appears 

after the Energy Improvement and Extension Act.  Our results show that US biofuel policy and 

policy regimes have both played a major role in defining the relationship between food and 

energy markets in the recent decade. In particular, it has enforced the link between energy and 

grain prices. Our results have strong policy considerations as we show that in order to have a 

sensible food policy it is necessary to de-link food and energy prices. 

  



 
 
 
  
 
   

 

Tables and Figures 

Table 1 

Policy Interventions 

Date Policy Intervention 

June 2002 US Farm Bill-Farm Security and Rural Investment 

May2004 VEETC introduced for ethanol blending with gasoline 

July 2005 Renewable Fuels Standard (RFS1) - Energy Act 

June 2006 

December  2007 

MTBE ban became effective - liability waivers not granted 

Renewable Fuels Standard (RFS2) - Energy Act 

May 2008 The Food Conservation and Energy Act 

October 2008 The Energy Improvement and Extension Act 

January  2009 VEETC credit tax reduced to $0.45 per gallon 

February 2010 EPA finalizes RFS Program for 2010 and beyond 

December 2011 The VEETC tax credit expired 

January 2012 Import tariffs on ethanol for fuel were cut 

 

Table 2 

Stationarity tests 

 Lag length ADF Phillips-Perron 1% c.v 5% c.v 

Crude oil 4 -1.146 -1.290 
 

-3.430 

 

 

-2.860 

 

Gasoline 1 -1.640 -1.748 

Corn 3 -0.935 -0.899 

Wheat 2 -1.528 -1.592 

Ethanol 3 -3.270 -2.836 -3.442 -2.871 

The table reports the ADF and Phillips-Perron test statistics for non-stationarity and the 

associated critical values.  Lag lengths were selected using AIC and SC criteria.  

Sample (crude oil, gasoline, corn and wheat) : weekly, 7 January 2000 to 28 December 

2012 (678 observations). 

Sample: (ethanol): weekly, 28 November 2003 to 28 December 2012 (475 observations)   
 

  



 
 
 
  
 
   

 

 

Table 3 

Bai and Perron (date) sup F break tests 

Crude oil 47.42
***

 Corn 108.13
***

 

Gasoline 51.83
***

 Wheat   20.40
***

 

Ethanol   6.11
***

   

The table reports the Bai and Perron (date) sup F test for structural breaks using a 

maximum of 5 structural breaks. 

Critical values: 1% 4.91; 5% 3.91; 10% 3.4700  
***

 significant at the 1% level, 
**

 at the 5% level, 
*
at the 10% level  

Sample (crude oil, gasoline, corn and wheat) : weekly, 7 January 2000 to 28 December 

2012 (678 observations);. 

Sample: (ethanol): weekly, 28 November 2003 to 28 December 2012 (475 observations)  

The BIC selects 5 breaks for crude oil, gasoline, corn and wheat; 4 breaks for ethanol. 

 

Table 4 

Estimated break dates 

 Crude Oil Gasoline Corn Wheat Ethanol 
Crude oil - 

corn 

2002 August May June June pre-sample July 

2004 July April September July  September 

2005     August  

2006 November March October September  September 

2007     January  

2008 October October October August October   

2010 October November October August September September 

The first five columns of the table reports the month and year in which each of the five 

breaks identified by the Bai and Perron (2003) procedure occurs. The final column of the 

table reports the four break dates identified by the Bai and Perron (2003) procedure for the 

cointegrating vector linking crude oil and corn – see section 7. 

Ethanol sample starts in November 2003 precluding of any break prior to this date. 

 

  



 
 
 
  
 
   

 

 

Table 5 

Multivariate Johansen (1988) cointegration tests 

 χ² statistic  p-value 

rank  0 81.21** 0.000 

rank  1                  28.44* 0.072 

rank  2                   9.709 0.309 

rank  3                   1.452 0.228 

The table results of the Johansen (1989) reduced rank tests and the associated tail 

probabilities for the VAR(4) linking the prices of crude oil, gasoline, corn and wheat.  The 

VAR length was chosen using AIC.  

