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Probabilistic programming are typically used to model economic-environmental 

trade-when environmental outcomes are stochastic. Application of available 

probabilistic programming techniques such as the upper partial moment (UPM) is 

problematic due to the conservativeness of the estimated the compliance probability. 

Conservatively estimated trade-offs may result in overregulation of agricultural 

production practices. Although the conservativeness of the UPM is usually 

acknowledged by researchers, none of the researchers investigated the size of 

conservativeness of the UPM. An alternative non-linear trade-off model specification 

is developed to investigate the conservativeness of the UPM. Meta data from the 

validated Soil Water Balance (SWB) crop growth simulation model for irrigated 

maize in South Africa is used to show that the UPM is very conservative in the 

estimation of the trade-offs comparing to the new method. However, the size of the 

conservativeness is very situation-specific and varies due to differences in fixed 

resources, fertilizer application methods and conservativeness measures. 

 

 

 
 
 



 
 
 
  
 
   

 

1. Introduction 

 

Trade-off analysis applies the principle of opportunity cost to derive information about the 

sustainability of agricultural production systems. During trade-off analysis the inter-relationships 

among sustainability indicators implied by the underlying bio-physical processes and the 

economic behavior of producers are quantified. Stoorvogel et al. (2004) stated that trade-off 

curves are two-dimensional graphs representing the trade-off between two sustainability 

indicators. Crissman et al. (1998) stated that trade-offs are an essential component in setting 

research priorities and in designing and implementing the criteria of sustainable agriculture. The 

slope of a trade-off curve shows the opportunity cost of increasing agricultural production in 

terms of foregone environmental quality. The opportunity cost also represents the shadow prices 

for environmental quality and can be used as an economic incentive to achieve the 

environmental objective. The information generated with the trade-off analysis is critical for 

informed policy decision-making, as it allows policy makers and the public to assess whether a 

given improvement in environmental quality is worth the sacrifice in agricultural production 

(Stoorvogel et al., 2004). Since agriculture is still seen as one of the remaining major sources of 

water quality problems due to nutrient and sediment losses (Shortle et al., 1998; Peterson & 

Biosvert, 2001; Görgens, 2012), trade-off analysis to weight the regulation of agricultural 

production practices for improved environmental health with the reduced agricultural production 

is important. Moreover, it is of utmost importance that the trade-offs used to provide information 

for policy development is modeled correctly.  

 

Trade-offs is typically modeled with the use of probabilistic programming due to the stochastic 

nature of the environmental outcomes. A potential problem with the application of probabilistic 

programming is that the available techniques such as the UPM (Qui et al., 2001) are 

conservative in the estimation of the compliance probability. The conservative estimation of the 

trade-offs can result in overregulation of agricultural production practices which will result in 

reduced agricultural production and losses in farm profit. Several researchers (Atwood et al., 

1988; Qiu et al., 2001; Krokhmal et al., 2002; Kong, 2006) have raised their concern over the 

conservativeness of the UPM, however, none of the researchers investigated the size of the 



 
 
 
  
 
   

 

conservativeness of the UPM. The conservativeness of the UPM is due to the use of the partial 

moment inequality that generates a conservative probability limit. Due to the inequality the 

UPM estimate the economic indicator such that the environmental constraint is maintained at a 

higher compliance than that specified. 

 

Atwood et al. (1988) indicated that the conservativeness of the UPM can be investigated using 

exogenously constrained or alternative nonlinear methods. An exogenous conservativeness is 

determined by comparing trade-off results of two UPM models. The first UPM model 

determines the trade-offs for a specified compliance probability, while the second model 

achieves the same level of compliance based on the exogenous calculation of the specified 

compliance probability. The calculation of the exogenous compliance probability requires 

information on the optimized distribution of the environmental outcome in the second 

optimization. The estimated exogenous conservativeness might, however, not give an indication 

of the true conservativeness of the UPM model. The endogenously determined probability limits 

that ensure compliance in the UPM are determined by the specified compliance probability and 

the distribution of the environmental variable. Any change in the specified compliance 

probability or the distribution of the environmental variable will therefore result in probability 

limit changes that will influence how strict the environmental constraint is enforced. The 

estimation of the true conservativeness, the endogenous conservativeness, is based on the fact 

that optimized trade-offs are different when producers face a conservative probability bound 

compared to a probability bound closer to the actual compliance probability. The estimation of 

the endogenous conservativeness requires the use of a trade-off model that can model 

compliance without the conservative probability bounds of the UPM. Currently no technique is 

available to model the trade-off with a smaller probability bound than that used by the UPM.  

 

The objective of the article is to develop an alternative non-linear trade-off model that can be 

used to investigate the conservativeness of the UPM. The newly developed Upper Frequency 

Method (UFM) counts the number of deviations from the environmental goal in an effort to 

ensure that the deviations above the goal do not exceed the number of deviations allowed by the 

model.  



 
 
 
  
 
   

 

The article proceeds by discussing the theoretical background to the conservativeness of the 

upper partial moment, the data and procedures, followed by the discussion of the results and 

finally the conclusions.  

