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Integrating the Structural Auction Approach and  

Traditional Measures of Market Power 

 

Abstract 

This study asks the question, what is the relationship between traditional models of 

market power and structural auction models?  An encompassing model is derived that 

considers both price markdowns due to bid shading during an auction and price 

markdowns at the industry-level due to imperfect competition.  Data from a cattle 

procurement experimental market is used to compare the appropriateness of the two 

alternative theories.  Regression results show that while the number of firms is more 

important than the number of bidders on lot of cattle in explaining pricing behavior in the 

game, the number of bidders does contain some unique information and should be 

included in the model.  Both the traditional NEIO and structural auction approaches 

overestimated the true markdowns possibly due to failure to account for the winners 

curse.  
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Integrating the Structural Auction Approach and  

Traditional Measures of Market Power 

 

Potential anti-competitive behavior of beef packers in cattle procurement markets has 

been well documented in recent years (Ward, 2002).  Cattle producers contend that they 

receive lower prices for their cattle because packers act strategically to depress prices 

below price levels in competitive markets.  For past decades,  the national four firm 

concentration ratio has increased significantly from 25% in 1976 to about 80% in 1998 

(Ward, 2002), which increases concern about possible packer market power in cattle 

procurement markets.  

Most recent empirical studies of competition in cattle markets have used the new 

empirical industrial organization (NEIO) model (Schroeter, 1988; Azzam, 1997; Koontz 

and Garcia, 1997; Sexton, 2000; Paul, 2001; Lopez et al., 2002).  The NEIO model seeks 

to explain market power originating from industry-level imperfect competition.  A few 

empirical studies have looked at disaggregate measures of concentration such as the 

number of bidders at an auction (Meyer, 1988; Bailey, Ward, 1992; Brorsen, and Fawson, 

1993; Bourgeon and Le Roux, 1996, 2001).  These latter studies of market power use 

concepts from auction theory (Milgrom and Weber, 1982; Laffont and Vuong, 1996, 

Klemperer, 1999).  The auction models seek to explain market power due to bid shading 

at local markets, such as cattle auctions (Bailey, Brorsen, and Fawson, 1993), rice 

auctions (Meyer, 1988), or grain auctions (Bourgeon and Le Roux, 1996; Banerji and 

Meenakshi, 2004 ).  Auction models are agent-based models that enable estimation of 

market power considering the number of buyers, and sellers, and the bidding process at 

individual auctions.   
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Although the empirical literature has mostly used the NEIO model, the auction 

model seems more closely tied to the way cattle markets work since cattle buyers make a 

large number of individual purchase decisions rather than setting an equilibrium price. 

While NEIO models depend on the number of sellers and buyers in the industry, and use 

equilibrium prices determined by industry level demand and supply, auction models 

involve buyers and sellers arriving at a transaction price for a given quantity and quality 

of cattle at a given place and time.  Thus, auction theory is associated with price 

discovery (i.e. focusing on microstructure), and the NEIO model is associated with price 

determination (i.e. focusing on macrostructure).  These concepts are interrelated, but are 

not the same (Ward and Schroeder, 2001).  Yet, previous studies seek to consider one 

market power effect or the other, not both.  Which of these two models estimate market 

power more accurately?  Should market power effects be added or do they measure the 

same thing?  Answers to these questions require a model considering both auction 

theory’s bid shading and industry-level imperfect competition.  To our best knowledge, 

such a model has not been developed in the literature. 

Therefore, this paper proposes an encompassing model that nests within it both 

auction theory’s bid shading and NEIO’s market-level imperfect competition.  We derive 

an encompassing model by extending the traditional NEIO to formally include 

markdowns from both bid shading and market-level imperfect competition.  The 

encompassing model derived in this paper is tested indirectly using data from an 

experimental cattle market.  Results show that even though the number of firms in the 

experimental game is more important than the number of bidders on a lot of cattle, an 

encompassing model is preferred to either NEIO or auction model.  Both NEIO 
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overestimated the true price markdown possibly due to failure to account for the winners 

curse.  

Market Power in Cattle Procurement Markets 

 
The NEIO model and the auction model represent two major theories of possible market 

power in cattle procurement markets  The NEIO theory, pioneered by Appelbaum (1982), 

posits that market power effects can be measured via “conduct parameters” estimated 

from a set of behavioral equations describing firm’s production and pricing decisions 

(Bresnahan, 1989).  The intuition behind the NEIO theory is that oligopsony power is 

inversely related to the number of firms in the (aggregate) industry, and depends on the 

conjectures adopted by the firms in the industry.  Moreover, the theory posits that at any 

point in time firms make decisions using “equilibrium prices” determined by aggregate 

demand and supply.   

Recent studies using the NEIO model to study competition in the U.S. cattle 

markets include Schroeter (1988), Azzam and Schroeter (1995), Koontz and Garcia 

(1997), Paul (2001), and Lopez, Azzam and Espana (2002).  Most of these studies find 

little market power in cattle markets (Sexton, 2000; Ward, 2002).  However, since the 

NEIO model seeks to measure market power due to industry-level imperfect competition, 

price markups due to bid shading are not explicitly considered.  

The auction theory offers an alternative model about possible oligopsony power 

due to bid shading in auctions.  Auctions are market institutions with an explicit set of 

rules that are used to elicit information, in the form of bids, from potential buyer 

regarding their willingness to pay for the good being auctioned (Krishna, 2002).  Bidder’s 
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willingness to pay is a function of all available information to the bidder and the type of 

auction. 

