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The Confidence Limits of a Geometric Brownian Motion 

 

Abstract 

This paper investigates whether the assumption of Brownian motion often used to describe 

commodity price movements is satisfied. Using historical data from 17 commodity futures 

contracts specific tests of fractional and ordinary Brownian motion are conducted. The analyses 

are conducted under the null hypothesis of ordinary Brownian motion against the alternative of 

persistent or ergodic fractional Brownian motion. Tests for fractional Brownian motion are based 

on a variance ratio test. However, standard errors based on Monte Carlo simulations are quite 

high, meaning that the acceptance region for the null hypothesis is large. The results indicate that 

for the most part, the null hypothesis of ordinary Brownian motion cannot be rejected for 14 of 

17 series. The three series that did not satisfy the tests were rejected because they violated the 

stationarity property of the random walk hypothesis. 

 

 

 

JEL Classification G0;  

Key Words : Random Walk, Fractional Brownian Motion, Futures Prices 

 

 1



1.0 Introduction 

This paper investigates the existence of a geometric Brownian motion (gBm) in 17 

agricultural commodity price time series by using 90%, 95% and 99% confidence intervals about 

the (so-called) Hurst coefficient H from 20,000 replications of a Monte Carlo simulation. The 

overall objective is to determine if commodity futures prices satisfy the geometric Brownian 

motion assumptions of linear diffusions and variance. Using a variety of techniques, recent 

investigations are mixed on the existence of random walks in financial and commodity price 

series (see Comte and Renault (1996), Hommes (2001), Greene and Fielitz (1977), Booth, Kaen, 

and Koveos (1981, 1982a, b) Peters (1996). Helms, Kaen and Rosenman (1984), Barkoulas and 

Baum (1996), Barkoulas, Labys and Onochie (1997), Corazza, Malliaris, and Nardelli, (1997), 

Peters (1996), Cromwell, Labys and Kouassi (2000), Gao and Wang (1999)).  However, recent 

research using Lo's (1991) modification for correlated bias fails to reject the null hypothesis of 

no fractal structure in futures prices (Crato and Ray 2000). In much of the finance literature the 

Hurst coefficient is obtained from the  R-S procedure as described in an economic context by 

Mandelbrot (1972), Mandelbrot and Wallis (1969),  Mandelbrot and Van Ness (1968), Schroeder 

(1991), Peters (1996), Lo (1991), and Helms, Kaen and Rosenman (1984) among others. Another 

common approach in the literature is to use one of several autoregressive models to test for the H 

coefficient of stochastic volatility including ARCH, GARCH and more recently Fractionally 

Integrated GARCH (Jin and Frechette, 2004; Wei and Leuthold 1998 and citations therein). In 

this paper we provide the means to estimate H directly from a Brownian motion in a manner 

similar to that discussed in Lo and Mckinnon. For comparison purposes we provide measures of 

H from conventional R-S analysis but do not use them in the analysis. However, the principles 

involved are very much consistent with R-S. For example if the variance ratio test indicates H = 

.5, then agreement would confirm an ordinary Brownian motion.  If H ≠ .5, then the random 

walk follows a fractional Brownian motion. 

This paper is only concerned with the random walk described by a gBm. The data are 

examined by a test for fractal structure (a fractional Brownian motion, fBm) against the null of 

no fractal structure (a geometric Brownian motion, gBm), with the latter based on the Hurst 

coefficient, H, which is estimated directly from variance-ratios across multiple time steps.  

The paper is motivated by the observation that a geometric Brownian motion in futures 

prices (or other financial assets) has, for the most part, been treated as an assumption rather than 

 2



a hypothesis.  By this it is meant that the tests are based on in-sample properties and are 

generally devoid of a null. By null, it is meant that tests for random walks look only within the 

sampling domain, and ignore some very general properties of a random walk. For example in 

many studies, researchers might find a value of .5H ≠ and conclude that the time series is 

persistent, ergodic or mean reverting, or in other words has some longer term memory. But these 

studies fail to consider the natural distribution of a random walk, and more important fail to 

realize that the value H in a sample can differ from 0.5 without violating a gBm. In other words, 

in the absence of a true null, i.e. the observed behavior and distribution of H from a known gBm, 

it is impossible to determine whether a value Ĥ estimated from a sample is consistent with a 

gBm. This assumption has not only led to closed form solutions for pricing traded and non-

traded derivatives (e.g. Black and Scholes, 1973 , Black, 1976 and Merton 1973, Boyle and 

Wang 1999, Cox, Ingersoll and Ross, 1985, Garman 1977, or Rubinstein 1979), but has also 

provided a simple mechanism for generating derivative prices using Monte Carlo methods (e,g, 

Boyle, Broadie and Glasserman , 1997).  So critical is the Brownian motion assumption that 

treating it as a null hypothesis, and rejecting the null, has wide spread theoretical and practical 

consequences for 1) overall market efficiency which is diminished with a fBm (Rogers 1997), 2) 

the pricing of derivatives on agricultural futures (Cutland, Kopp and Willinger (1995) and 

Sottinem (2001)), and c) the effectiveness of hedging agricultural commodities with futures 

contracts.   

 

To overcome this problem, we provide upper and lower confidence limits at the 90%, 

95% and 99% levels for Hurst coefficient. We obtain these limits using Monte Carlo simulations 

of a known gBm. We show that the distribution of H is related by a power law to the sample size 

(N) and time-step (k). Consequently we provide, in Appendix A upper and lower confidence 

limits for a range of N and k. Elsewhere in the paper we provide the formulas from which the 

confidence intervals were obtained. 

We propose with this approach a slight rethink of how random walks are evaluated. Our 

approach relies on the confidence intervals, which is to say that if an estimated value Ĥ  falls 

within the upper and lower confidence limits the best we can say is that in any sequence of a 

pure random walk of length N and time-step k, 90% or 95% or 99% of the time a ‘true’ value 

will fall within the limits. We cannot say that the sample ‘is’ a gBm but rather that it is 
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‘consistent’ with what would be found in a gBm 90% or 95% or 99% of the time. The key 

finding is that the standard error of the acceptance region of the respective confidence interval 

for H=0.5 is quite large, increasing with the time step k, and decreasing with the sample size N. 

In the absence of null against which to measure a gBm  many of the conclusions reported in the 

literature that the times series has memory may not be correct. As a case in point Jin and 

Frechette (2004) find H values between .50 and .60 and conclude strong persistency. Over this 

range, the evidence of the current paper shows that the null hypothesis of H different than .5 

cannot be so easily rejected.  

The paper proceeds as follows. The next section introduces the concepts of Brownian and 

fractional Brownian motion and variance ratios. Then, statistical models are developed and 

applied to 950 daily observations of futures prices for 17 commodities traded on the Chicago 

Mercantile Exchange, Chicago Board of Trade, and Winnipeg Commodities Exchange.  Finally, 

the results are discussed and the paper is concluded. 

 

2.0 Variance ratios and Fractional Brownian Motion 

  In the classical models of random walk, it is assumed that the percentage change in the 

futures price over a discrete interval of time is governed by 

(1) dX = αXdt + XσXdZ          

where tdZ ε= is a Gauss - Wiener process, X is the futures price, α is the instantaneous change 

in futures prices and σ is the variance of the percentage change in futures prices.  In contrast, a 

fractional Brownian motion is specified by 

(2) dX = αXdt + XσXdW          

where HtdW 2ε= .  In (1) and (2) the term ε can be interpreted as a random shock over the 

prescribed time interval. However, the respective Wiener processes possess markedly different 

properties. The Wiener process dZ is self-similar in time, whereas dW is self-affine. While 

conceptually similar, self-similarity and self-affinity differ in the following way (see Mandelbrot, 

1977 or Feder, 1988): Suppose that an initial sequence or set {X1, X2, X3} can be transformed to 

the set {r1X1, r2X2, r3X3}, then the transformation is said to be self similar if r1=r2=r3 and self-

affine otherwise. If the variance obeys the power law VAR = σ2t2H, it is self-affine over the 
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entire range of H, but is self-similar only for H=.5. Therefore, and generally speaking, self-

similarity is a special case of self-affinity1,2. 