 

2. Conservativeness of the Upper Partial Moment 

 

Safety-first rules are concerned with the probability of a variable falling above a critical or target 

level. Probabilistic safety-first constraints can be imposed using different approaches such as 

chance constraint programming and the Chebyshev stochastic inequality. Imposing the 

probabilistic constraints through the use of the Chebyshev’s inequality generates highly 

conservative probability bounds (Atwood et al., 1988). Berck and Hihn (1982) introduced a 

semi-variance inequality that evaluates safety-first rules and is able to generate a smaller upper 

probability limit than the Chebyshev. Atwood (1985) extended Berck and Hihn’s (1982) semi-

variance inequality with a more general lower partial moment stochastic inequality to enforce 

such constraints. The Lower Partial Moment (LPM) developed by Atwood (1985) requires that 

the random variable be finitely discrete and uses the empirical distribution of the random 

variables. Atwood (1985) demonstrated that the LPM generates a smaller upper probability limit 

than the Chebyshev. 

 

Qui et al. (2001) stated that the Upper Partial Moment (UPM) is parallel to the LPM. Like the 

LPM approach the UPM requires a finite discrete sample and uses the empirical distribution of 

the random environmental variables. 

 

The UPM is defined as: 

 

휌(훼, 푡) = ∑ 푥 − 푡 푓 푥 ,										푥 ≥ 푡 (1) 

 

for a discrete case and for a continuous case as: 

 

휌(훼, 푡) = ∫ (푥 − 푡) 푓(푥)푑푥 (2) 



 
 
 
  
 
   

 

 

Where: 훼 constant greater than zero 

 푡 reference pollution level 

 푥  pollution variable 

 푓(푥 ) relative frequency distribution of the pollution variable 푥  

 푓(푥) probability density function 

 

The upper partial moment (휌(훼, 푡)) is the integral of the deviation from the target (푥 − 푡) 

multiplied by the relative frequency distribution of the pollution variable. 훼 places an upper limit 

on the probability of 푥 being more than 푝휃(훼, 푡) units above 푡. Setting 훼 = 1 expresses the 

inequality in terms of absolute deviations from 푡. Fishburn (1977) proved that a model that 

examines the trade-off between 푡 and 휌(훼, 푡) would generate solutions that are a subset of the 

second-degree stochastically dominant set if 훼 ≥ 1. If 훼 ≥ 2 the solution will be a subset of the 

third degree stochastically dominant set. The use of absolute deviation can provide less 

conservative estimates for the probability (Kim et al., 1990).  

 

Assume 휃(훼, 푡) = [휌(훼, 푡)] / , which would be greater than or equal to zero since 휌(훼, 푡) ≥ 0 

and given a positive number 푝, then: 

 

푡 + 푝휃(훼, 푡) ≥ 푡 (3) 

 

The integral in Eq. 2 can then be expressed as the sum of two integrals 

 

휌(훼, 푡) = ∫ (푥 − 푡) 푓(푥)푑푥 + ∫ 푓(푥)푑푥( , )  (4) 

 

Since ∫ (푥 − 푡) 푓(푥)푑푥( , ) ≥ 0, then 

 

휌(훼, 푡) ≥ ∫ (푥 − 푡) 푓(푥)푑푥( , )  (5) 

 



 
 
 
  
 
   

 

Over the interval [푡 + 푝휃(훼, 푡), +∞], the expression (푥, 푡) ≥ [푡 + 푝휃(훼, 푡), +∞] holds since 

휃(훼, 푡) = [휌(훼, 푡)] / . Therefore, the term 푝 휌휃(훼, 푡) can replace	(푥 − 푡)  in Eq.  5 with no 

loss of generality, which gives 

 

휌(훼, 푡) ≥ ∫ 푝 휌(훼, 푡)푓(푥)푑푥( , )  (6) 

= 푝 휌(훼, 푡)∫ 푓(푥)푑푥( , )   

 

The integral ∫ 푓(푥)푑푥( , )  is the probability that 푥 is larger than 푡 + 푝휃(훼, 푡), 

푃푟	[푥 ≥ 푡 + 푝휃(훼, 푡)]. Rearranging Eq. 6 generates: 

 

푃푟	[푥 ≥ 푡 + 푝휃(훼, 푡)] ≤ (1 휌⁄ )  (7) 

 

Let 푔 be the standard that should be achieved for 푥 and 푔 = 푡 + 푝휃(훼, 푡)  then Eq. 7 holds  

 

푃푟(푥 ≥ 푔) = 푃푟[푥 ≥ 푡 + 푝휃(훼, 푡)] ≤ (1 휌⁄ )  (8) 

 

Where 푝 = (푔 − 푡)/휃(훼, 푡)  

 

With 휃(훼, 푡) = [휌(훼, 푡)] / ≥ 0  and 푝 = (푔 − 푡)/휃(훼, 푡), where 푔 is the standard set for the 

pollution variable 푥. Equation 8 places a lower limit on the probability of 푥 increasing more than 

푝휃(훼, 푡) units above 푡. In Eq. 8 the choice of some level of 푡 between 푔 and the population mean 

will often result in probability limits close to the actual probability limits (See Atwood, 1985). 

However, the distribution of the environmental variable determines the size of 휃(훼, 푡) which 

influences the choice of 푝 and therefore the choice of 푡. Since 푝휃(훼, 푡) represents the allowable 

deviation from 푡 an increase in the size of the allowable deviation will result in the choice of a 

lower environmental target, 푡 which is maintained. As a result the distribution of the 

environmental variable may determine the magnitude of the conservativeness of the UPM.  