Auctions are widely used to sell agricultural commodities in local markets, and as 

such, they are important for the micro-level price discovery in agricultural markets.  

Prominent examples of agricultural commodities sold trough auctions in the U.S. are 

cattle (Crespi and Sexton, 2004), timber (Baldwin, Marshall, and Richard, 1997), and rice 

(Meyer, 1988).  Moreover, auctions have also been used to allocate contracts for school 

milk in the U.S. (Porter and Zona, 1999), to sell flowers in the Netherlands (Klemperer, 

1999), and to allocate wheat export contracts in Europe (Bourgeon and Le Roux, 1996, 

2001).  But, while a huge array of data are generated through auctions, few studies in the 

agricultural economics literature have used auction theory when examining competition 

in the U.S. food agricultural sector.  

Bidders acting strategically may exert oligopsony power by shading their bids 

below their valuation, thereby depressing prices below price levels in competitive 

markets.  However, there are several reasons why packers may bid less than their 

valuation other than active or passive collusion (Crespi and Sexton, 2004).  Bidders may 

shade their bids to earn a positive margin, especially in procuring intermediate 

agricultural inputs or commodities for resale.  Bidders may also shade their bids to avoid 

the winner’s curse in auctions with common valuations.  Conventions such as whole 

dollar bidding, reported in some cattle markets (Crespi and Sexton, 2004) and the 

NASDAQ (Christie and Schultz, 1994) may also lead to bid shading.   

Bailey, Brorsen, and Fawson (1993) were among the first to use auction data to 

estimate market power in cattle markets.  They used a single-equation (hedonic) 
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regression of bids on lot characteristics and measures of concentration at local cattle 

auctions.  Bailey, Brorsen, and Fawson (1993) found an increase in concentration at local 

auctions depressed cattle prices, but the effect was small.  Crespi and Sexton (2004) also 

estimated a price-dependent hedonic regression to compare the buying pattern in the data 

with that predicted by their model.  Using simulations, they found that the estimated 

model predicted a different buying and selling pattern from original the data.  

This paper contributes to the literature in two areas.  First, we consider an 

encompassing model that considers price markdowns due to auction’s bid shading, and 

price distortions due to firm-level imperfect competition.  Second, we provide fresh 

empirical results to the literature about market power estimation.  

Structural Auction Model 

This section outlines the structural auction model that has been used to estimate possible 

market power in cattle markets.  Auction concepts were first proposed for empirical 

studies of price determination by Paarsch (1992), and extended by Guerre et al. (2000).  

Guerre et al. developed an equilibrium bidding model assuming first-price sealed-bid 

auctions with independent private values.  We make a similar set of assumptions and 

justify them in the context of our experimental auction market.  

The assumption of first-price sealed-bid auction implies that each bidder submits 

bids independently, and the bidder with the highest bid wins the auction and pays the 

amount of his bid.  The first-price aspect emerges because the winner of good for sale is 

the packer with the highest bid.  Our experimental cattle market is not a sealed-bid 

experiment but resembles it since bidders approach feedlots individually without 

knowing opponents’ bid.  Obviously, there are few instances where bidders can learn 
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about rival’s bids.  Crespi and Sexton (2004) also assumed first-price sealed-bid auction 

assumption when studying packers’ bidding behavior in the Texas Panhandle.   

 Our model also assumes that packers have independent private values (IPV).  The 

IPV assumption implies that (a) bidder’s valuation is unique and privately known to the 

bidder, and (b) the valuations are drawn independently from a common distribution 

known to all packers.  While the more general case of affiliated or correlated values (i.e. 

bidder’s valuation has both private and common values) would be more adequate for our 

experimental cattle market, the IPV assumption is not inconsistent with the factors 

influencing bidders valuations in cattle markets, including our experimental cattle market.  

To see why, define each packer’s valuation for a lot of cattle as the difference between 

the price beef and the price of cattle.  Then, to the extent processing costs are unique to 

each packer and known only to the packer, there is an IPV component to the valuation 

(Banerji and Meenakshi, 2004).  Furthermore, as long as bidders have the same 

information about the common aspects and place similar weight on it, then the IPV 

assumption is not very restrictive (McAfee and McMillan, 1992).  A further reason to 

assume IPV is the simplicity it lends to our model.   

 We also assume repeated auctions rater than simultaneous auctions.  This 

assumption fits well our experimental cattle market and helps simplify the model.  This is 

because some real world cattle markets are characterized by repeated interaction of 

buyers.  The cattle market in the Texas Panhandle is an example of a local market where 

few buyers (three packers) interact repeatedly in procuring cattle via first price sealed-bid 

auctions (Crespi and Sexton, 2004).   
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To illustrate the auction model considered in this study, consider a cattle market 

with few packers purchasing cattle through a sequence of first-price sealed-bid auctions 

in the context of IPV.  Packers’ valuation (Rij) is defined as the price of processed beef 

)( r

jp  minus the marginal cost )( ijc  of processing cattle into beef.  That is .ij

r

jij cpR −=   

Although competing packers do not know opponents’ valuation, they know that all 

valuations R, including their own, come from a common distribution G (•) which is 

continuous with density g(•). 