 In (2), the Wiener process is described in terms of a power law. The parameter H reflects 

the fractal dimension of the stochastic process and can take on any value between 0 and 1.  H is 

analogous to the Hurst (1951) coefficient in standard R-S analysis.  A pure random walk has H = 

.5 and a biased random walk has H ≠ .5.  For H > .5 the system is said to be persistent and is 

characterized by a long-term memory. In general, an event at some point t is positively correlated 

with observed events at some future period, t + Δt.  In contrast, a short-memory process occurs 

when H < .5 .  The system is anti-persistent, or ergodic, and reverses itself frequently. Because of 

these reversals, it is characterized by negative correlation.  That is, an event at some moment in 

time t (say an increase in futures price) will cause a reversal at some point in the future at t + Δt. 

 We are concerned with the properties of dX = X(t2) - X(t1) with expected value of zero 

and variance σ2(t2 - t1)2H.  A fractal Brownian motion has a Gaussian distribution of the form 

(3) μ
σ

μ
σπ

d
tttt

xdX H

x

H
))

)(
(2/1exp(

)(2
1)Pr( 2

1212 −
−

−
=< ∫ ∞−

    

If H = .5 then a fractional Brownian motion is the same as standard Brownian motion as used in 

equation (1).  Likewise the variance of a fractal Brownian motion, 

(4) E[X(t2) - X(t1)]2 = σ2(t2 - t1)2H  ,       

reduces to that of standard Brownian motion when H = .5, 

(5) E[X(t2) - X(t1)]2 = σ2(t2 - t1).         

The critical difference between (4) and (5) is that the variance property for a standard Brownian 

motion increases linearly in time, whereas the variance in fractal Brownian motion is increasing 

in H at an increasing rate. In part, the difference between variance measured by ordinary and 

fractional Brownian motion is due to correlation and covariance between time increments. This 

covariance is given by (see Crownover (1995) or Igloi and Terdik (1999)); 

(6)        E{[X(t) - X(0)] [X(t + Δt) - X(t)]} = .5 σ2 [(t + Δt)2H - t2H - Δt2H]  

By setting H = .5 the right hand side of (6) collapses to zero and the independent increments 

assumption is satisfied.  For any H ≠ .5, it is not satisfied.  As H approaches zero the limit of 

covariance approaches -.5σ2, and variance falls. As H approaches +1, covariance approaches  

σ2(t Δt) > 0 and variance increases. For H < .5 the covariance term decreases with increasing 
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time steps.  Hence the term 'short memory'.  In contrast, the term 'long memory' comes from the 

results that covariance increases with increased time steps when H > .5.  

 

3.0 Determining Fractals and Stationary Increments in a Time Series 

Lo and Mackinnon (1999) used the variance property of Brownian motion to test for 

random walks.  The essence of their argument is that the variance of any step or lag k (1 < k ≤ T) 

must be a linear multiple of the variance of a single step or lag.  For example, the variance of 

price changes over a 2 day period will be twice the variance of the change in 1 day or the 

variance over 20 days will be twenty times the variance of 1 day.  Hence 

(7) σ2
k = kσ2

1           

and 

(8) Variance Ratio = σ2
k / kσ2

1 = 1        

The result suggests a specific test for a random walk.  First, calculate the percentage change in 

prices for each of ln(Xt+1) - ln(Xt), allowing for overlapping prices.  Second calculate the 

variance, VAR (ln(Xt+k) - ln(Xt)), for each k step including k = 1.  Third, divide the calculated 

variance for each k ≥ 1 by the variance for k = 1.  This gives k ratios of the form σ2
k/σ2

1. 

 The results allow for a number of tests.  The Lo and Mackinnon (1999) approach is to 

treat each of the k ratios as a separate hypotheses.  That is  

(9)  kkHo k ∀=− 0: 2
1

2

σ
σ

.        

Lo and Mackinnon (1999) provide a formula for calculating the asymptotic variance of the ratio 

and provide a standardized test for the null hypotheses.  In the alternative, an equivalent test 

would be to regress 

(10)           εσσ ++= kbak
ˆˆ/ 2

1
2

and set .  Failure to reject H1ˆ: =bHo 0 would indicate that variance increases linearly in time as 

required by the random walk hypothesis.   

 In the context of fractional Brownian motion the above model may not be specific 

enough since its variance is given by σ2T2H.  To test for a biased random walk follow the steps 

described above for calculating variance ratios. To test for fractional Brownian motion we need 
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an estimate of the H coefficient.  The following regression can be used to estimate the value for 

H. 

(11)          εαασσ ++= )ln()/ln( 10
2
1

2 kk

with  Ho: α0 = 0 and Ho: α1 = 1  .  In (11) the value of H can be calculated from α1 = 2H or 

H=α1 /2.  If α1 =1 then H = .5 and there is no evidence of fractal structure.  If α1 >1 then H > .5 

and this would indicate long-term memory and positive autocorrelation.  If α1<1 then H < .5, 

memory is short and the system is ergodic or mean reverting. 

 Even though fractional Brownian motion does not satisfy the property of independent 

increments, it still must satisfy the Gaussian assumption of stationary increments.  In general, 

stationary increments imply that the first difference of the returns series are independent for any 

choice of  t.  That is, the differenced series 

 {x2 - x1, x3 - x2, x4 - x3 … xt - xt-1} 

are independent.  Furthermore the process is stationary across any time step.  This means that for 

a time step k (where k can equal days or weeks, etc.) 

(12) E[xk - x1] = E(xk - xk-1 + xk-1 - xk-2 +…+ x2 - x1)      

      = kμ 

where μ = E[xt - xt-1] across all t.  This definition of stationarity states that the k-step difference 

between any two observations is a linear function of the mean 1-step difference.  Hence 

(13)  k
xx
xx

E
tt

tkt =⎥
⎦

⎤
⎢
⎣

⎡
−
−

+

+

1

.          

This leads to a simple test for stationarity by estimating the following regression, 

(14) ek
xx
xx

tt

tkt ++=⎥
⎦

⎤
⎢
⎣

⎡
−
−

+

+
10

1

ββ .         

Under the null hypotheses H0:  β1 = 1, the linearity assumption, and hence a finding of a 

stationary process, will be rejected if Ho is rejected.  The alternative hypothesis HA:  β1 ≠ 1 

implies that the increments are non-stationary. 

We can use the stationarity and independence assumptions to test for fractional versus 

ordinary Brownian motion in the following way.  Under the null hypothesis of a stationary time 

series a specification test that rejects the null automatically eliminates the time series as being 

either ordinary or fractional Brownian motion, let alone a random walk. Failure to reject the null 
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hypothesis is sufficient to conclude a random walk, but is not sufficient on its own to declare a 

Brownian motion. In order for the time series to be declared a Brownian motion a stationary time 

series must also satisfy the null hypothesis Ho: H=.5. Failure to reject the null implies an 

ordinary Brownian motion. Rejecting the null implies H ≠.5 and a persistent or antipersistent 

fractional Brownian motion would be concluded for H>.5 and H<.5 respectively. In other words 

while a test of stationarity is not sufficient to conclude a random walk, rejection of the null Ho: 

H=.5 is sufficient to reject the stationarity hypothesis. 