 



 
 
 
  
 
   

 

A sufficient condition to guarantee that  

Pr(푥 ≥ 푔) = Pr[푥 ≥ 푡 + 푝휃(훼, 푡)] ≤ (1 휌⁄ ) ≤ (1 푞∗⁄ ) , is derived as follows. Note (1 휌⁄ ) ≤

(1 푞∗⁄ )  requires 휌 ≥ 푞∗. Since 푝 = (푔 − 푡) 휃(훼, 푡)⁄ ,휌 ≥ 푞∗ implies 

 

(g− t) θ(α, t)⁄ ≥ q∗ (9) 

 

Given that 휃(훼, 푡) is greater than zero, rearranging Eq. 9 generates  

 

푡 + 푞∗휃(훼, 푡) ≤ 푔 (10) 

 

By enforcing Eq. 10 the following constraint is possible. 

 

푃푟	(푥 ≥ 푔) ≤ (1 푝⁄ ) ≤ (1 푞∗⁄ )  (11) 

 

Through the use of Eq. 11 it is possible for the model to select a level of 푡 endogenously. Since 푡 

is always non-negative, Eq. 10 requires that 푡 ≤ 푔. If Eq. 10 is constraining the model will select 

a level of 푡 that is least constraining but will still satisfy Eq. 8. Enforcing Eq. 10 for all levels of 

푎 > 0 will not be easy. However, with 푎 = 1 the linear Target-MOTAD model can be used to 

enforce Eq. 11 (Atwood et al., 1988; Qiu et al., 2001). Qiu et al. (2001) built on research by 

Atwood (1985) to develop an upper partial moment (UPM) inequality approach to impose the 

safety first constraint in a Target-MOTAD framework that will ensure that the target pollution 

level will be met at a certain specified probability level. Qui et al. (2001) imposed the following 

safety-first constraint in the UPM to ensure the target pollution level is maintained.  

 

∑ 푃푟	(∑ 푒 ≥ 퐺) ≤ 1 퐿⁄ ∗ (12) 

 

Where 퐺 is the environmental goal set by the environmental regulator. Enforcing Eq. 12 in the 

environmental Target MOTAD ensures that the probability of achieving an environmental 

variable in excess of the specified goal (∑ 푃푟(∑ 푒 ≥ 퐺)) is less than a specified acceptable 

probability level (1/퐿∗).  



 
 
 
  
 
   

 

3. Data and Procedures 

Estimation of trade-off models requires information regarding the environmental impact of 

production. The next section will focus on quantifying the environmental variable before 

discussing the trade-off models.  

 

3.1. Quantifying Environmental Risk 

 

Matthews (2014) used flexible response functions to quantify production and environmental risk 

associated with fertilizer use. This article uses the response functions estimated by Matthews 

(2014) to capture empirical production and environmental risk in the trade-off model. The data 

used to estimate the flexible response functions was simulated with a mechanistic, generic crop 

growth model originally developed for irrigation scheduling (Annandale et al., 1999). The Soil 

Water Balance (SWB) model was extended by Van der Laan et al. (2009) through the addition 

of nitrogen and phosphorus simulation routines and algorithms to SWB that allows for salt and 

nutrient simulations. Algorithms incorporated into newly developed SWB_Sci allow the model 

to simulate above ground nitrogen mass, grain nitrogen mass and soil water content and the fate 

of nitrogen. Van der Laan (2009) tested and validated SWB_Sci using historical datasets 

collected in the Netherlands, Kenya and South Africa. 

 

The simulation model was used to simulated crop production and an environmental indicator 

consisting of nitrate runoff and leached for the production of late monoculture maize (planting 

date 15 December) under irrigation on two soil types at Glen, South Africa. Maize production 

was simulated for a sandy clay loam (SCL) or a sandy clay (SC) soil using 19 different 

production years while assuming an initial soil nitrogen level of 33kg. Nine levels of fertilizer 

could be applied in either a single or a split application. When using a split application two 

thirds of the desired nitrogen level was applied on the day of planting while the remaining third 

was applied seven weeks later. Only applications above 70kg/ha was applied in a split 

application. 

 



 
 
 
  
 
   

 

The simulated data was used to estimate production, irrigation water and nitrate loss response 

function for every production year based on the decision makers’ fertilizer use decision 

(Matthews, 2014). Every production year is referred to as a state of nature. The average crop 

yield, average irrigation water and average nitrate loss functions showed very little response for 

fertilizer application. However, significant differences were observed between different states of 

nature. The estimated standard deviations indicated reduced yield variability, increased water 

use variability and increased nitrate loss variability with increased fertilizer use. A detailed 

discussion of the producers and the response functions is available in Matthews (2014).  

 

3.2. Economic-Environmental Trade-Off Models 

 

The production and environmental risk functions fitted by Matthews (2014) are incorporated 

into a UPM and UFM model to estimate the conservativeness of the UPM. Both models 

included a generic model to optimize decision-makers’ fertilizer decisions and constraints 

specific to the compliance models. Next the generic model will be discussed followed by the 

UPM and the UFM models.  

 

3.2.1. Generic model 

 

The generic model was used to determine production decisions for risk neutral decision makers 

when no environmental constraint is enforced. The following equations were used to optimize 

fertilizer usage: 

 

푀푎푥푖푚푖푠푒	퐺푀 = (푌 (푁)푃 −푁푃 −푊 (푁)푃 − 퐶 − 퐶 푌 (푁)) ∗ 퐻퐴 (13) 

 

s.t. 