 As discussed previously, packer’s valuation depends on the processing technology 

employed.  Following Sexton (2000), we assume that beef packers use cattle and non-

farm processing inputs to produce beef, y r, using a quasi-fixed proportion processing 

technology.  Such technology allows no substitution between cattle, y f, and a vector of 

non-farm inputs, v, but may allow substitution between non-farm inputs.  Processors’ 

technology is represented as: 

)},(,/min{ vgyy fr γ=  

where rf yy /≤γ  is the conversion factor between cattle and processed product.  Packer’s 

profit maximization requires that ).(/ vgyy fr == γ  

 In maximizing expected profits, πi, the ith risk-neutral packer faces the following 

maximization problem (Bajari and Hortaçsu, 2005): 

,))(()(  max
1−−= j

f
ij

Nf

ij

f

ijij

r

ijij
p

pGpRy ϕπ  

where i (i = 1,…, I) is a subscript for packer, and j (j = 1,…, T) is a subscript representing 

the jth cattle lot, Rij = ij

r

j cp −  is packer i’s per-unit valuation of processed product yij, 

produced at processing cost cij, and sold at price ;rjp  f

ip  is packer i’s dollar bid for cattle, 

(2.2) 

(2.1) 
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)( f

ijpϕ  is the inverse of the equilibrium bid function, 
1

))((
−jNf

ijpG ϕ  is the probability 

that packer i wins the auction of the jth lot of cattle, and Nj is the number of packers 

bidding for the jth lot of cattle. 

The first-order condition for maximizing packer’s profits is: 
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which can be re-arranged and rewritten as: 

)1)((

)(

−
−=

j

f

ij

f

ij

ij

f

ij
Npf

pF
Rp , 

where f

ij

f

ij

f

ij

f

ij pppgpf ∂∂= /)())(()( ϕϕ and )( f

ijpF = ))(( f

ijpG ϕ  are bid density and 

distribution functions evaluated at .f

ijp    

 Equation (2.4) shows that packer’s strategic behavior could yield bids below 

packer’s valuation Rij.  The markdown or bid-shading factor is represented by the second 

member of the right hand side of equation (2.4) (Hortaçsu, 2002).  Notice that the bid-

shading factor is inversely related to the number of bidders Nj bidding for the jth lot of 

cattle rather than the number of firms in the industry.  The bid-shading factor approaches 

zero as the number of bidders for lot j approaches infinity.   

The NEIO Model  

 
This section outlines the NEIO model about possible market power in cattle procurement 

markets.  This theory was proposed by Appelbaum (1982) and Bresnahan (1989).  Unlike 

(2.3) 

(2.4) 
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the auction model, NEIO measure of market power depends on the number of firms in the 

industry rather than the number of bidders for a particular lot of cattle.  In addition, 

packers are assumed to make their decision based on “equilibrium” cattle prices 

determined by aggregate demand and supply (i.e. there are no losers and winners as was 

the case for the auction model).   

 Characterization of packer’s strategic behavior within the NEIO model is 

achieved via “conjectural variations” representing firm’s best guess about competitors’ 

response to a change in purchases of cattle.  These conjectural variations are derived from 

the first-order condition of packer’s profit maximization.  Subsequent aggregation of firm 

behavior yields an industry supply equation incorporating industry-level conjectural 

variations. 

 To illustrate the concepts of the NEIO model, consider the same beef processing 

industry described previously, and assume that farm input producers compete perfectly 

and supply farm inputs to packers via an inverse supply function represented as: 

p
f = )|(/

1
ζfJ

j

wf

ij YSJp =∑ =
, 

where p f is the average price of cattle in the industry, J is the number lots sold, wf

ijp  is the 

winning bid for the jth lot of cattle, Y f is the total supply of cattle, and ζ is a vector of 

supply shifters.1  Notice that ∑= n

i

f

i

f yY Y
 f = Σy 

f, where f

iy
 is the quantity of cattle 

purchased by packer i. 

                                                 
1 Notice that market level (equilibrium) price of cattle pf in (2.5) is not equal to the transaction-level price 

of cattle 
f

ijp in (2.4).  The former is the average of winning bids in J cattle auctions (transactions), while 

the latter includes losing bids.  Thus pf = Jp
J

j

wf

ij /
1∑ =

, where 
wf

ijp is the winning bid. 

(2.5) 
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 As was with the auction model, packers’ processing technology is assumed to be 

of Generalized Leontief form.  For simplification, the conversion factor to convert cattle 

into boxed beef is assumed to be one.  Thus, y f = y r = y.   

The profit maximization problem for packer i is represented as: 

).,()]([   max i vr

i

r

i

ffr

y
yCyYpp

r
i

−−=π  

where πi is packer i’s profit, pr is the retail price of beef, and )( r

iyC  is the processing cost 

function for a representative packer.  The first order condition for maximizing equation 

(2.6) is: 

.0
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Rearranging and re-writing the first order condition yields: 

)(]
)1(

1[ r

if

s

iifr yc
s

pp +
+

+=
ε
θ

, 

where r

i

r

i

r

i dyydCyc /),()( v=  is packer i’s marginal cost of processing beef, 

)/)(/( fffff

s YpdpdY=ε  is elasticity of cattle supply, rr

ii Yys =  processor i’s market 

share, and ∑ ≠
=

n

ji

r

i

f

ji dyyd /θ is packer i’s conjecture about rivals’ responses to its 

change in purchases of cattle.   

 Customary with the NEIO model, an industry pricing equation is obtained from 

equation (2.7) after multiplying every term of (2.7) by each firm’s market share si, and 

summing across all processors in the industry as: 

).(
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ss
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Re-arranging (2.8) equation yields the industry pricing equation:  

(2.7) 

(2.6) 

(2.8) 
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),(]
)1(

1[ r

f

s

fr Yc
HHI

pp +
Θ+

+=
ε

 

where ,)(/)( 22 ∑∑=Θ
i

r

ii i

r

i yy θ  is the industry weighted conjectural variation in the 

farm-input market, )( rYc  is industry level processing cost, and ∑= i isHHI 2  is the 

Herfindahl index in the processing sector.   