 

5.0 Methods 

Whether or not one rejects or fails to reject the null depends on the sampling properties of the 

underlying distribution. However, the sampling properties of the underlying distribution depend 

also on the size of the sample and the periodicity of the steps being considered. That is, does a 

representation of an AR(1) process measured by the standard unit root tests meet the condition of 

the null or should some other AR(k) process be used. This is a rather critical step. Although the 

unit root test might be a strong indicator of whether a process follows a random walk, the true 

measure of a random walk is that it must hold for all k (i.e. steps). Furthermore, one cannot 

ignore that any measure of Ĥ  estimated from a sample represents the mean of a sampling 

distribution, and in the absence of knowledge about the ‘true’ distribution of Ĥ , its standard 

error is also measured by the sample. In reality the measure Ĥ  can, by chance alone, be less than 

or greater than 0.5 and in the absence of a null, it is difficult to determine whether the estimated 

value represents the true value. 

 There is, of course, no ‘true’ value. The best that can be provided by statistical methods is 

a representation of the probability of the distribution about H for some sample size N when it is 

known, for sure, that H was obtained from a Brownian motion of sample N. That is by 

comparing the sample Ĥ  to the probability limits or confidence intervals for values of H at the 

95% or 99% that were obtained from a known Brownian motion, one can then test the null. 

 The confidence intervals about H were obtained using Monte Carlo simulations of a 

known Brownian motion. Brownian paths of size N=2,150  were generated with zero drift and 

with volatilities 0.10, 0.15….0.60. Each of the sample paths were simulated 20,000 times. 

Overlapping samples of sizes N=200,400 … 2,000 were obtained for steps k=1,2,3…150. For 
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each combination of k and N a value  and ,N kH ,
H
N kσ  were calculated. For example  

represents the population or true standard deviation of  for  a sample size N and steps 

k=50. For a unit root equivalent test  is the k=1 step standard deviation for . For a 

pure geometric Brownian motion then 

1000,50
Hσ

1000,50H

1000,1
Hσ 1000,1H

1000,50

1000,1

50
H

HE
σ
σ

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
. 

Use of Monte Carlo techniques, at least within the context of this paper, have not been 

widely used in academic research. Similar ideas however have been used in several applications. 

For example, Fama and French (1988) use a similar approach to estimate the standard errors of 

first order autocorrelation coefficients.  Qualitatively they are able to support the conjecture that 

stock price movements have stationary and random components.  However, when their specific 

tests were assessed using standard errors from Monte Carlo simulations they found that the null 

hypothesis (of non-stationarity in prices) was difficult to reject.  In fact they speculate that the 

large standard errors in a pure random walk may make such hypotheses altogether untestable 

(Fama and French, 1988, page 257). A wide acceptance region for unit roots in time series data 

has also been discussed by Kwiatkowski et al (1992) and critical values for fractional 

cointegration  generated from Monte Carlo methods are described in Sephton (2002). Panas 

(2001) uses a bootstrapping method to estimate standard errors for stocks traded on the Athens 

Stock Exchange and is able to reject the null for 11 of 13 stocks. In an application to self-similar 

properties in ethernet traffic, Leland, Taqqu, Willinger and Wilson (1994) apply numerical 

techniques to obtain confidence intervals. However, in their model the confidence intervals were 

constructed around the estimate of H, whereas in the current study the confidence intervals were 

constructed around a fixed point of H=.5. In some disciplines of the social sciences and 

humanities a surrogate approach has been used. The surrogate approach repeatedly randomizes 

observations from a particular sample to remove all correlations. The H values are then 

calculated for each surrogate, and their sample standard deviations used in the statistical tests. 

(see West and Griffin (1998) and West, Hamilton and West (1999); See Rangarajan and Ding 

(2000) for a critique). 

Using Monte Carlo techniques to determine the standard errors about H, it was found in 

the current study that the confidence intervals followed a power law that decreased as the sample 
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size increased and increased as the step-length k increased. The exact form of this power law for 

90%, 95% and 99% confidence intervals about the null H0:H=.5 was found to be 

(15) 

{ }0.20681 0.07906 ( ) 0.051308 ( )
90%

90% 90%1

ln N ln kU

L U

P e

P P

− − +=

= −
 

(16) 

{ }0.13087 0.09109 ( ) 0.059433 ( )
95%

95% 95%1

ln N ln kU

L U

P e

P P

− − +=

= −
 

(17) 

{ }0.005838 0.11251 ( ) 0.074106 ( )
99%

99% 99%1

ln N ln kU

L U

P e

P P

− +=

= −
 

for the upper and lower confidence limits respectively. Tables of approximate intervals are 

provided in the appendix. For example suppose an analyst was checking a time series of 1,000 

daily observations for a memory of 30 days, then N=1,000 and k=30. Plugging these into the 

equation gives  and . Therefore if the analyst computes a value of H 

between 0.572 and 0.427  there can be 95% confidence that the time series follows a geometric 

Brownian motion.  

95% 0.572UP = 95% 0.427LP =

 

 There are several key observations arising from the Monte Carlo simulations.  

 

1. The confidence limits are approximations. Regressions started for k=10 through 150 so 

approximations for lower step values are not as stable as those provided. 

2. As the number of steps increase the confidence intervals widen. This simply reflects the 

power of the test. For an analysis based on k=10 for example there are much fewer 

degrees of freedom to influence the overall path and variance within the path. Compare 

this with k=150 which has many more opportunities for the random walk to wander off. 

This equals not only the randomness that would be observed for k=10, but also for k=25, 

50 and so on. 

3. As the sample size increases the upper and lower limits converge closely to 0.5. In other 

words, the range of H values for which the null would not be rejected falls as N increases.  
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4. Combined, observations 2) and 3) show that one cannot take any sampled value of H at 

its recorded value. Nor is it meaningful in the absence of the null to compare values of H 

across studies without also identifying sample size and step.  

5. While the null is the same for any N or k, the upper and lower bounds for acceptance are 

related via a power law. For example suppose that two researchers using different data 

sets test for a geometric Brownian motion. The first researcher used a sample size of 500 

and k=75 while the second had a sample of 2,000 and used k=100. From the appendix 

table for 95% confidence interval the acceptance range for H is between 0.3429 and 

0.6438 for the first researcher and 0.4150 and 0.5849 for the second. Thus if both 

obtained estimates of the first would fail to reject the null that  while 

the second would reject the null. On the other hand, if both found then both 

would reject the null and if neither would reject the null. 

ˆ 0.40h = 0.50H =

ˆ 0.65H =

ˆ 0.45H =

6. The confidence limits of a Brownian motion are determined independently of the drift 

and volatility of the underlying stochastic process. In other words if  two researchers used 

identical N and k on different data series, or even sub samples of the same data series that 

differed in drift and/or volatility both would use the same confidence intervals, and 

cannot use differences in either drift or volatility to explain differences in their estimates 

of . ,
ˆ

N kH

 

6.0 Data 

Seventeen futures contracts for agricultural commodities were examined for Brownian 

motion.  Summarized in Table 1,  the data represent 950 matched daily observations from 1996 

through February 7, 2001 on the nearby futures price.  The futures contracts include grains and 

oilseeds, livestock and livestock products, and cocoa, coffee, orange juice and sugar.  The 

contracts are traded on the Chicago Mercantile Exchange (CME), the Chicago Board of Trade 

(CBOT), the Coffee, Sugar and Cocoa Exchange (CSCX) and the Winnipeg Commodity 

Exchange (WCE).  Alberta barley, rapeseed, Winnipeg oats and Winnipeg wheat are 

denominated in Canadian dollars while others are in $U.S. 