 

푌 (푁) = ∑ 푝 (훽 + 훽 푁 + 훽 푁 + 휀 ) (14) 

 

푊 (푁) = ∑ 푝 (휔 + 휔 푁 + 휔 푁 + 휇 ) (15) 



 
 
 
  
 
   

 

 

퐸 (푁) = 푒 + 푒 푁 + 푒 푁 + 휏  (16) 

 

푁 ≤ 220 (17) 

 

퐻퐴 ≤ 1 (18) 

 

Where: 푝  is the probability that state of nature 푠 will occur  

 퐺푀  Gross Margin for –state of nature 푠 (R/ha) 

 푌(푁) is the average crop yield produced as a function of nitrogen applications 

(ton/ha) 

 푃  price for maize (R/ton) 

 푁 level of nitrogen fertiliser applied (kg/ha) 

 푃  price for nitrogen fertiliser (R/kg) 

 푊(푁) is the average irrigation water applied as a function of nitrogen applications 

(mm) 

 푃  cost of applying irrigation water (R/mm) 

 퐵  area dependent cultivation cost (R/ha) 

 퐵  yield dependent harvesting cost (R/ton) 

 β  represents the 푖  estimated coefficient for the yield response function in state 

of nature s 

 휀  is the estimated output residuals for every state of nature, 푠 

 휔  represents the 푖  estimated coefficient for the irrigation water response 

function in state of nature 푠 

 휇  is the estimated irrigation water residual for every state of nature, 푠 

 퐸 (푁) is the level of nitrate that is lost in state 푠 as a function of application rates 

(kg/ha) 

 푒  represents the 푖  estimated coefficient for the nitrate loss function 

 휏  is the estimated emission residual for every state of nature, 푠 

 HA Area cultivated (ha) 



 
 
 
  
 
   

 

The generic model maximizes the gross margin associated with alternative fertilizer application 

rates for a risk neutral decision maker. Since the trade-off model is solved for a risk neutral 

decision maker the average crop yield and irrigation response is used in the trade-off model. To 

determine the average crop yield and irrigation response functions it is assumed that every 

production year have an equal probability to occur as indicated by 푝 . Fertilizer applications are 

limited to a maximum of 220kg/ha while the area planted are constrained to be no more than one 

hectare. Thus, the results could be interpreted as percentage changes.  

 

Eq. 16 is included in the generic model to quantify the impact of the optimized production 

decisions on nitrate losses. Equation 16 represents nitrate losses as an empirical distribution 

which is continuously related to the amount of fertilizer applied. Equation 16 therefore, plays an 

important role in enforcing compliance with the environment goal of 28kg/ha since the equation 

determines the distribution of the environmental variable. 

 

The following two sections describe how to enforce compliance with the UPM and UFM 

methods. 

 

3.2.2. Environmental compliance with the Upper Partial Moment (UPM) 

 

The compliance model requires additional equations to model compliance with the user-specified 

environmental goal of 28kg/ha. The additional equations allow the optimization model to 

determine the economic-environmental trade-offs. The equations that were added to the generic 

model to complete the UPM model are given below: 

 

푡 = 퐸 (푁) 퐻퐴+ 푑  (19) 

 

∑ 푝 푑 − 휃(푡) = 0 (20) 

 

푡 + 퐿 ∗ 휃(푡) ≤ 퐺 (21) 

 



 
 
 
  
 
   

 

Where: 푡 endogenously determined reference level for the environmental variable 

푑  deviation of pollution emissions above the pollution target in state of nature 푠 

푝  probability that state of nature s will occur 

퐺 is the environmental target set by the environmental regulator 

휃(푡) 휃(푡) = 휃(1, 푡) = 휌(1, 푡), endogenously determined environmental risk level or 

the expected deviation above the reference level 푡 

퐿∗ the inverse of the acceptable probability (휑) of the environmental pollution 

being greater than the environmental goal 퐺. 

 

The UPM uses the user-specified environmental goal (퐺), an acceptable probability level (퐿∗) 

and an endogenous environmental risk level (휃(푡)) to estimate the endogenous target, 푡 which 

will be maintained in the UPM (Eq. 21). The endogenous environmental risk level ((휃(푡))) is 

estimated in Eq. 19 based on the expected deviation (푝 푑 ) of the decision makers nitrate loss 

from the endogenous target, 푡. The deviation of pollution emissions (푑 ) is estimated in Eq. 19 as 

absolute deviation in nitrate loss (퐸 (푁)) from the endogenously determined target (푡). While 퐿∗ 

can be interpreted as the inverse of the acceptable probability (휑) of environmental pollution 

being greater than the environmental goal 퐺 (Qiu et al., 2001). 

 

The estimation of the endogenously determined target (푡) relies heavily on the underlying 

distribution of the environmental variables (Qui et al., 2001) and the level of compliance. 

Therefore, the results obtained with the use of the UPM are typically conservative. 