Equation (2.9) shows the NEIO measure of industry oligopsony power is directly 

related to both industry concentration (HHI), and weighted firm-conjectures about how 

competitors respond to a change in purchases of cattle (Θ).  The industry conjectural 

variation Θ is equal to zero under the Cournot-type competition, minus one under perfect 

competition, and one under perfect collusion.  

The difference between oligopsony power from the NEIO model and oligopsony 

power from the structural auction model can be emphasized by separating the price 

markdown in equilibrium equations (2.4) and (2.9) respectively, as: 

)1)((

)(

−
=−−=−

j

f

ij

f

ijf

ijij

r

j
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ijij
Npf

pF
pcppR , 

and,  

].
)1(

[)(
f

s

ffr

i

r HHI
ppycp

ε
Θ+

=−−  

As shown in equations (2.4a) and (2.9a), while the markdown derived with the auction 

theory, )1)(()( −j

f

ij

f

ij NpfpF , depend on the number of bidders on a particular lot of 

cattle (Nj), the markdown derived with the NEIO theory depends on the number of 

packers in the industry (n), since ,)/1()/( 222 nYysHHI r

i

r

ii i ===∑  and the type of 

packer’s conjectures about rivals response to change in purchases of cattle 

(2.9) 

(2.4a) 

(2.9a) 
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./∑ ≠
=

n

ji

r

i

f

ji dyydθ   Clearly, these two models seek to measure different market power 

effects. 

Encompassing Model of Bid Shading and Industry Level Imperfect Competition 

The previous two sections outlined the structural auction and the NEIO models regarding 

potential oligopsony power in cattle procurement markets.  The auction theory estimates 

transaction level oligopsony markdowns, and the NEIO approach estimates market level 

oligopsony markdowns.   

 This section proposes an encompassing model that incorporates markdowns from 

both bid shading and industry-level imperfect competition.  As mentioned previously, bid 

shading in auctions and market-level imperfect competition are different concepts, but 

could be nested within the same model.   

 The encompassing model proposed here is an extension of the NEIO model to 

incorporate both market powers from bid shading and from industry level imperfect 

competition.  To illustrate the intuition behind our model, consider a cattle market where 

packers procure cattle through first-price sealed-bid auctions.  As noted previously, the 

number of bidders for a particular lot of cattle does not necessarily equal the number of 

firms in the industry.  Furthermore, assume that packers bidding for the jth cattle lot may 

act strategically and bid below their valuation by the amount δij, given by the right hand-

side of equation (2.4a).  Thus, the price f

ijp paid by a winning bidder is equal to bidder’s 

valuation Vij minus the shading factor δij.  Recall that the valuation Vij is defined as the 

difference between wholesale price of beef minus the processing cost (Vij = ij

r

j cp − ). 

If bid shading is zero (i.e. δij = 0), then price markdown from the NEIO model is 

the “true” markdown that the NEIO model seeks to explain.  This markdown is 
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represented by the right hand side of equation (2.9a).  Denote this markdown by M.  

However, if bid shading is not zero, then the markdown estimated with the NEIO 

approach contains the “true” markdown (M) that the NEIO model seeks to explain plus 

some bid shading δj (δj = Σδij/J).  Denote this markdown by .
~
M   Mathematically, the 

relationship between M
~

 and M is: 

,
~

jMM δ+=  

where M
~

 is the “mixed” markdown containing the “true“ markdown (M) that the NEIO 

seeks to explain plus the average bid shading on J total cattle lots δj (δj = Σδij/J). 

Therefore, in the presence of bid shading, the industry-pricing rule represented by 

equation (2.4a) can be rewritten as: 



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 is a “mixed” conjectural variation when bidders bid 

shading is not zero, δj = ,/)]1)((/)([
1∑ =

−
J

j j

f

ij

f

ij JNpfpF  and .
~

jMM δ−=   The 

relationship between the industry conjectural variation (Θ) in M (when there is no bid 

shading) and the “mixed” conjectural variation )
~

(Θ inM
~

(when there is bid shading) can 

be expressed as: 

44 344 21
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which can be re-arranged to yield: 
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~
 

(2.11) 

(2.10) 

(2.12) 

(2.12a) 



 16 

Equation (2.12a) shows that when both bid shading and industry level imperfect 

competition are considered, the conjectural variation obtained with the NEIO model is a 

“mixed” conjectural variation )
~

(Θ given by the sum of the “true” conjectural variation 

(Θ) and the average bid shading δj, weighted by the ratio of elasticity of cattle supply to 

the price of cattle times the Herfindahl index ))./(( HHIp ff

sε  

The encompassing model considering both bid shading and industry level 

imperfect competition is obtained by substituting equations (2.12a) and (2.12) back into 

the industry supply equation (2.9a) to yield: 

,]
)1(

[)(
HHIp

HHI
pYcpp

f

f

s
jf

s

ffr ε
δ

ε
+

Θ+
=−−  

The model represented by equation (2.13), is more general than the models represented 

by equations (2.4a) and (2.9a) since it nests both (2.4a) and (2.9a).  Industry-level 

imperfect competition, which the NEIO model seeks to explain, is captured by Θ, the 

industry conjectural variation.  The price markdown considered by the auction model is 

represented by the bid shading factor δj.   