The sample means and range are given in Table 1.  In the last two columns the annualized 

geometric growth rate and volatility based on a 250-day trading year are presented.  The results 
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show that 13 of 17 commodities faced price declines over this period with the largest declines 

being on CBOT and WCE oats at -19.7% and -22.7% respectively.  Feeder cattle (CME) showed 

the largest annual gain of approximately 10.2%/year. 

On average, volatility exceeded 30% per year.  The most volatile commodity was pork 

bellies (CME) at 55.2% followed by coffee (CSCX) at 52.8%, lean hogs (CME) at 42.6% and 

wheat (CBOT) at 40.1%.  Sugar (CSCX) was the least volatile at only 8.5% and Alberta barley 

(WCE) had the second lowest volatility at 19.4%. 

 

 

 

Table 1: Sample Statistics for Futures Price Series 

contract Exchange Mean Variance Standard 

Dev. 

Maximum Minimum Geometric 

Mean 

volatility

Alberta Barley 

price 

WCE 137.60 476.14 21.82 196.80 108.50 -0.108 0.194

coffee price CSCX 129.15 996.54 31.56 261.00 81.35 -0.028 0.528

cocoa price CSCX 1337.5

0 

62310.14 249.62 1762.00 763.00 -0.116 0.274

corn price CBOT 272.33 5928.11 76.99 548.00 178.50 -0.146 0.373

Feeder Cattle 

price 

CME 71.50 65.10 8.07 86.88 47.65 0.102 0.208

Fluid Milk 

price 

CME 13.51 4.75 2.18 21.70 9.47 -0.074 0.342

Lean Hogs 

price 

CME 60.25 221.06 14.87 90.12 25.22 -0.050 0.426

live cattle 

price 

CME 65.61 10.49 3.24 73.63 54.80 0.023 0.211

oats price CBOT 148.85 1755.47 41.89 286.00 99.00 -0.197 0.377

orange juice 

price 

CSCX 97.57 292.75 17.11 138.00 66.80 -0.126 0.395
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Pork Bellies 

price 

CME 63.98 249.857 15.80 104.475 32.75 0.069 0.552

Rapeseed 

canola price 

WCE 376.71 3563.54 59.69 490.20 251.30 -0.137 0.213

Soybeans price CBOT 637.02 15992.26 126.46 894.25 410.00 -0.095 0.277

Sugar price CSCX 21.78 1.66 1.29 23.09 16.55 -0.070 0.085

wheat price CBOT 345.37 9079.49 95.28 716.50 224.00 -0.156 0.401

Winnipeg oats 

price 

WCE 121.87 1906.97 43.66 243.00 83.00 -0.227 0.297

Winnipeg 

Wheat price 

WCE 165.08 998.46 31.59 293.40 121.70 -0.128 0.235

     

Average    -0.067 0.297
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7.0 Results 

The parametric tests of stationarity and H are based on a lag structure with k = 150 days 

(following Peter's (1996) suggestion).  Hence, all estimation was done for k = 150 days.  

There are very few studies that have taken an interest in measures of variance about H, 

but those that do find similar dispersion. Bassingwaighte and Raymond find for a series of 512 

points a 95% confidence interval about H from .2 to .9 a dispersion (which is wider than those 

found in the current study)that was confirmed in a later study by Cannon et al, which also 

showed that the standard error about a point estimate of H was sensitive to sample size. 3

The estimates of H  are presented in Table 3.  In Table 3, column 2 provides the estimate 

of H used in the hypothesis test and columns 3 through 5 show the four 180-day sub periods.  

Column 6 provides an estimate of H using R-S analysis as a point of comparison.  Since no value 

of  falls outside of the asymptotic 95% confidence limit there is no instance where the 

estimated value of H is statistically different from .5.  The 90%, 95% and 99% confidence 

intervals for these estimates are presented in Table 2 

ˆ

Ĥ

 Table 2: Confidence Intervals 

 90% 95% 99% 

Sample Size (N) Upper Lower Upper Lower Upper Lower

940 0.6121 0.3880 0.6334 0.3666 0.6749 0.3250

760 0.6224 0.3776 0.6458 0.3542 0.6913 0.3087

580 0.6359 0.3641 0.6618 0.3381 0.7126 0.2875

400 0.6548 0.3452 0.6846 0.3154 0.7431 0.2569

220 0.6865 0.3135 0.7229 0.2770 0.7948 0.2052

       

 

The results in Table 3 show the sensitivity to sample size. In Table 3 the superscripts a, b 

and c represent rejection of H=0.5 under the 90%, 95% and 99% confidence intervals. The 

interpretation of these confidence intervals is as follows. The distribution of H was drawn from 

Monte Carlo simulations of a known geometric Brownian motion. With 20,000 replications the 

simulated value for H for a sample of 400 fell between 0.6548 and 0.3452 90% of the time, 

0.6846 and 0.3154 95% of the time and 0.7431 and 0.2569 99% of the time. Thus, if an 

estimated value of H from a sample of 400 fell between these ranges we can stipulate within the 
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confidence limits that it is consistent with, or within the range of, values generated from a 

geometric Brownian motion. 

 

Table 1: Estimated Values of Hurst Coefficient from Equation (16) where H=α1/2 for Days in Sample and 

from R-S Calculations from Equation (27). Null Hypothesis Ho= .5 

Days/Contract 940 760 580 400 220 R-S Hurst

Alberta Barley price 0.414 0.431 0.451 0.428 0.333 0.489

coffee price 0.402 0.441 0.448 0.376 0.065 a,b,c 0.467

cocoa price 0.465 0.431 0.280 a,b,c 0.291 0.117 a,b,c 0.446

corn price 0.348 a,b 0.363 a 0.362 a 0.363 0.254 a,b 0.503

Feeder Cattle price 0.401 0.407 0.360 a 0.099 a,b,c 0.059 a,b,c 0.461

Fluid Milk price 0.481 0.489 0.473 0.523 0.381 0.540

Lean Hogs price 0.438 0.388 0.342 a 0.203 a,b,c 0.156 a,b,c 0.486

live cattle price 0.272 a,b,c 0.269 a,b,c 0.243 a,b,c 0.256 a,b,c 0.088 a,b,c 0.460

oats price 0.348 a,b 0.321 a,b 0.323 a,b 0.356 0.194 a,b,c 0.436

orange juice price 0.458 0.479 0.514 0.248 a,b,c 0.141 a,b,c 0.425

Pork Bellies price 0.381 a 0.356 a 0.380 0.253 a,b,c 0.206 a,b 0.519

Rapeseed canola price 0.396 0.336 a 0.352 a 0.251 a,b,c 0.267 a,b 0.494

Soybeans price 0.332 a,b 0.331 a,b 0.324 a,b 0.269 a,b 0.226 a,b 0.515

Sugar price 0.543 0.285 a,b,c 0.261 a,b,c 0.200 a,b,c 0.029 a,b 0.519

wheat price 0.231 a,b,c 0.221 a,b,c 0.171 a,b,c 0.168 a,b,c 0.123 a,b,c 0.483

Winnipeg oats price 0.481 0.477 0.459 0.480 0.200 a,b,c 0.566

Winnipeg Wheat price 0.341 a,b 0.349 a 0.345 a 0.334 a 0.265 a,b 0.499

 

The results are mixed and contingent on the confidence limits. Alberta Barley, Fluid Milk 

are consistent with a gBm at all confidence levels. Coffee and Winnipeg oats follow a random 

walk for samples greater than 220. Corn is consistent with a gBm at the 99% level for all N, 

while feeder cattle and live hogs are consistent in large samples of 940 and 760 but not 

consistent at the 90% level for N=580. Live cattle, and wheat prices do not appear to follow a 

random walk and sugar prices are consistent with a random walk only over the larger sample. 

