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We evaluate an old and widely accepted rule of thumb for fertilizer management in 

corn production: apply 1.2 pounds of nitrogen fertilizer per bushel of corn 

expected.  This “1.2 Rule” has dominated fertilizer management recommendations 

for almost fifty years, and similar algorithms have been used all over the world to 

make fertilizer recommendations for other crops. Here we show that the 1.2 Rule 

only makes economic sense if the production satisfies two restrictions: (1) to be of 

the von Liebig functional form, i.e. the function has a “kink” and a “plateau,” and 

(2) the kinks of the von Liebig response curves for different growing conditions lie 

on a ray out of the origin with slope 1.2. Non-linear estimation techniques and non-

nested hypothesis framework are used to test if the 1.2 Rule satisfies these 

restrictions. We conclude that there exists little scientific justification of the 1.2 

Rule, and that its long-term and widespread use basically resulted from its long-

term and widespread use.  



 

 

1. Introduction 

For almost fifty years, university extension and private consultants have widely used a yield goal-

based algorithm, known as the “1.2 Rule,” to recommend nitrogen (N) fertilizer rates to corn farmers 

(Lory and Scharf, 2003; Halbeisen, 2006).  Similar rules have been established throughout the world for 

other crops.  The 1.2 Rule is that the producer should apply 1.2 lb of N fertilizer per acre for every per-

acre bushel of a type of yield, referred to usually as “potential yield,” “target yield,” or “yield goal,” with 

adjustments for previous crops grown and other factors: 

  Nf (lb acre
-1

) = 1.2 YG (bu acre
-1

)   - Ns -Na    (1) 

where Nf is the recommended N rate , Ns is the quantity of N supplied by the soil before any fertilizer is 

applied, Na is an adjustment for a previously grown crop, and YG is the yield goal or the target yield.  The 

1.2 Rule originates from research conducted by George Stanford (1966, 1973) and that the intellectual 

origins of Stanford’s thinking are the mass balance theory of yield response and the von Liebig law of the 

minimum (Parr 1973; Karlen et al. 1985; Osmond et al. 2010; Chen et al. 2011). Stanford desired to 

develop a less empirical methodology for various crops, including corn, that would provide a basis for 

predicting the additional quantity of N required from fertilizer.  

Since 1990s several studies have cast doubt on the appropriateness of yield goal-based 

approaches.  The recommended N fertilizer rates, determined by the yield goal approach to implementing 

Stanford’s 1.2 Rule, result to over fertilization (Lory and Scharf 2003). There exist poor relationships 

between 1.2 Rule-based recommendations and the economically optimal N rate (Blackmer et al., 1991; 

Vanotti and Bundy 1994a; Vanotti and Bundy 1994b; Fox and Piekielek, 1995; Kachanoski, et al., 1996; 

Andraski and Bundy, 2002; Lory and Scharf, 2003). There are also uncertainty about how yield goals 

should be determined and how adjustments for nonfertilizer N sources in yield goal approaches should be 

done (Sawyer et al., 2006). Despite all of these, the 1.2-Rule-type algorithms continue to be used to make 

fertilizer recommendations for many crops in many parts of the world including winter wheat in United 

States (Kansas State University 2015), cereals in Canada (Ontario Ministry of Agriculture, Food, and 

Rural Affairs 2011) and rice in Asia (International Rice Research Institute 2015).  

Given the huge impact that the 1.2 Rule has had on fertilizer management throughout the world, it 

makes sense to reexamine its validity in the N rate recommendation system. There are no studies that have 

thoroughly investigated and verified Stanford’s empirical contributions. Most of the studies are based on 

the assumption that what Stanford concluded from his data was justified. In this article, using non-linear 

estimation techniques and non-nested hypothesis framework, we rigorously test Stanford’s conclusion: the 
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critical N concentration of the plant’s dry matter is constant at 1.2 percent. The analyses rely on the 

original datasets Stanford (1973) used in his research and the long-term corn experimental data from 

Illinois, Nebraska, and Iowa. To our knowledge, this is the first and only paper that provides empirical 

evidence of whether Stanford’s 1.2 Rule is indeed faulty, and whether the yield goal-based approaches to 

N fertilizer recommendation should be completely abandoned. Although this study focuses on corn 

fertilizer recommendation, findings from this study may have broader implications for other crops, 

including rice and soybeans, whose N fertilizer requirements are also based on yield-goal based algorithm.   