 

3.2.3. Environmental compliance with the Upper Frequency Method (UFM) 

 

The UFM of enforcing probabilistic environmental compliance is based on the premises that any 

compliance probability can be expressed for the discrete case as the frequency by which a target 

may be exceeded. Restricting the number of states in which the environmental target might be 

exceeded guarantees compliance. The modeling procedure utilizes the Environmental Target-

MOTAD model specification to identify states of nature in which the environmental target is 



 
 
 
  
 
   

 

exceeded and uses binary variables to restrict the number of times the target is exceeded. The 

following equations were used to ensure compliance: 

 

퐺 − 퐸 (푁)− 푑 ≥ 0 (22) 

 

−퐼퐵 + 푑 ≤ 0 (23) 

 

∑ 퐵 ≤ 푢푓 (24) 

 

Where: 퐵  binary variable indicating whether the environmental target is exceeded in state 

of nature 푠 

푢푓 upper frequency indicating the number of times a target might be exceeded to 

enforce compliance 

푙 large number which is used to give permission for a state of nature to exceed 

the target given 퐵  has a value of one 

 

Absolute deviations (푑 ) are estimated in Eq. 22 as the deviation in nitrate loss (퐸 (푁)) from the 

environmental goal (퐺). Equation 22 is the same as for the UPM (Eq. 19) with the exception that 

the deviations are calculated from 퐺 and not 푡 as in the UPM. The UFM therefore overcomes the 

conservativeness of the UPM in maintaining the true environmental goal and not an 

endogenously determined target that is dependent on the distribution of the environmental 

variable. Equation 23 uses a binary variable to identify whether a specific state of nature exceeds 

the environmental goal. Every time 퐸 (푁) exceeds 퐺, 퐵  takes a value of one. The 퐵 ’s are 

counted to determine the frequency by which the environmental goal is exceeded. The 

probabilistic constraint is enforced by Eq. 24 which restricts the number of times the 

environmental goal is exceeded to 푢푓. The value of 푢푓 is calculated as (1− 휑)푆 where 휑 

specifies the compliance probability and 푆 the total number of states of nature. The choice of 푢푓 

is an integer value that corresponds with a value closest to the estimated discrete compliance 

probability without exceeding the compliance probability. The UFM can, therefore, also be 



 
 
 
  
 
   

 

conservative in the estimation of the trade-offs although the UFM will never be as conservative 

as the UPM.  

 

3.3. Estimation of UPM Compliance Conservativeness 

 

The conservativeness of the UPM was estimated with exogenously calculated actual compliance 

probabilities and the compliance probabilities that were achieved with the UFM. The exogenous 

conservativeness is captured through the use of exogenously constrained methods. First the 

UPM was solved for a user-specified environmental goal, 퐺, and a user-specified compliance 

level. However, the UPM maintains the environmental goal, 퐺, at a compliance level greater 

than that specified. The expectation was that the exogenously estimated compliance level will be 

greater than that specified because the UPM determines an endogenous target, 푡, which is 

maintained at the specified compliance level. To estimate the conservativeness of the UPM a 

second UPM model was solved to achieve an actual compliance equal to the specified 

compliance in the first UPM through an iterative procedure. The exogenous conservativeness of 

the UPM was estimated as the difference in the gross margins determined with the first and 

second UPM. 

 

The endogenous conservativeness of the UPM was estimated as the difference between the gross 

margin for the first UPM and UFM. The specified compliance of the first UPM was converted 

into integer values that indicate the number of times the environmental goal should be 

maintained (푢푓) in the UFM. The estimated 푢푓 was then used to determine the economic-

environmental trade-offs with the UFM model.  

 

4. Results 

 

The results in Table 1 are divided into three sets of results. The first set of results (Upper Partial 

Moment Model 1) shows the optimization results for the user specified compliance level. To 

determine the exogenous conservativeness of the UPM a second UPM (Upper Partial Moment 

Model 2) was solved to ensure an exogenously estimated actual compliance equal to the 



 
 
 
  
 
   

 

specified compliance in UPM model 1. The results for the second UPM optimization are shown 

in the second set of Table 1 (Upper Partial Moment Model 2). The third set of results is the UFM 

results (Upper Frequency Method). The specified compliance of the UPM Model 1 was 

incorporated into the UFM to estimate the trade-offs with the UFM. 

 

INSERT TABLE 1 

 

The first column in Table 1 shows the compliance probability (휑) specified by the researcher. 

The second column (퐺푀) indicates the gross margin estimated with the trade-offs model under 

the environmental constraint and specified compliance. The third column (푡) indicates the 

endogenous environmental target that is maintained in the UPM. The UPM maintains the 

environmental goal (퐺) by maintaining the endogenous environmental target (푡). Since the 

environmental target (푡) is much stricter than the environmental goal (퐺) the actual compliance 

level to the environmental goal is estimated exogenously using the optimized distribution of the 

environmental variable. The exogenously determined actual compliance level indicates the actual 

compliance to the user specified environmental goal (퐺) of 28kg.  

 

Next the exogenous and endogenous conservativeness of the UPM will be discussed based on the 

results shown in Table 1. 

 

4.1. Exogenous conservativeness 

 

The exogenous conservativeness of the UPM is determined as the difference between the gross 

margin estimated in UPM model 1 and UPM model 2 as shown in Table 1. 