Pork bellies are consistent with a random walk at the 95% and 99% levels for samples greater 

than 400. Orange juice futures are consistent with a random walk in large samples but not with 

the N=400 and N=220 sub samples. Canola is consistent with a random walk at the 90% level for 

N=940 and at the 95% level for N=760. 
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The differences between small and large samples is evident. It is much more likely to 

reject a random walk with small samples. For n=220,  9 series cannot be concluded as a gBM, 6 

are consistent at the 99% confidence level, and only 2 are consistent with a gBm. In contrast, for 

N=940 10 series are consistent with a gBm, 1 is consistent at the 95% level, 4 are consistent at 

the 99% level and only 2, wheat and live cattle, are not consistent with a gBm. 

In a qualitative sense, accepting the values as given has several implications.  First, with 

the exception of sugar which shows a slightly persistent dynamic with H = .543, the evidence 

suggests that commodity futures prices are ergodic or mean-reverting. This observation is in 

opposition to recent concerns regarding persistent long-term memory in commodity futures 

contracts (Barkoulas et al. 1997, Corazza et al., 1997 or Crato and Kay 2000).  The results in 

Table 3 provide no support for long-term memory4. 

 

8.0 Implications of Results 

The results of this study have significant implications for the analysis of futures (and 

other financial) time series.  The evidence of this paper is that the null hypotheses of H = .5 

cannot generally be rejected at least for large samples.  However, the results show that at least 

two price series, live cattle and wheat do not follow a gBm. The Hurst coefficients are low and 

this indicates strong mean reversion. More generally the majority of futures and cash prices are 

consistent with a random walk at least within he boundaries of a 99% confidence limit for 

samples of N=940, but the majority of series do not display random behavior in the smaller 

sample but whatever erratic price behavior is observed in he short run appears to work its way 

through in the longer run. Even so, when one considers that a sampling frame of 220 days is 

almost a year of trading this should not be trivialized. Furthermore, while short run departures 

due perhaps to spurious correlations or other economic impacts are not inconsistent with patterns 

of a random walk the results suggest a need to investigate short run price movements. More 

likely the results are due to the sampling frame. A combination of N=220 and k=150 does not 

provide a lot of degrees of freedom, so the results may also be indicative of a failure of the Hurst 

measure to adequately pick up or absolve correlations in the short run. 

Qualitatively it is interesting to note that none of the results had h>5. Thus if there is any 

tendency within commodity price series to be correlated, the correlation in time is negative and 

not positive. In other words there is no evidence with these price series of persistent behavior 
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that can be arbitraged in time. Instead the (qualitatively) low values indicate that there is a 

continual rebalancing between supply and demand   This conclusion is consistent with recent 

findings by Corazza et al. (1997) and Crato and Ray (2000) and is at odds with earlier findings 

by Helms et al. (1984) and Barkoulas et al. (1997).  

In terms of futures market efficiency, it is unlikely that there are any self-similar 

properties that would allow a speculator to arbitrage from one period to the next. Speculative 

gains and losses can only be attributed to luck, rather than predictive ability. The luck arises from 

the fact that those series that did display some form of persistent behaviour did so by chance 

alone over the subset of time used. From a statistical point of view, there is no reason to expect 

that any gains or losses could be repeated in a different subset of time. In short, the evidence 

points to weak-form market efficiency in most commodity futures contracts in that successive 

price changes tend to be independent of each other. There is no evidence that trends in market 

prices can, unto themselves, be used to predict and benefit from future price changes. 

From an analytical perspective this paper has provided a means to empirically test for 

fractional Brownian motion using variance ratios.  This is a parametric approach that relies on 

the fractional definition of the Wiener process.  In contrast, the Hurst-Mandelbrot approach is 

non-parametric.  Given the qualitatively similar results, this is not necessarily a criticism of the 

Hurst-Mandelbrot approach, but an approach to measuring fractals and fractal dimension using a 

consistent-theoretical structure has its advantages.  From a computational perspective the 

approach was less cumbersome than the R-S approach. 

Finally, the overall intent of this paper was to determine if commodity futures prices 

followed a random walk process consistent with non-fractal Brownian motion.  The results 

indicate that futures price movements are consistent with Brownian motion.  One of the 

beneficial outcomes is that, for the most part, the assumption of Brownian motion used in the 

pricing of options on futures is justified.  If Brownian motion is consistent with the efficient 

market hypothesis (an inference that is, according to Mandelbrot (1963), Mandelbrot and Taqqu 

(1979), Lo and Mackinnon (1999) and Corazza et al. (1997), debatable) then the results of this 

study indicate that markets are indeed efficient. However, while this paper provided an approach 

to test for fractional Brownian motion, future research should verify the results by using the 

technique to assess randomness in other financial time series, and should also compare and 
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contrast the current technique with more conventional econometric approaches to measuring and 

testing for stationarity. 

 

 

 

References 

 

Barkoulas,J., T. and C.F. Baum (1996) “Long-term Dependence in Stock Returns” Economic 

Letters 53:253-259. 

Barkoulas, J., W.C. Labys and J. Onochie.  (1997).  "Fractional Dynamics in International 

Commodity Prices."  J. Futures Markets.  17(2):161-189. 

Bassingthwaighte, J. B., and G. M. Raymond. “Evaluating Rescaled Range Analysis For Time 

Series”. Ann. Biomed. Eng. 22:432-444, 1994. 

Black, F. (1976). “The pricing of Commodity Contracts” Journal of Financial Economics 3:167-

177. 

Black, F. and M. Scholes (1973). “The Pricing of Options and Corporate Liabilities” Journal of  

Political Economy 81:637-659 

Booth, G.G., F.R. Kaen, and P.F. Koveos.  (1982a).  "Persistent Dependence in Gold Prices."  J. 

Finance Research (Spring):85-93. 

Booth, G.G., F.R. Kaen and P.F. Koveos.  (1982b).  "R/S Analysis of Foreign Exchange Rates 

Under Two International Monetary Regimes."  J. Monetary Economics.  10:407-415. 

Boyle, P.P., M. Broadie, and P. Glasserman (1997) “Monte Carlo Methods in Security Pricing” 

Journal of Economics, Dynamics and Control 21:1267-1327. 

Boyle, P.P. and T. Wang (1999) “The Valuation of New Securities in an Incomplete Market: The 

Catch-22 of Derivative Pricing” Working Paper, University of Waterloo 

Cannon, M.J., D.B. Percival, D.C. Caccia, G.M. Raymond and J.B. Bassingthwaighte (1996) 

“Evaluating Scaled Windowed Variance Methods for Estimating the Hurst Coefficient in 

Time Series” Physica A 241:606-626. 

Comte, F. and E. Renault “Long Memory Continuous Time Models” Journal of Econometrics  

73(1996):101-149 

 

 18



Corazza, M., A.G. Malliaris, and C. Nardelli.  (1997).  "Searching for Fractal Structure in 

Agricultural Futures Markets."  J. of Futures Markets.  17(4):433-473. 

Cox, J.C. , J.E. Ingersoll, and S.A. Ross (1985) “An Intertemporal General Equilibrium Model of 

Asset Prices” Econometrica 53:363-384. 

Crato, N. and B.K. Kay (2000).  "Memory in Return and Volatilities of Futures Contracts."  J. 

Futures Markets.  20(6):525.543. 

Cromwell, J.B. , W.C. Labys and E. Kouassi (2000) “What Color are Commodity Prices?: A 

Fractal Analysis” Empirical Economics 25:563-580. 