Our conclusion is that the 1.2 Rule, in itself, was a “ballpark” recommendation algorithm that may 

have done as much harm as good. The empirical results suggest that Stanford’s 1.2 Rule can either result 

to either under- or over-application of fertilizer and the economic analyses indicate that the consequences 

of using the 1.2 Rule can be large. 

 

2. Critiques of the 1.2 Rule 

In Stanford’s approach, at least strictly speaking, the use of yield goal to maximize profits makes 

little economic sense.  After all, if a farmer’s goal is to maximize profits, he cannot determine how to 

maximize profits by first assuming which yield will maximize profits.  Conceptually more tenable may be 

the claim that if a farmer has insights to the maximum yield he can achieve (the “yield potential”), and this 

knowledge might somehow offer information about the optimal N rate.  A farmer would need to have 

some idea about the maximum yield attainable on his field to have an idea of the yield potential, as 

suggested by Viets (1965).  We argue that the Stanford’s 1.2 Rule or yield potential approach for fertilizer 

recommendation only makes economic sense if the production satisfies two restrictions: (1) to be of the 

von Liebig functional form
1
, i.e. the function has a “kink” and a “plateau,” (Figure 1) so that input and 

output prices do not affect the (interior) solution to the profit maximization problem; and (2) the kinks of 

the von Liebig response curves for different growing conditions lie on a ray out of the origin with slope 

1.2 (Figure 2). Under these two conditions, essentially input and output prices do not influence the input 

demands.  If indeed the production function is von Liebig, the farmer will either choose 0 or 𝑁̅ amount of 

input to maximize profit (Figure 1). Note that we are not claiming here that the von Liebig is the correct 

production function. The von Liebig function is only used as a starting point to test the validity of the 1.2 

Rule.  

Even if agronomic theory makes von Liebig technology a plausible representation of true response 

functions (and it is not clear that it does), it remains unclear why the kinks should all lie on a common ray 

from the origin in an (N,y) diagram. If kinks do not line up, the critical N concentration of plant’s dry 

                                                           
1
 Many authors have interpreted this as an assumption of Leontief technology (Grimm, Paris, and Williams, 1987). 
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matter will vary (Figure 2). In this case Stanford’s 1.2 Rule’s basis for fertilizer recommendations 

misleads.  

 

3. Data Description 

The data used in this study come from two sources: (1) the published data in Pearson et al. (1961) 

and (2) the long-term corn experiments in Illinois, Nebraska, and Iowa (Table 1). Pearson et al. (1961) 

report results from corn field experiments in 1955 at three locations in Alabama, one in Georgia, and two 

locations in Mississippi, and in 1957 at one location in Georgia.  This is the original data set that Stanford 

(1966, 1973) used in his analysis. Complete details of the data can be found in Rodriguez and Bullock 

(2015).  The data set from long-term experiments in Illinois, Nebraska, and Iowa contains information on 

corn grain yields, dry matter yield, N fertilizer application rates, and N uptake.  The experimental data 

from Illinois and Iowa, however, only contain information on corn grain yield and N fertilizer application 

rates.  The Illinois data come from experimental plots in Monmouth and Perry conducted from 1980 to 

2012 (n=720). Nitrogen fertilizer rates range from 0 to 320 pounds per acre in 20-60 pound increments, 

with three repetitions of each application rate performed annually at both locations.  

There are two sets of data from corn experiments in Nebraska.  The first experimental data set, 

conducted from 1969 to 1983, is from the Nebraska Agricultural Experiment Station Field Laboratory 

near Mead, NE. This data set is used in the previous work of Olson et al., (1986).
2
  Nitrogen fertilizers are 

applied at 90, 180, and 270 pounds per acre and two check plots are included in each replication. The 

second experimental data set, which contains 1383 observations, comes from 17 experimental locations 

representing the main corn production areas of Nebraska including Mead from 2002 to 2004 (Dobermann 

et al., 2011).  The N rates applied ranged from 0 to 300 pounds per acre. Individual plots are arranged in a 

randomized complete block design with four replications at each site.   

The Iowa data come from the earlier works of Binford, Blackmer, and Cerrato (1992) and 

Blackmer et al. (1989) in 15 experimental locations across the state between 1985 and 1990 (n=1998).  

Nitrogen fertilizer rates range from 0 to 300 pounds per acre in 25-50 pound increments, with three 

repetitions of each application rate performed annually at each experiment station site.   