 

The exogenous conservativeness of the UPM shows that even though a compliance level of 

0.596 was specified, an actual compliance of 0.895 is maintained while a gross margin of R9 348 

is realized for production on a SCL soil using a single fertilizer application. The actual 

compliance is greater than that specified because the UPM determines an endogenous target of 

13.9kg that is maintained at the specified compliance level. The UPM chooses an endogenous 



 
 
 
  
 
   

 

environmental target (푡) based on the distribution of the environmental variable. The endogenous 

environmental target is maintained at the specified compliance while the user-specified 

environmental goal is achieved at the actual compliance. Similarly, for a specified compliance 

level of 0.848 the environmental goal is achieved with an actual compliance of 0.947 while 

realizing a gross margin of R6 209. However, the UPM solved the optimization problem for an 

endogenous target of 15.9kg therefore 퐺 was maintained at an exogenous compliance level of 

0.847. The cost of conservativeness is estimated by comparing the estimated GM of R6 209 to 

the GM when the exogenously determined actual compliance in UPM model 2 is 0.848. Solving 

the UPM for the specified compliance level of 0.596 and 0.848, results in a gross margin of 

R17 551 and R10 883 respectively. The exogenous conservativeness of the UPM is therefore, 

R8 203 (R17 551 - R9 348) for a specified compliance of 0.596 and R4 674 (R10 883 - R6 209) 

for a specified compliance level of 0.848. With increased compliance to the environmental 

constraint the exogenous conservativeness decreases. The same is true for production on a SCL 

soil using a split fertilizer application.  

 

For production on a SC soil when using a single fertilizer application the gross margin for a 

specified compliance level of 0.649 is R6 868 while the actual level of compliance to 퐺 is 0.930. 

Optimising for the exogenously determined compliance of 0.649, results in a gross margin of 

R13 568. The exogenous conservativeness of the UPM at a compliance level of 0.649 is 

therefore R6 700 (R13 568 - R6 868) while the gross margin for a specified compliance level of 

0.895 is R3 737 with an exogenously estimated actual compliance of 0.953. Optimizing for an 

exogenously estimated actual compliance of 0.895, results in a gross margin of R7 428. The 

exogenous conservativeness faced by the decision maker amounts to R3 691 (R7 428 - R3 737). 

Similar to the results for production with a single fertilizer application the exogenous 

conservativeness will decrease with an increase in compliance probability. Although the 

exogenous conservativeness associated with production on a SCL soil and SC soil follow a 

similar trend the exogenous cost of conservativeness is greater for production on a SC soil 

compared to production on a SCL soil. It should also be noted that at relatively low levels of 

specified compliance the exogenous cost of compliance, although high for production on a SCL 



 
 
 
  
 
   

 

and SC soil is within the same ranges. When the specified compliance is very high (0.900) the 

exogenous cost of compliance is substantially greater on a SC soil than on a SCL soil.  

 

Results showed that exogenous conservativeness decrease with increased compliance to the 

environmental goal, 퐺. The decision makers fixed resources also influences the size of the 

conservativeness with a higher conservativeness cost on the SC soil. The implication is that 

enforcing the environmental constraint in an incorrect manner will result in a significant 

conservativeness. Such conservativeness will put strain on the agricultural decision maker and 

agricultural production. The conclusion is that the choice of specified compliance should be 

carefully researched before policy makers take any decisions regarding the preferred compliance 

level. Furthermore, the decision makers’ fixed resource can contribute to the size of the 

conservativeness of the UPM, therefore, the decision makers’ fixed resources should be 

considered when evaluating alternative compliance levels. In essence, soil specific information is 

necessary before any decisions can be made. 

 

4.2. Endogenous conservativeness of the Upper Partial Moment 

 

The endogenous conservativeness of the UPM is determined by comparing the results for the 

UPM model 1 with that of the UFM for the specified compliance. The results for compliance to 

an environmental constraint estimated with the UPM and the UFM for risk neutral decision 

makers are shown in Table 1. 

 

Assuming a specified compliance of 0.596 on a SCL soil for a single fertilizer application, the 

GM for the UPM is R9 348 compared to the R17 556 realized with the UFM. The endogenous 

cost of conservativeness of the UPM is therefore R8 208. However, with increased compliance 

(0.895) the difference in the gross margin estimated with the UPM and UFM decreases to 

R4 227 (R5 274 for the UPM and R9 501 for the UFM). Similarly to the exogenous 

conservativeness the estimated endogenous conservativeness decreases with increased 

compliance. The same is true for production using a split application where the estimated 

endogenous conservativeness will also decrease with increased compliance. The estimated 



 
 
 
  
 
   

 

conservativeness cost will, however, be higher when applying fertilizer in a split application 

compared to a single application.  

 

Decision makers, who produce on a SC soil with a single fertilizer application with a specific 

compliance of 0.649, will realize a gross margin of R6 868 using the UPM model compared to 

the R14 464 from the UFM optimization. The endogenous conservativeness of the UPM is 

therefore R7 596 (R14 464 - R6 868) and will decrease to an endogenous conservativeness of 

R4 158 (R6 737 - R2 516) with an increase in compliance to 0.947. Decision makers who use a 

split fertilizer application on a SC soil will show a decrease in endogenous conservativeness due 

to increased actual compliance. An actual compliance probability of 0.649 will result in an 

endogenous conservativeness of R7 330 (R13 965 - R6 635). With increased compliance (0.947) 

the endogenous conservativeness will decrease to R4 051 (R6 567 - R2 579). 

 

Results show that the soil type used can influence the endogenous conservativeness of the UPM. 

For all compliance scenarios and fertilizer application techniques, production on SC soil resulted 

in a higher endogenous conservativeness compared to the SCL soil. The response to fertilizer 

application technique depends on the soil type used and the compliance level specified. The 

conclusion is therefore that the decision makers’ fixed resources and production decisions should 

be carefully considered when evaluating environmental constraints with the use of the UPM. 