Crownover, R.M.  (1995).  Introduction to Fractals and Chaos.  Tones and Bartlett Publishers, 

London, U.K. 

Cutland, N.J. , P.E. Kopp and W. Willinger (1995) “Stock price returns and the Joseph Effect: A 

Fractional Version of the Black-Scholes Model” Progress in Probabilities 36:327-351. 

Fama, E.F. and K.R. French.  (1988).  "Permanent and Temporary Components of Stock Prices."  

J. of Political Economy.  96(2):246-273. 

Feder, J. (1988) Fractals Plenum Publishing Corp. NY NY 

Igloi, E. and G. Terdik (1999) “Bilinear Stochastic Systems with Fractional Brownian Motion 

Input” Annals of Applied Probability 9(1):46-77 

Gao, A.H. and G.H.K. Wang (1999) “Modeling Nonlinear Dynamics of Daily Futures Price 

Changes” Journal of Futures Markets  19(3):325-351. 

Garman, M.B. (1977) “A General Theory of Asset Valuation under Diffusion State Processes” 

Working Paper, University of California, Berkeley 

Greene, M.T. and B.O. Fielitz.  (1997).  "Long-Term Dependence in Common Stock Returns."  

J. Financial Economics.  4:339-349. 

Helms, B.P., F.R. Kaen and R.E. Rosenman.  (1984).  "Memory in Commodity Futures 

Contracts."  J. Futures Markets.  4(4):559.567. 

Higuchi, T. (1990) “Approach to an Irregular time Series on the Basis of Fractal Theory” 

Physica D 31:277-283 

Higuchi, T. (1990) “Relationship Between the Fractal Dimension and the Power Law Index for a 

Time Series: A Numerical Investigation” Physica D 46:254-264 

 

 19



Hommes, C.H. “Financial Markets as Nonlinear Adaptive Evolutionary Systems” Quantitative 

Finance 1:149-167 

Hurst, H.E.  (1951).  "Long-Term Storage Capacity of Reservoirs."  Transactions of the 

American Society of Civil Engineers.  116:770-799. 

Jin, H.J. and D. L. Frechette (2004) “Fractional Integration in Agricultural Futures Price 

Volatilities” American Journal of Agricultural Economics 86(2):432-433 

Kwiatkowski, D, P.C.B. Phillips, P Schmidt, and Y. Shin (1992) “Testing the Null Hypothesis of 

Stationarity against the Null Hypothesis of a Unit Root” Journal of Econometrics 54:159-

178 

Leland, W.E., M.S. Taqqu, W. Willinger, and D.V. Willson (1994) “On the Self-Similar Nature 

of Ethernet Traffic (Extended Version) IEEE/ACM Transactions on Networking 2(1):1-

15. 

Lo, A.W.  (1991).  "Long-Term Memory in Stock Market Prices."  Econometrica.  (59):1279-

1313. 

Lo, A.W. and A.C. Mackinnlay.  (1999).  A Non-Random Walk Down Wall Street.  Princeton 

Press, Princeton, N.J. 

Mandelbrot, B.  (1963).  "The Variation of Certain Speculative Prices."  J. of Business.  36:394-

419. 

Mandelbrot, B.B.  (1972).  "Statistical Methodology for Non-Periodic Cycles:  From Covariance 

to R/S Analysis."  Annals of Economic and Social Measurement. 1(July):259-290. 

Mandelbrot, B.B.  (1977).  Fractals:  Form, Chance and Dimension.  W.H. Freeman and Co., San 

Francisco. 

Mandelbrot, B.B. and M.S. Taqqu (1979) “Robust R/S Analysis of Long Run Serial Correlation” 

in Proceedings of 42nd Session ISI :69-99 

Mandelbrot, B.B. and J.R. Wallis.  (1969).  "Robustness of the Rescaled Range R/S in the 

Measurement of Non-Cyclic Long-Run Statistical Dependence."  Water Resources 

Research.  5:321-340. 

Mandelbrot, B.B. and J.W. Van Ness (1968) “Fractional Brownian Motions, Fractional Noises 

and Applications” SIAM Review 10 (4 October):422-437 

 

 20



Merton, R.C. (1973) “The Theory of Rational Options Pricing” Bell Journal of Economics 

4:141-183 

Panas, E. (2001) “Estimating Fractal Dimension Using Stable Distributions and Exploring Long 

Memory Through ARFIMA Models in Athens Stock Exchange” Applied Financial 

Economics 11:395-402. 

Peters, E.  (1996). "Chaos and Order in the Capital Markets."  2nd Edition.  John Wiley and Sons, 

New York. 

Rangarajan, G. and M. Ding (2000) “Integrated Approach to the Assessment of Long Run 

Correlation in Times Series Data” Physical review A 61(5):4991-5001. 

Rogers, L.C.G. (1997) “Arbitrage with Fractional Brownian Motion” Mathematical Finance 7 (1 

January): 95-105. 

Rubinstein, M. (1979) “The Pricing of Uncertain Income Streams and the pricing of Options” 

Bell Journal of Economics 7:407-424 

Schroeder, M.N. (1991) Fractals, Chaos and Power Laws W,H. Freeman and Company, NY 

Sottinen, T (2001) “Fractional Brownian Motion, Random Walks and Binary Market Models” 

Finance and Stochastics 5:343-355. 

Sephton, P (2002) “Fractional Cointegration: Monte Carlo Estimates of Critical Values, With an 

Application” Applied Financial Economics 12:331-335 

Wei, A. and R.M. Leuthold (1998) “Long Agricultural Futures Prices: ARCH, Long Memory or 

Chaos Processes” OFOR Paper # 98-03, University of Illinois, May 

West, B.J. and L. Griffin (1998) “Allometric Control of Human Gait” Fractals 6(2):101-108. 

West, B.J., P. Hamilton and D.J. West (1999) “Fractal Scaling and the Teen Birth Phenomenon” 

Fractals 7(2):113-122 

 21



Appendices 

 
        

Approximate Upper and Lower 90% Confidence Intervals For Geometric Brownian Motion 

   k     

N/k 10 25 50 75 100 125 150 

  Upper Confidence Limit    

100 0.635883 0.666491 0.69062 0.705138 0.715623 0.723864 0.730667 

200 0.601975 0.630951 0.653794 0.667538 0.677464 0.685265 0.691705 

300 0.582985 0.611047 0.633169 0.646479 0.656092 0.663647 0.669884 

400 0.569875 0.597306 0.618931 0.631942 0.641339 0.648724 0.654821 

500 0.55991 0.586862 0.608108 0.620892 0.630124 0.63738 0.64337 

600 0.551898 0.578463 0.599406 0.612006 0.621107 0.628259 0.634163 

700 0.545213 0.571457 0.592146 0.604593 0.613583 0.620649 0.626482 

800 0.539487 0.565456 0.585927 0.598244 0.60714 0.614131 0.619903 

900 0.534487 0.560215 0.580497 0.5927 0.601513 0.608439 0.614158 

1000 0.530054 0.555568 0.575682 0.587783 0.596523 0.603392 0.609063 

1100 0.526075 0.551398 0.57136 0.583371 0.592046 0.598863 0.604491 

1200 0.522468 0.547618 0.567443 0.579372 0.587987 0.594758 0.600347 

1300 0.519173 0.544163 0.563864 0.575717 0.584278 0.591006 0.59656 

1400 0.51614 0.540984 0.56057 0.572354 0.580865 0.587553 0.593075 

1500 0.513332 0.538042 0.557521 0.569241 0.577705 0.584357 0.589849 

1600 0.51072 0.535304 0.554684 0.566344 0.574765 0.581383 0.586847 

1700 0.508278 0.532744 0.552031 0.563636 0.572017 0.578604 0.584042 

1800 0.505986 0.530342 0.549543 0.561095 0.569438 0.575995 0.581408 

1900 0.503828 0.52808 0.547199 0.558701 0.567009 0.573538 0.578929 

2000 0.501789 0.525943 0.544984 0.55644 0.564715 0.571217 0.576586 

        