 

4. Estimation Procedures and Empirical Specification 

4.1. The von Liebig Model Estimation 

Using Paris’s (1992) approach, the von Liebig formulation with linear potential yield function can 

be expressed as:  

                                                           
2
 Note that this is one of the experimental sites in Stanford’s 1966 and 1973 paper. Olson’s data that were used by 

Stanford (1973) for his analysis were no longer available.   
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  𝑦𝑖𝑡 = min{𝜃0 + 𝜃𝑁𝑁𝑖𝑡 , 𝑃} + 𝑢𝑖𝑡     (2) 

where 𝑦𝑖𝑡 is the dry matter yield (pounds per acre) in the ith plot at time t, 𝑁𝑖𝑡 is the N uptake 

level (pounds per acre) as the limiting input, 𝑢𝑖𝑡~𝑁(0, 𝜎𝑒
2) is the disturbance term, P is the 

maximum or plateau yield, and 𝜃0 and 𝜃𝑁 are the parameters of the model.
3
 The error, uit, 

associated with the dependent variable is assumed to be unique and therefore, not subject to the 

minimum operator.  Stanford simplifies the problem by assuming that year effect and temporal 

variability (i.e. rainfall, temperature, relative humidity, among others) can be ignored completely. 

The P is also assumed to be nonrandom, in spite of its determinants being stochastic (Ackello-

Ogutu et al., 1985; Paris and Knapp 1989; LLewelyn and Featherstone, 1997).  This assumption 

suggests that all factors that define P are fixed and completely controllable. 

Equation (2) is an example of a non-linear regression function, 𝑚(𝒙, 𝜃), 𝜃𝜖ℜ𝑃where 𝑚 is a known 

function of 𝒙, a K-vector, and 𝜃, a 𝑃 × 1 parameter vector. The standard non-linear regression model can 

be defined by 

    𝑦 = 𝑚(𝒙, 𝜽𝟎) + 𝑢     (3), 

where 𝑢 are scalar i.i.d. random variables with 𝐸(𝑢|𝒙) = 0 and 𝜎0
2.  Unlike the linear model where 

𝑓(𝑥, 𝛽0) = (𝑥′𝛽0), the dimensions of the vectors 𝒙 and 𝛽0 are not necessarily the same (Amemiya, 1983).   

Equation (2) can be estimated directly by maximizing its corresponding likelihood function (Paris 

and Knapp, 1989; Paris, 1992).  However, the maximum likelihood method requires one critical 

assumption, i.e. the true Data Generating Process is known to lie within a specified probability 

distribution.  This is to say that the model of the given data is correctly specified.  If the correct 

distribution is something other than what is assumed, then the likelihood function is misspecified and the 

desirable properties of the maximum likelihood estimator (MLE) might not hold.
4
 The most common 

probability distribution assumed when doing the maximum likelihood estimation is the normal 

distribution.  The normal MLE is quasi-maximum likelihood and produces consistent estimates if the 

mean is correctly specified.
5
     

Given this, we estimate the linear von Liebig model using nonlinear least squares. The idea behind 

this method is that it finds the non-linear least squares (NLLS) estimator, denoted by 𝜃, which is defined 

as the value of 𝜃 that minimizes the sum of squared residuals between 𝑦 and 𝑚(𝒙, 𝜃). That is, 𝜃 ̂solves 

                                                           
3
 Since there are no available record on the dry matter yield and N uptake of plant’s dry matter from the experimental 

field plots in Illinois and Iowa, we use the grain yield and the amount of N fertilizer applied in these states instead. 
4
 The MLE is most attractive because of its large sample properties.   

5
 The idea of quasi-maximum likelihood is that there is a family of densities whose first order condition (the score) 

with respect to the parameters in the mean is exactly the same.  Such a family of distribution is called the exponential 

family or exponential models (Wooldridge, 2010). 
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  min𝜃𝜖Θ 𝑁−1 ∑ [𝑦 − 𝑚(𝒙𝒊, 𝜃)]𝑁
𝑖=1

2       (4). 

 The 𝜃 appearing in (4) is an argument of the function  𝑚(𝒙,∙) and 𝜃0 in (10) is a fixed true value.  One 

only needs to supply the function 𝑚(𝒙, 𝜃), in this case, (2). Initial values for the parameters are provided 

to begin the process.  To find starting values for a nonlinear procedure can be difficult.  We use the 

parameter estimates from the quadratic production function to determine the maximum possible yield, P, 

and nutrient uptake and then these values serve as starting points for the nonlinear procedure.  