Sample: weekly, 7 January 2000 to 28 December 2012 (678 observations) 
**

 significant at the 5% level, 
*
 at the 10% level. 

 

Table 6 

Bivariate Johansen (1989) cointegration tests 

 crude oil – gasoline corn – wheat crude oil – corn 

VAR length 5 2 4 

rank = 0 
49.56** 

[0.000] 

21.41** 

[0.005] 

8.613 

[0.410] 

rank  1 
1.171 

[0.297] 

1.674 

[0.196] 

0.660 

[0.416] 

The table results of three pairs of bivariate Johansen (1989) reduced rank tests. Tail 

probabilities are given in parentheses. The VAR length was chosen using AIC.  

Sample: weekly, 7 January 2000 to 28 December 2012 (678 observations)
 

**
 significant at the 5% level, 

*
 at the 10% level. 

 

  



 
 
 
  
 
   

 

 

Table 7 

Test for co-breaking: corn and wheat 

Break date Sample Statistic 1% c.v. 5% c.v. 10% c.v. 

28-Jun-2002 
  07-Jan-2000 –  

16-Jul-2004 
4.913

*** 
3.100 2.253 1.873 

16-Jul-2004 
 05-Jul-2002 –  

22-Sep-2006 
4.486

***
 3.104 2.256 1.875 

22-Sep-2006 
 23-Jul-2004 –  

29-Aug-2008 
5.789

***
 3.107 2.258 1.875 

29-Aug-2008 
 29-Sep-2006 –  

06-Aug-2010 
10.334

***
 3.113 2.261 1.878 

06-Aug-2010 
 05-Sep-2008 –  

28-Dec-2012 
19.344

***
 3.102 2.255 1.874 

The table reports the results of a sequence of Chow tests for corn prices based on the wheat 

break dates reported in Table4.  
***

 significant at the 1% level, 
**

 at the 5% level, 
*
at the 10% level. 

 

Table 8 

Test for co-breaking: crude oil and gasoline 

Break date Sample Statistic 1% c.v. 5% c.v. 10% c.v. 

10-May-2002 
07-Jan-2000 –  

16-Apr-2004 
4.902

*** 
3.100 2.254 1.873 

16-Apr-2004 
17-May-2002 –  

24-Mar-2006 
6.083

***
 3.109 2.259 1.876 

24-Mar-2006 
23-Apr-2004 –  

17-Oct-2008 
3.523

***
 3.096 2.252 1.872 

17-Oct-2008 
31-Mar-2006 –  

05-Nov-2010 
6.966

***
 3.094 2.251 1.871 

05-Nov-2010 
24-Oct-2008 –  

28-Dec-2012 
5.639

***
 3.102 2.255 1.874 

The table reports the results of a sequence of Chow tests for crude oil prices based on the 

gasoline break dates reported in Table4.  
***

 significant at the 1% level, 
**

 at the 5% level, 
*
at the 10% level. 

 

  



 
 
 
  
 
   

 

 

Table 9 

Piecewise stationarity tests 

Regime Initial date Final date 
Lag 

length 
ADF PP 

5% 

c.v. 

10% 

c.v. 

1 07-jan-2000 12-Jul-2002 3 -2.878* 
-2.702* -2.888 -2.578 

2 19-Jul-2002 17-Sep-2004 10 -2.750* -2.618* -2.889 -2.579 

3 24-Sep-2004 22-Sep-2006 4 -3.011** -2.623* -2.890 -2.580 

4 06-Oct-2006 10-Sep-2010 3 -2.621* -2.723* -2.883 -2.573 

5 17-Sep-2010 28-Dic-2012 3 -3.177** -3.528** -2.889 -2.579 

The table reports the ADF and Phillips-Perron test statistics for non-stationarity and the 

associated critical values for the cointegrating vector linking crude oil and corn prices for 

the five regimes defined in the final column of Table 4. Lag lengths were selected using 

SC.   
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