 

4.3. Comparison of exogenous and endogenous conservativeness 

 

Results showed that the conservativeness cost estimated with the endogenous and exogenous 

procedures both show a decline in conservativeness with increased compliance irrespective of 

soil choice or fertilizer application method.  

 

The estimated exogenous conservativeness cost range from a maximum of R8 203 to a low of 

R350, showing a significant decrease of R7 853 on a SCL soil when using a single fertilizer 

application. While the exogenous conservativeness cost for production with a split application 

decrease with R7 766 from R7 835. The endogenous conservativeness costs estimated for a 



 
 
 
  
 
   

 

single fertilizer application is R8 208 and decrease to a low R2 968 (reduction of R5 240) while 

the use of a split application result in a R4 120 reduction from R7885. The use of a SC soil will 

result in a maximum exogenous conservativeness cost of R6 700 when using a single fertilizer 

application and R6 062 for a split application with a respective reduction in conservativeness 

costs of R3 733 and R3 171. The endogenous conservativeness for a single application decrease 

from R7 596 to R4 158 (reduction of R3 438) while, the endogenous conservativeness for a split 

application decrease from R7 330 to R4 051 (reduction of R3 279). Although the estimated 

endogenous conservativeness costs are higher than the exogenous conservativeness, the 

reduction in conservativeness costs is significantly greater for the exogenous conservativeness 

estimation procedure. 

 

The high cost of conservativeness is estimated for relatively low levels of compliance (0.596 and 

0.649), since the UPM achieved an actual compliance that far exceeds the specified compliance 

level. With increased levels of specified compliance (0.947) the actual compliance of the UPM is 

closer to that specified and therefore the exogenous compliance cost is significantly less. 

Although the endogenous conservativeness is also less at the higher compliance levels, the UPM 

is still not able to achieve the specified compliance of 0.947, while the UFM is able to achieve 

the specified compliance. The conservativeness cost estimated with the endogenous 

conservativeness procedure is therefore higher than for the exogenous conservativeness 

estimation procedure. What is also interesting to note is that with increased compliance (from 

0.596 to 0.85 the amount with which the exogenous conservativeness exceeds endogenous 

conservativeness decrease before increasing again. For production on a SCL soil the amount with 

which the exogenous conservativeness exceeds endogenous conservativeness at a compliance 

probability of 0.947 is R2 619 and R3 687 for a single and split fertilizer application. The 

difference in exogenous conservativeness and endogenous conservativeness is therefore 

significantly large at high compliance probability levels. A reason for this result is that the model 

can weigh the effect of one production year with exceptionally high nitrate losses very high 

when estimating the endogenous target and actual compliance resulting in a greater level of 

conservativeness.  

 



 
 
 
  
 
   

 

A researcher can estimate the exogenous and endogenous conservativeness to provide an 

indication of the conservativeness of the UPM. However, the size of the estimated 

conservativeness is influenced by the technique used to determine conservativeness and the 

ability of the technique to achieve the user specified compliance. The conclusion is that policy 

makers should be careful when estimating potential economic-environmental trade-offs and 

identifying compliance probabilities to regulate agricultural NPS. The conservativeness of the 

trade-off model is influenced by the ability of the model to achieve the specified compliance 

probability. Incorrect choice of trade-off model and/or compliance probability could result in the 

overregulation of agricultural decision-makers.  

 

Results also showed that production decisions’ made by the decision maker can influence the 

size of the exogenous and endogenous conservativeness. When a single fertilizer application is 

considered, the compliance cost is consistently higher on the SC soil irrespective of the 

conservativeness measure used. However, the results for the split application show mixed results 

when comparing the two different soils. Another noticeable result is that the exogenous 

conservativeness decreases significantly at high compliance probabilities on the SCL for both 

fertilizer application methods. 

 

On a SCL soil the exogenous compliance cost conservativeness is almost the same for the two 

fertilizer application methods. When considering the endogenous estimate of conservativeness 

the split application tends to be higher than the single application method at high compliance 

probabilities. On a SC soil both application methods conservative measures closely follow each 

other irrespective of the conservativeness measure used. The exogenous measure tends to give 

more conservative estimates for the single fertilizer application method at lower compliance 

probabilities. The conclusion is that it is difficult to clearly determine the impact of fertilizer 

application method on conservativeness while soils have a more profound impact. 

 

 

 



 
 
 
  
 
   

 

5. Conclusions 

 

The newly developed UFM is easy to use and requires no assumptions regarding the distribution 

of the environmental variable as the empirical data is used. The UFM behaved well during the 

optimization process and is much less conservative in the estimation of the trade-offs due to the 

probability limit which is closer to the actual probability limit displayed by the data. Although 

the UFM provides a stricter probability bound than the UPM there are some concerns regarding 

the application of the UFM. The UFM ensures compliance by ensuring that the number of 

deviations above the goal does not exceed the number of deviations allowed, therefore, a fairly 

large number of observations is necessary to ensure probability limits close to the actual 

probability. Since, South Africa faces the same soil water pollution problems as the rest of the 

world; the model was applied using a South African example. The robustness and the application 

of the model can only be tested though an evaluation of the model under various climatic 

conditions and different environmental goals. 

 

Results showed that the conservativeness cost is higher on SCL soil compared to a SC soil, 

irrespective of conservativeness method. The effect of fertilizer application method used affects 

conservativeness cost differently between the two soil types and conservativeness measures. 