  Lower Confidence Limit    

100 0.364117 0.333509 0.30938 0.294862 0.284377 0.276136 0.269333 

200 0.398025 0.369049 0.346206 0.332462 0.322536 0.314735 0.308295 

300 0.417015 0.388953 0.366831 0.353521 0.343908 0.336353 0.330116 

400 0.430125 0.402694 0.381069 0.368058 0.358661 0.351276 0.345179 

500 0.44009 0.413138 0.391892 0.379108 0.369876 0.36262 0.35663 

600 0.448102 0.421537 0.400594 0.387994 0.378893 0.371741 0.365837 

700 0.454787 0.428543 0.407854 0.395407 0.386417 0.379351 0.373518 

800 0.460513 0.434544 0.414073 0.401756 0.39286 0.385869 0.380097 

900 0.465513 0.439785 0.419503 0.4073 0.398487 0.391561 0.385842 

1000 0.469946 0.444432 0.424318 0.412217 0.403477 0.396608 0.390937 

1100 0.473925 0.448602 0.42864 0.416629 0.407954 0.401137 0.395509 
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1200 0.477532 0.452382 0.432557 0.420628 0.412013 0.405242 0.399653 

1300 0.480827 0.455837 0.436136 0.424283 0.415722 0.408994 0.40344 

1400 0.48386 0.459016 0.43943 0.427646 0.419135 0.412447 0.406925 

1500 0.486668 0.461958 0.442479 0.430759 0.422295 0.415643 0.410151 

1600 0.48928 0.464696 0.445316 0.433656 0.425235 0.418617 0.413153 

1700 0.491722 0.467256 0.447969 0.436364 0.427983 0.421396 0.415958 

1800 0.494014 0.469658 0.450457 0.438905 0.430562 0.424005 0.418592 

1900 0.496172 0.47192 0.452801 0.441299 0.432991 0.426462 0.421071 

2000 0.498211 0.474057 0.455016 0.44356 0.435285 0.428783 0.423414 
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Approximate Upper and Lower 95% Confidence Intervals For Geometric Brownian Motion 

        

N/k 10 25 50 75 100 125 150 

  Upper Confidence Limit    

100 0.661315 0.698327 0.727696 0.745445 0.7583 0.768423 0.776795 

200 0.620849 0.655597 0.683168 0.699831 0.7119 0.721404 0.729263 

300 0.598336 0.631823 0.658395 0.674454 0.686085 0.695244 0.702819 

400 0.58286 0.615481 0.641365 0.657009 0.668338 0.677261 0.68464 

500 0.571131 0.603096 0.62846 0.643788 0.65489 0.663633 0.670863 

600 0.561724 0.593162 0.618108 0.633184 0.644103 0.652702 0.659813 

700 0.553891 0.584891 0.609489 0.624355 0.635122 0.643601 0.650613 

800 0.547194 0.57782 0.60212 0.616806 0.627443 0.635819 0.642747 

900 0.541355 0.571653 0.595694 0.610224 0.620747 0.629034 0.635887 

1000 0.536184 0.566193 0.590004 0.604395 0.614817 0.623025 0.629813 

1100 0.531549 0.561298 0.584904 0.59917 0.609503 0.61764 0.624369 

1200 0.527352 0.556867 0.580286 0.59444 0.604691 0.612763 0.619439 

1300 0.523521 0.552821 0.57607 0.590121 0.600298 0.608312 0.614939 

1400 0.519999 0.549102 0.572195 0.586151 0.596259 0.604219 0.610802 

1500 0.516741 0.545661 0.56861 0.582478 0.592523 0.600433 0.606975 

1600 0.513712 0.542463 0.565277 0.579064 0.58905 0.596914 0.603417 

1700 0.510882 0.539475 0.562163 0.575875 0.585806 0.593626 0.600094 

1800 0.508229 0.536674 0.559244 0.572884 0.582763 0.590543 0.596977 

1900 0.505732 0.534037 0.556496 0.570069 0.5799 0.587642 0.594044 

2000 0.503375 0.531547 0.553902 0.567412 0.577197 0.584903 0.591275 

        

  Lower Confidence Limit    

100 0.338685 0.301673 0.272304 0.254555 0.2417 0.231577 0.223205 

200 0.379151 0.344403 0.316832 0.300169 0.2881 0.278596 0.270737 

300 0.401664 0.368177 0.341605 0.325546 0.313915 0.304756 0.297181 

400 0.41714 0.384519 0.358635 0.342991 0.331662 0.322739 0.31536 

500 0.428869 0.396904 0.37154 0.356212 0.34511 0.336367 0.329137 

600 0.438276 0.406838 0.381892 0.366816 0.355897 0.347298 0.340187 

700 0.446109 0.415109 0.390511 0.375645 0.364878 0.356399 0.349387 

800 0.452806 0.42218 0.39788 0.383194 0.372557 0.364181 0.357253 

900 0.458645 0.428347 0.404306 0.389776 0.379253 0.370966 0.364113 

1000 0.463816 0.433807 0.409996 0.395605 0.385183 0.376975 0.370187 

1100 0.468451 0.438702 0.415096 0.40083 0.390497 0.38236 0.375631 

1200 0.472648 0.443133 0.419714 0.40556 0.395309 0.387237 0.380561 

1300 0.476479 0.447179 0.42393 0.409879 0.399702 0.391688 0.385061 
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1400 0.480001 0.450898 0.427805 0.413849 0.403741 0.395781 0.389198 

1500 0.483259 0.454339 0.43139 0.417522 0.407477 0.399567 0.393025 

1600 0.486288 0.457537 0.434723 0.420936 0.41095 0.403086 0.396583 

1700 0.489118 0.460525 0.437837 0.424125 0.414194 0.406374 0.399906 

1800 0.491771 0.463326 0.440756 0.427116 0.417237 0.409457 0.403023 

1900 0.494268 0.465963 0.443504 0.429931 0.4201 0.412358 0.405956 

2000 0.496625 0.468453 0.446098 0.432588 0.422803 0.415097 0.408725 
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Approximate Upper and Lower 99% Confidence Intervals For Geometric Brownian Motion 

        

N/k 10 25 50 75 100 125 150 

  Upper Confidence Limit    

100 0.710582 0.760508 0.800594 0.825015 0.842792 0.856845 0.8685 

200 0.657271 0.703451 0.740529 0.763118 0.779562 0.79256 0.803341 

300 0.627959 0.672081 0.707505 0.729086 0.744797 0.757215 0.767516 

400 0.607959 0.650675 0.684971 0.705865 0.721075 0.733098 0.74307 

500 0.592885 0.634542 0.667988 0.688364 0.703197 0.714922 0.724647 

600 0.580847 0.621658 0.654424 0.674387 0.688918 0.700405 0.709933 

700 0.570859 0.610969 0.643172 0.662791 0.677073 0.688362 0.697726 

800 0.562347 0.601858 0.633581 0.652908 0.666976 0.678097 0.687321 

900 0.554944 0.593935 0.62524 0.644312 0.658196 0.66917 0.678273 

1000 0.548404 0.586935 0.617872 0.636719 0.650439 0.661285 0.67028 

1100 0.542554 0.580675 0.611282 0.629928 0.643501 0.654231 0.66313 

1200 0.537269 0.575018 0.605326 0.623791 0.637232 0.647857 0.65667 

1300 0.532452 0.569863 0.599899 0.618198 0.631519 0.642049 0.650783 

1400 0.528031 0.565131 0.594918 0.613065 0.626275 0.636718 0.645379 

1500 0.523947 0.560761 0.590318 0.608324 0.621433 0.631794 0.640388 

1600 0.520157 0.556704 0.586047 0.603923 0.616936 0.627223 0.635755 

1700 0.516621 0.552919 0.582063 0.599818 0.612743 0.622959 0.631433 

1800 0.513309 0.549375 0.578331 0.595973 0.608815 0.618966 0.627386 

1900 0.510196 0.546043 0.574824 0.592358 0.605122 0.615212 0.623581 

2000 0.50726 0.542901 0.571516 0.588949 0.60164 0.611672 0.619992 

        