Notice that if δj = 0, there is no bid shading, and all perceived price markdown is 

due to industry level imperfect competition.  In this case, equation (2.13) becomes 

equation (2.9a).  If Θ = 0 and δj ≠ 0, equation (2.13) becomes equation (2.4a), and all 

perceived price markdown is due to bid shading.  If Θ ≠ 0 and δj ≠ 0, then perceived price 

markdown are due to both bid shading and industry level imperfect competition.   

Data and Empirical Application 

This section uses data from a cattle procurement experiment to test the encompassing 

model proposed in the previous section.  The cattle experiment is described first, 

(2.13) 
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followed by an empirical procedure to test the theory.  The data only allow for an indirect 

test rather than a direct test using equation (2.13).  We also estimate markups using the 

both traditional NEIO model and a structural auction model, and compare these markups 

with the markups estimated directly from the data. 

Data 

The data used in this study were generated from a five-hour evening workshop using the 

Fed Cattle Market Simulator (FCMS) (Hogan et al., 2003; Ward, 2005) in February, 

2006.  The FCMS simulates a market for fed cattle that mimics the real-world cattle 

procurement market.  Some of the participants in the FCMS play the role of feedlot 

managers while others the role of meatpackers  

The participants in our experiments were primarily undergraduate students 

majoring in agricultural economics.  The students were organized in four packer teams 

(each with four members) and eight feedlot manager teams (each with 3 or 4 members).  

In addition, one “observer” was allocated to each feedlot with the exclusive task of 

recording all bids, both winning and losing bids, submitted by packers.  The observers 

recorded bids on special paper cards, and did not participate in cattle trades.  The data 

recorded at each feedlot consisted of price and quality of cattle sold, and identity of 

feedlots and buyers. 

 During the experimental game, packer and feedlot teams are instructed to 

maximize profits.  Both packers and feedlot managers were instructed to buy and sell 

cattle for profit.  Competition among teams was stimulated by paying a $40 participation 

fee per person with the opportunity to win more or lose part of the fee based on financial 

performance during the game. 
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Each member of a packer team was assigned to a feedlot and instructed to act as a 

regional buyer, just like in real cattle procurement markets.  This was intended to allow 

enough time for packers to inspect and submit bids for cattle among spatially dispersed 

feedlots.  Each trading period lasted about ten minutes and was called a “week.”  The 

winner of each auction was the packer who submitted the highest bid.  

During the trading period, paper cards representing completed trades are returned 

to the instructors who scanned them into a computer.  The information on each card from 

a completed trade includes the price and quality of cattle sold, and identity of the seller 

and the buyer.  This information is summarized for market participants before the next 

trading period.  Thus, feedlots and meatpacking managers are informed about the volume 

of cattle trade, cattle placed on feed, and the wholesale price of processed beef in the 

previous trading period.   

A total of 1,788 transaction data were collected during fourteen trading weeks, 

after allowing for a training period of two weeks.  After the first seven weeks of cattle 

trades, two mergers were simulated.  Packer one merged with Packer two, and Packer 

three merged with Packer four.  These mergers represented the smallest packers (1 and 2) 

and the largest packers (3 and 4).  Overall, the structure of the game remained essentially 

the same after the mergers except that there were two bigger packers instead of four 

smaller ones.  Descriptive statistics of the variables used in the analysis are reported in 

table 1. 

As reported in table 1, the average cattle price after adjusting for dressing 

percentage (121$/cwt) is greater than the price of beef (119$/cwt).  Further, the spread 

between boxed beef price and the dressed cattle price is negative in 536 out of 1066 
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transactions, suggesting that packers lost money in about half of the transactions.  This 

suggests that market power, if any, is expected to be small. 

An Indirect Test of the Encompassing Model 

 
This section tests outlines the procedures to test our encompassing model.  The test is 

based on a single-equation regression of price spread on number of bidders and market-

level concentration.  The test whether the hypothesis that an aggregate model (i.e. the 

NEIO model) is consistent with the data against the hypothesis that the disaggregate 

model (i.e. the structural auction model) is consistent with the data.  This is a rather 

indirect test.  A direct test of our theory using equation (2.13) would require estimating a 

bid-shading factor using the auction model, and use this estimate as an explanatory 

variable in our NEIO like regression in the second step.  Notice that estimation of bid 

shading using equation (2.4a) requires data with at least two bidders in every transaction.  

However, our experimental data contained numerous transactions with only one bidder, 

precluding a meaningful estimation of markups using the structural auction model.  This 

is limitation of the structural auction model. 

The test of an aggregate model against a disaggregate model is nonnested 

because, in principle, neither of the two models can be obtained from the other by 

imposing restrictions on parameters of either model.  The encompassing test considered 

here consists of artificially nesting the two candidate models within a single model, and 

then carry out hypotheses tests.   