Results also showed that the exogenous and endogenous conservativeness estimated with the 

UPM and UFM is very high. With increased compliance the exogenous and endogenous 

conservativeness decrease with the greatest reduction in conservativeness realized when 

estimating exogenous conservativeness on a SCL soil at high compliance probability levels. The 

estimated endogenous conservativeness is always greater than the exogenous conservativeness 

and more so when the conservativeness is very high, irrespective of soil type or fertilizer 

application method. The conclusion is that the conservativeness of the UPM as measured by the 

exogenous and endogenous conservativeness is very high. However, the size of the 

conservativeness is very situation-specific and varies due to differences in fixed resources, 

fertilizer application methods and conservativeness measure.  

 



 
 
 
  
 
   

 

The conservativeness of the UPM will result in over-regulation since the shadow price for the 

environmental outcome is derived from conservative responses. Failure to consider the trade-offs 

generated with the UFM may result in miss-identification of management options to control 

pollution.  
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TABLE 1:  Estimated Compliance to an Environmental Constraint Using an Upper Partial Moment 
(UPM) and Upper Frequency Moment (UFM) Results for a Sandy Clay Loam (SCL) Soil 
Using a Single and Split Fertilizer Application (kg/ha) 

 Sandy Clay Loam   Sandy Clay 

 Specified 
compliance GM (R) Target 

(t) 
Actual 

compliance   Specified 
compliance GM (R) Target 

(t) 
Actual 

compliance 
 Upper Partial Moment (UPM) Model 1   Upper Partial Moment (UPM) Model 1 

Si
ng

le
 

0.596 9348 13.9 0.895  

Si
ng

le
 

    
0.649 8757 16.0 0.895  0.649 6868 14.4 0.930 
0.690 8298 16.7 0.895  0.696 6419 15.0 0.947 
0.749 7642 17.6 0.895  0.749 5883 15.0 0.947 
0.795 7049 16.7 0.901  0.784 5474 14.2 0.953 
0.848 6209 15.9 0.947  0.848 4552 12.8 0.953 
0.895 5274 19.2 0.947  0.895 3737 14.3 0.953 
0.947 4381 25.9 0.971  0.947 2579 13.6 0.982 

Sp
lit

 

0.585 9241 13.9 0.895  
Sp

lit
 

    
0.632 8697 16.0 0.895  0.649 6635 14.8 0.936 
0.690 8059 17.5 0.895  0.696 6225 16.0 0.947 
0.743 7508 17.3 0.895  0.725 5958 15.6 0.947 
0.795 6856 16.7 0.895  0.789 5268 14.4 0.953 
0.848 6033 15.2 0.947  0.842 4557 13.4 0.953 
0.895 5040 19.7 0.947  0.895 3681 13.6 0.953 
0.947 4315 28.0 0.971  0.947 2516 14.5 0.982 

           
 Upper Partial Moment (UPM) Model 2   Upper Partial Moment (UPM) Model 2 

Si
ng

le
 

0.041 17551 0.0 0.596  

Si
ng

le
 

    
0.181 15402 3.5 0.649  0.205 13568 1.2 0.649 
0.263 14115 5.6 0.690  0.292 12142 1.6 0.696 
0.386 12225 6.3 0.749  0.351 11193 1.6 0.749 
0.404 11954 6.3 0.795  0.363 11003 1.9 0.784 
0.474 10883 7.4 0.848  0.427 10000 3.9 0.848 
0.749 7642 17.5 0.895  0.602 7428 8.3 0.895 
0.930 4731 20.5 0.947  0.778 5546 14.3 0.947 

Sp
lit

 

0.041 17076 0.0 0.585  

Sp
lit

 

    
0.158 15331 3.2 0.632  0.228 12697 1.1 0.649 
0.316 12954 6.4 0.690  0.345 10879 2.1 0.696 
0.363 12264 6.4 0.743  0.363 10610 2.2 0.725 
0.398 11744 6.6 0.795  0.374 10430 2.2 0.789 
0.427 11309 7.3 0.848  0.439 9481 3.9 0.842 
0.801 6776 16.5 0.895  0.561 7726 5.8 0.895 
0.942 4384 23.0 0.947  0.778 5407 14.6 0.947 

           
 Upper Frequency Method (UFM)   Upper Frequency Method (UFM) 

Si
ng

le
 

0.596 17556  0.596  

Si
ng

le
 

    
0.649 15416  0.649  0.649 14464  0.649 
0.690 14712  0.690  0.696 12387  0.696 
0.749 12577  0.749  0.749 11368  0.749 
0.795 12062  0.795  0.784 11137  0.784 
0.848 11154  0.848  0.848 10134  0.848 
0.895 9501  0.895  0.895 7830  0.895 
0.947 7349  0.947  0.947 6737  0.947 

Sp
lit

 

0.585 17126  0.585  

Sp
lit

 

    
0.632 16891  0.632  0.649 13965  0.649 
0.690 13727  0.690  0.696 11915  0.696 
0.743 12423  0.743  0.725 11181  0.725 
0.795 12171  0.795  0.789 10624  0.789 
0.848 11335  0.848  0.842 9804  0.842 
0.895 10747  0.895  0.895 8316  0.895 
0.947 8071  0.947  0.947 6567  0.947 



 
 
 
  
 
   

 

 