  Lower Confidence Limit    

100 0.289418 0.239492 0.199406 0.174985 0.157208 0.143155 0.1315 

200 0.342729 0.296549 0.259471 0.236882 0.220438 0.20744 0.196659 

300 0.372041 0.327919 0.292495 0.270914 0.255203 0.242785 0.232484 

400 0.392041 0.349325 0.315029 0.294135 0.278925 0.266902 0.25693 

500 0.407115 0.365458 0.332012 0.311636 0.296803 0.285078 0.275353 

600 0.419153 0.378342 0.345576 0.325613 0.311082 0.299595 0.290067 

700 0.429141 0.389031 0.356828 0.337209 0.322927 0.311638 0.302274 

800 0.437653 0.398142 0.366419 0.347092 0.333024 0.321903 0.312679 

900 0.445056 0.406065 0.37476 0.355688 0.341804 0.33083 0.321727 

1000 0.451596 0.413065 0.382128 0.363281 0.349561 0.338715 0.32972 

1100 0.457446 0.419325 0.388718 0.370072 0.356499 0.345769 0.33687 

1200 0.462731 0.424982 0.394674 0.376209 0.362768 0.352143 0.34333 

1300 0.467548 0.430137 0.400101 0.381802 0.368481 0.357951 0.349217 
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1400 0.471969 0.434869 0.405082 0.386935 0.373725 0.363282 0.354621 

1500 0.476053 0.439239 0.409682 0.391676 0.378567 0.368206 0.359612 

1600 0.479843 0.443296 0.413953 0.396077 0.383064 0.372777 0.364245 

1700 0.483379 0.447081 0.417937 0.400182 0.387257 0.377041 0.368567 

1800 0.486691 0.450625 0.421669 0.404027 0.391185 0.381034 0.372614 

1900 0.489804 0.453957 0.425176 0.407642 0.394878 0.384788 0.376419 

2000 0.49274 0.457099 0.428484 0.411051 0.39836 0.388328 0.380008 
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End Notes 

                                                 
1 The difference can be attributed to the scaling attributes of the power law. For example, define 
VAR=σ2k2H, as the power law for a fractional Brownian motion with a time step, k. Suppose that 
σ=.30 and k=5 days. When H=.3, VAR =.2358. What time step is required to double the 
variance to .472? The solution is 15.87, more than three times the number of days to achieve a 
variance of  .236. Likewise, if H=.7, VAR = .857. To double variance to 1.713 under this power 
law, requires a time step of only 8.2 days, considerably less than twice the original number of 
days. However, when H=.5, VAR =.45. Doubling variance to .90 requires 10 days, exactly 
double that of the original 5 days. Since variance increases in direct proportion to k, that is 
r1=r2=r3, it is self-similar for H=.5, but because the relationship is derived from a power law, it is 
also self-affine. In contrast, since r1≠r2≠r3 for H ≠ .5 the series is self-affine, but not self-similar. 
 
2 The variance ratio approach is similar to other approaches to measuring linear or non-linear 
dynamics in a time series. For example a common approach to measuring time irregularity is 
through the spectral density function which in its generic form is given by G(k) = g(k)αk-d  (see 
for example Higuchi 1988.1990). In Higuchi, g(k) is measured by the mean of the observed 
differences in prices over a time step k (k = Δt), α is an arbitrary constant, and d is the 
characteristic exponent. It is the characteristic exponent that measures the irregularity of a time 
series. Higuchi (1988,1990) has shown that in this form, d is a fairly reasonable and stable 
measure of the fractal dimension of a time series. As a fractal dimension, d=1.5 lies midway 
between a one-dimensional line and a 2-dimensional plain in Euclidian space, and at this point 
the underlying process is a Brownian motion. The properties of the spectral density when d=1.5 
are consistent with the properties of the Hurst rescaled range for H=.5, and the fractional 
Brownian motion at H=.5. Furthermore, G(k) is self-affine over the domain of k, but the degree 
of self-affinity, or self-similarity, will depend on the nature of the underlying time series. The 
general approach to determining the fractal dimension, d, is to map ln[G(k)] against ln[k] and 
assign to d the value of this slope. 
 
3 I have not found previous research that supported Monte Carlo estimates of the asymptotic 
standard deviations of H and β1.  However, in Fama and French (1988) a similar approach is 
used to estimate the standard errors of first order autocorrelation coefficients.  Qualitatively they 
are able to support the conjecture that stock price movements have stationary and random 
components.  However, when their specific tests were assessed using standard errors from Monte 
Carlo simulations they found that the null hypothesis (of non-stationarity in prices) was difficult 
to reject.  In fact they speculate that the large standard errors in a pure random walk may make 
such hypotheses altogether untestable (Fama and French, 1988, page 257). A wide acceptance 
region for unit roots in time series data has also been discussed by Kwiatkowski et al (1992) and 
critical values for fractional cointegration  generated from Monte Carlo methods are described in 
Sephton (2002). Panas (2001) uses a bootstrapping method to estimate standard errors for stocks 
traded on the Athens Stock Exchange and is able to reject the null for 11 of 13 stocks. In an 
application to self-similar properties in ethernet traffic, Leland, Taqqu, Willinger and Wilson 
(1994) apply numerical techniques to obtain confidence intervals. However, in their model the 
confidence intervals were constructed around the estimate of H, whereas in the current study the 
confidence intervals were constructed around a fixed point of H=.5. In some disciplines of the 
social sciences and humanities a surrogate approach has been used. The surrogate approach 
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repeatedly randomizes observations from a particular sample to remove all correlations. The H 
values are then calculated for each surrogate, and their sample standard deviations used in the 
statistical tests. (see West and Griffin (1998) and West, Hamilton and West (1999); See 
Rangarajan and Ding (2000) for a critique) 
 
4 The R-S estimates in Table 3 are different than those presented in column 1.  Qualitatively, 
corn, fluid milk, pork bellies, soybeans, sugar and Winnipeg oats display persistent tendencies 
with H > .5.  However only Winnipeg oats (.566) and perhaps fluid milk (.540) are sufficiently 
higher than .5 to warrant concern. The remaining 11 commodities have R-S estimated H ≤ .5.  
Winnipeg wheat (.499) and rapeseed (.494) are virtually identical to .5 and would thus be 
characterized as having a pure random walk.  The remaining futures prices again display mean-
reverting tendencies.  Qualitatively the main conclusion is that the Mandelbrot-Hurst approach 
provides results that are not inconsistent with the variance ratio approach. 
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	(15)   
	(16)   
	(17)   
	for the upper and lower confidence limits respectively. Tables of approximate intervals are provided in the appendix. For example suppose an analyst was checking a time series of 1,000 daily observations for a memory of 30 days, then N=1,000 and k=30. Plugging these into the equation gives   and  . Therefore if the analyst computes a value of H between 0.572 and 0.427  there can be 95% confidence that the time series follows a geometric Brownian motion.  