The candidate models are single-equation regressions of a packer margin (i.e. 

price spread between wholesale beef price and bid price) on a set of explanatory 

variables.  The encompassing model (M3) nests models (M1) and model (M2).  Model 
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M1 represents a disaggregate model such as an auction model, and model M2 represents 

an aggregate model such as the traditional NEIO model.  To account for weekly changes 

in demand and supply of cattle that are observed imperfectly within the experimental 

cattle market, an additional error term is appended to the nested model (M3) to capture 

these time random effects, as: 
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where subscript j represents a lot of cattle, subscript t indicates a week within which the 

jth lot is sold r

jp  is beef price, wf

jp is winning bid, todemj is total demand for cattle, fdlt1, 

fdlt2, fdlt3, fdlt4, fdlt5, fdlt6, and fdlt7 are zero-one indicator variables that equal one if 

the cattle are bought from feedlots 1, …, 7, respectively; shwlst is the inventory of cattle 

available for sale in a given week, wt150 , and wt175 are zero-one indicator variables that 

equal one if steer’s weight is 1500, and 1175 lbs., respectively; GenM, and GenH are 

zero-one indicator variables that equal one if the generic type of carcass quality is 

medium, and high, respectively; bid1, bid2 and bid3 are zero one indicator variables that 

equal to one if there were one, two, or three bidders on the lot; HHI is industry 

concentration, the s'jtω  are parameters to be estimated, ),0(~ 2

nt IN ηση  is a week 

specific random error term to capture imperfectly measured changes in weekly demand 

and supply of cattle, ),0(~ 2 IN
jtjt εσε , is a observation- specific error term that accounts 

for possible heteroskedasticity inherent to time-series cross-sectional data, with 

)exp( 210

2

jtjt todembshwlstbb
jt

++=εσ  and .0),cov( =tjt ηε   Notice that models M1 and 
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M2 are similar to M3 except that M1 does not include HHIjt, and M2 does not include 

bid1, bid2, and bid3.  Variance components model (M3) was estimated via maximum 

likelihood (ML) using the NLMIXED Procedure in SAS 9.1 (SAS 2001-2003). 

There are two null hypotheses of interest in model M3.  The first null hypothesis 

is that the coefficients for bid1, bid2 and bid3 are jointly zero ).0:( 16151401 === ωωωH   

The second null hypothesis is that the coefficient for HHI is zero )0:( 1702 =ωH .  If both 

H01 and H02 are rejected, then number of bidders and the number of firms contain unique 

information, and suggest an encompassing model (M3) rather than either model M1 or 

M2.  If both H01 and H02 are not rejected, then the number of bidders and the number of 

firms contain the same information and either aggregate or disaggregate model could be 

used.  If only H01 is rejected then a disaggregate model is favored, while if only H02 is 

rejected an aggregate model is favored.   

Estimation of a Structural Auction Model 

 
This section reports the procedures used to estimate packer’s bid shading using the 

structural auction model represented by equation (2.4a).  The estimate of the auction 

model is compared with an estimate of price markdowns computed directly from the data.  

The estimation considers the number of potential bidders rather than the actual number of 

bidders.  This was due to the presence of numerous transactions where only one bidder 

submitted a bid, which precluded estimation of bid shading using equation (2.4a). 

 The estimation of packer’s bid shading in equation (2.4a) uses the nonparametric 

approach for estimating the structural auction model proposed by Guerre et al. (2000).  

As equation (2.4a) shows, packer’s bid shading is the ratio of the bid probability 

distribution )( f

ijpF  to the product between bidders’ density function )( f

ijpf and the 
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number of bidders on a given lot of cattle (Nj).  Following Guerre et al. (2000), the 

estimates of bid cumulative distribution and density functions are obtained via the 

empirical distribution )(ˆ f

ijpF and kernel density estimator )(ˆ f

ijpf , respectively as: 
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where h is a bandwidth defining the size of the “neighborhood” around and arbitrary bid 

p
 f, f

ijp  is the jth bid in the interval (p f - h, p f
 + h), J is the total number of cattle lots, and 

K(•) is the kernel density function, which assigns weights to every bid in the 

neighborhood of p f.   

 The kernel density function defined by equation (2.15), is estimated assuming a 

Gaussian kernel function as: 
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Previous studies indicate that while the choice of the form of the kernel functional form 

does not affect results in practice, the choice of the bandwidth (h) may affect results 

(DiNardo and Tobias, 2001; Härdle et al., 2004).  Sheather (2004, p.596) recommends 

the Sheather-Jones plug-in method (SJPI) due to good performance.  The SJPI is defined 

as: 

,)3/4(ˆ 5/1Jh σ=  

whereσ̂  is sample standard deviation of the bids and J is the number of bids in the 

sample.  The kernel density function is estimated using the KDE Procedure in SAS 9.1.  

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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The option METHOD = SJPI in the KDE Procedure is used to request bandwidths 

computed using the SJPI.   

 Next, the estimates of bid shading for each successful transaction are computed 

using equation (2.4a), as: 
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where wf

ijp is a winning bid on the jth lot of cattle won by packer i.  

 

 

Estimation of a Traditional NEIO Model 

 
This section reports the procedures used to estimate markups using a traditional NEIO 

model represented by equation (2.9a).  The estimate of the auction model is compared 

with an estimate of price markdowns computed directly from the data.   

Before equation (2.9a) can be estimated, however, it is necessary to define 

packers’ processing cost equation.  Following Azzam (2001), packer’s processing cost 

function )( r

iyC  is represented by the Generalized Leontief, as: 
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where r

iy is packer i’s output, v is a price vector of non-farm inputs such as labor and 

capital, t is a time trend, and kmα , kλ , and βk are parameters to be estimated.  Notice that, 

with the exception of cattle, all non-farm inputs needed for beef processing remain 

constant in the experimental market.  Therefore, packer’s processing cost represented by 

(2.18) 

(2.4b) 
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(2.16) reduces to ,)()( 2r

ik

r

ik

r

ikm

r

i ytyyyC βλα ++= which is simply a quadratic cost 

function. 

 The industry marginal cost ),( rYc  required to estimate industry-level markups 

represented by equation (2.13), is obtained in the following way.  First, we differentiate 

packer’s processing cost equation (2.16) with respect to output to get a firm-level 

marginal cost, as .2/)()( 10

r

ik

r

i

r

i

r

i yyyCyc ββ +=∂∂=   For convenience, industry 

marginal cost can simply be represented as: 
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Next, we obtain the industry marginal cost equation by multiplying every term of (2.19) 

by each firm’s market share is , and summing across all processors in the industry, as: 
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which can be re-arranged to yield the industry marginal cost function ),(, rYc as: 

.2)( HHIYYc rr =  

 Lastly, the industry pricing equation used to estimate oligopsony power is 

obtained by re-arranging equation (2.9a), after replacing )( rYc with equation (2.20), as: 
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where δ̂ is a transaction level average bid shading estimated with the structural auction 

approach described previously.   

 Empirical estimation of equation (2.9b) also requires knowing the elasticity of 

cattle supply.  The elasticity of cattle supply could be obtained from a cattle supply 

equation, which is estimated jointly with equation (2.9b).  However, a system of 

(2.9b) 

(2.19) 

(2.20) 

(2.19) 
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equations containing equation (2.9b) and a supply equation was not well identified since 

there was no variable in the demand equation that was not in the supply equation.  

Following Paul’s (2001) suggestion, equation (2.9b) was estimated alone assuming 

several values for cattle supply elasticity (0.2, 0.4, 0.8 and 1).  Specifically the following 

equation was estimated: 

tt
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where r

tp is the average price of boxed beef in week t, f

tp is the average cattle dressed 

price, SHOWt is the total inventory of cattle in the show list a0, a1, a2 and Θ  are 

parameter to be estimated, and vt, is a error term.   

To account for possible measurement error and endogeneity that leads to 

inconsistent OLS because ,0][ ≠tt xuE e quation (2.21) is estimated by nonlinear two-

stage least squares (N2SLS) using the MODEL Procedure, SAS 9.1 (SAS Institute, 2002-

03).  The N2SLS estimator is consistent and asymptotically efficient when endogenous 

variables are correlated with error terms (Zellner and Theil, 1962).  

Results 

Maximum likelihood estimates of the encompassing model represented by equation 

(2.13) are shown in table 2.  The estimates of interest are the coefficients of the 

Herfindahl index ),95.11ˆ( 17 =ω and the coefficient for indicator variables for one bidder 

),47.0ˆ( 14 =ω  two bidders ),38.0ˆ( 15 =ω  and three bidders ).38.0ˆ( 16 =ω   These 

coefficients are significant at the 10% level, except the coefficient for the indicator 

variable when for one bidder.  Theory predicts that the price spread between beef price 

and cattle price should decrease as the number of firms or/and the number of bidders 

(2.21) 
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decreases.  Therefore, the coefficient for HHI and the coefficients for number of bidders 

have the correct positive signs.  The coefficient for number of bidders is correct because 

the reference is the indicator variable for four bidders.  Thus, as expected, results show 

that the price spread between price of price of beef and cattle increases as the number of 

bidders decrease. 

 However, while the coefficient for HHI and the coefficients for number of bidders 

have the correct sign, the coefficient for HHI is least twenty times bigger than the 

coefficients of indicator variables for number of bidders.  This suggests that the number 

of firms is more important in explaining price markups than the number of bidders for a 

particular lot of cattle.  Thus, an aggregate model (such as NEIO) seem relatively more 

consistent with the experimental data than a disaggregate model (such as structural 

auction model). 

 The null hypothesis that an aggregate model (M2) is the correct model (H01: bid1 

= bid1 = bid1 = 0) is rejected at the 5 % level based on a likelihood ratio (LR) test, since 

LR = -2[log-likelihood M1- log-likelihood M3] = 10.2 2

05.0,3χ> =5.99.  The null hypothesis 

that a disaggregate model (M1) is the correct model )0:( 02 ≤HHIH is also rejected at the 

at the 5% level based on a one tailed t-test (t = 1.98>1.75 = t16, 0.05).  Thus, although size 

of the coefficients showed that the number of firms in the experimental game is more 

important than the number of bidders for a particular lot of cattle, the number of bidders 

does contain some (unique) information about pricing behavior in the game.  Results 

suggest that both the number of firms and bidders should be considered in the estimation.  

Thus, there is some gain from considering both traditional NEIO and auction measures of 

market power within the same model.  
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Estimates of price markdown estimated with the structural auction model and 

traditional NEIO model are shown in tables 3 and 4 respectively.  The structural auction’s 

average markdown for all bidders shown in table 3 is $3.36 per cwt, and the average 

markdown obtained with the traditional NEIO approach is $2.7 per cwt.  Both the NEIO 

and the structural auction approach seem to overestimate the true markdown because the 

average markdown estimated directly from data is nearly zero.  Packers profit, given by 

the difference between average price spread ($1.22 cwt) minus the average marginal cost 

(roughly estimated at $5 cwt), is negative (-$4.78 cwt).  Thus, it is unlikely that packers 

in the game could have positive markdowns as suggested by the traditional NEIO and the 

structural auction approach.   

Estimates of price markdowns using the NEIO and structural auction approach are 

not consistent regression results from the encompassing equation (2.13).  The regression 

results suggest much more difference between price markdowns the estimated with NEIO 

and structural auction approach that it is actually found.  One possible explanation for 

this discrepancy in results is failure of the two approaches to account for the winner’s 

curse.  The price spreads estimated directly from data reveal that packers lost money in 

about half of the transactions.  Other possible source of bias for the structural auction 

approach is use on potential number of dibbers than the actual number of bidders, and 

failure to account for refusal to sale.  

Conclusion 

 
Recently, there have been many studies evaluating potential market power in the U.S. 

cattle procurement markets.  These studies used either the NEIO model or the auction 

model.  However, price markdown measures from these two approaches are not the same. 
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While the NEIO model seeks to measure price distortions due to industry-level imperfect 

competition, the auction models consider price distortion from bid shading at local 

auctions.  A formal model considering both types of price markdowns has not been 

developed.   

The encompassing model proposed in this study that considers both price 

markdowns from bid shading and price markdowns due to industry-level imperfect 

competition.  An indirect test of our model showed that the number of firms in the 

experimental game is more important than the number of bidders on a lot of cattle in 

explaining price markdowns in the experimental game.  However, results also show that 

the number of bidders on a particular lot of cattle contains some unique information and 

should not be neglected.  Thus, while an aggregate model seems more appropriate than a 

disaggregate model, an encompassing model similar to the one proposed in this study, 

seems even better.  Both the NEIO and structural auction failed to account for the 

winners curse, and overestimated the “true” markups considerably.  
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Table 1.  Mean and Standard Deviation of the Variables from the Experimental Market  

 
 

Variable Mean S D 
 

Before Merger (n=302) 
 

ADRWT (cwt) 
 

721.6 
 

1.7 

ADRPRC ($/cwt) 128.8 0.5 

BBPRC ($/cwt) 125.3 2.5 

SHWLST (pens) 113.4 4.2 

TODEM (pens) 38.3 4.4 

HHI 
0.3 0.009 

 

After Merger (n=290) 
 

ADRWT (cwt) 
 

723.6 
 

2.2 

ADRPRC ($/cwt) 118.7 1.9 

BBPRC ($/cwt) 121.7 2.8 

SHWLST (pens) 131.2 8.8 

TODEM (pens) 41.7 3.5 

HHI 0.5 0.01 
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Table 2.  Maximum Likelihood Parameter Estimates and Standard Errors of the 

                Nonnested Model  

 

Parameter Estimate 
Standard 

error 
t-value Pr > |t| 

intercept -10.80 8.25 -1.31 0.2086 

cattle inventory (shwlst) -0.01 0.07 -0.08 0.9343 

total demand (todem) 0.13 0.12 1.04 0.3129 

cattle from Feedlot 1 (fdlt1) 0.17 0.19 0.87 0.3979 

cattle from Feedlot 2 (fdlt2) -0.06 0.20 -0.32 0.7522 

cattle from Feedlot 3 (fdlt3) -0.59 0.19 -3.05 0.0076 

cattle from Feedlot 4 (fdlt4) 0.24 0.19 1.22 0.2401 

cattle from Feedlot 5 (fdlt5) -0.83 0.20 -4.22 0.0006 

cattle from Feedlot 6 (fdlt6) -0.41 0.20 -2.05 0.0575 

cattle from Feedlot 7 (fdlt7) 0.44 0.21 2.1 0.0515 

medium generic carcass (GenM) 1.25 0.12 10.82 < 0.0001 

high generic carcass (GenH) 3.03 0.13 22.7 < 0.0001 

cattle sold at 1500 lbs. (wt150) 1.07 0.19 5.74 < 0.0001 

cattle sold at 1500 lbs. (wt175) 3.92 0.31 12.62 < 0.0001 

Herfindahl index (HHI) 11.95 6.04 1.98 0.0654 

indicator for bidder 1 (bidder1) 0.47 0.44 1.06 0.3053 

indicator for bidder 2 (bidder2) 0.38 0.22 1.78 0.0947 

indicator for bidder 3 (bidder3) 0.28 0.15 1.86 0.0811 

intercept of the variance equation 0.44 0.87 0.51 0.619 

slope of inventory in the variance 
equation 

-0.02 0.01 -2.55 0.0215 

slope of total demand in the variance 
equation 

0.05 0.01 3.32 0.0043 

variance of time random effect 4.38 1.52 2.88 0.011 

-2 log-likelihood 1916.6 
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Table 3.  Structural Auction Estimates of Cattle Price Markups 

 

Packer  
Price 

markdown  

Interquartile  
range  

 

Herfindahl 
index 

before merger (optimal bandwidth = 0.36) 

packer 1 1.06 1.15  

packer 2 1.33 0.78  

packer 3 2.77 0.81  

packer 4 2.41 1.12  

all four packers 2.00 0.91 0.264 

after merger (optimal bandwidth = 0.69) 

Packers 1&2 5.78 1.10  

Packers 3&4 3.89 2.26  

all two packers 4.71 1.54 0.512 

Industry (before & after mergers)     

Note:  Optimal bandwidths of 0.28 before merger and 0.81 after were selected using 
           Sheather-Jones plug in method. 
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Table 4. Nonlinear Two-Stage Least Squares Estimates of the NEIO Model  

 

Parameter Symbol Estimate Standard error p-value 

Industry conjectural variation Θ -0.94 0.19 0.0004 

Processor’s pricing equation 
intercept 

a0 -4.76 2.31 0.0633 

Coefficient for packer’s marginal 
cost 

a1 13.06 34.04 0.7085 

Price markdown  2.7   

 

 