 Using the parameter estimates from the linear von Liebig functional form, the critical N 

concentration of plant’s dry matter, denoted by 𝜃, can be derived by dividing the height of the plateau, P, 

by the minimum N required to achieve P, (N
k
).  That is, 

  𝜃 =
𝑃

𝑁𝑘 =
𝑃𝜃𝑁

𝑃−𝜃0
        (5), 

where 

  𝑁𝑘 =
𝑃−𝜃0

𝜃𝑁
        (6). 

If the hypothesis given by 

  𝐻0: 𝜃 = 1.2        (7) 

is rejected, then Stanford’s 1.2 Rule misleads. 

 

4.2. The Nonlinear Seemingly Unrelated Regression 

 Now, suppose there are: 

  𝑦1 = 𝑚(𝑥1, 𝜃1) + 𝑢1 

  𝑦2 = 𝑚(𝑥2, 𝜃2) + 𝑢2 

   :        (8) 

  𝑦𝐺 = 𝑚(𝑥𝐺 , 𝜃𝐺) + 𝑢𝐺       

where G stands for locations or states and 𝐸[𝑢𝑔|𝒙] = 0, 𝑔 = 1,2, … , 𝐺. We test the null hypothesis:  

  𝐻0: 𝜃1 = 𝜃2 =. . . = 𝜃𝐺      (9), 

where 𝜃1 is the calculated critical N concentration of plant’s dry matter for state 1, 𝜃2 is the critical N 

concentration for state 2, and  𝜃𝐺 is the critical N concentration for state G. We jointly estimate the 

equations in (8) described by a nonlinear equation system. The parameters are estimated by applying the 

nonlinear seemingly unrelated regression to the system of equations. From the fitted model, the null 

hypothesis about the estimated parameters is then tested. The rejection of the null hypothesis suggests that 

the critical N concentration of plant’s dry matter is not constant at 1.2 and the Stanford’s 1.2 Rule as basis 

for fertilizer recommendation is inappropriate.   
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4.3. The Non-nested hypothesis framework 

Using a non-nested hypothesis framework as proposed by Davidson and MacKinnon (1982), we 

test  

𝐻0: 𝑦𝑖 = 𝑚(𝑥𝑖, 𝜃) + 𝑢0𝑖     (10), 

where 𝑢0𝑖 is assumed to be 𝑁(0, 𝜎0
2). Suppose an alternative hypothesis is plausible: 

   𝐻1: 𝑦𝑖 = 𝑔(𝑧𝑖 , 𝛾) + 𝑢1𝑖     (11), 

where 𝑧𝑖  is a vector of observations on exogenous variables, 𝛾 is the vector of parameters to be estimated 

and 𝑢1𝑖 is 𝑁(0, 𝜎1
2) if 𝐻1  is true. For the purposes of this study, three alternative hypotheses are tested: 

quadratic, square-root and Mitscherlich-Baule specifications.  The quadratic model is defined by 

   𝑦𝑖 = 𝛾0 + 𝛾1𝑁 + 𝛾𝑛𝑁2 + 𝑢     (12), 

where 𝑦𝑖is the grain yield (bushels/acre) or the total dry matter weight (pounds/acre) and N is the rate of N 

application (pounds/acre) or N uptake (pounds/acre) and 𝛾’s are the parameters to be estimated.  The 

square root model is defined by 

    𝑦𝑖 = 𝛾0 + 𝛾1𝑁 + 𝛾𝑛𝑁1/2 + 𝑢     (13),  

while the Mitscherlich-Baule model is defined by 

   𝑦𝑖 = 𝑃(1 − 𝑘𝑒−𝛾𝑁𝑗) + 𝑢     (14). 

Following Davidson and MacKinnon (1982), the form of the compound model can be expressed as:  

  𝑦𝑖 = (1 − 𝛼)𝑚(𝑥𝑖, 𝜃) + 𝛼𝑔(𝑧𝑖 , 𝛾) + 𝑢𝑖    (15).  

Simplifying (15),  

  𝑦𝑖 = 𝑚(𝑥𝑖, 𝜃) + 𝛼[𝑔(𝑧𝑖 , 𝛾) − 𝑚(𝑥𝑖 , 𝜃)] + 𝑢𝑖   (16). 

If 𝛼 = 0, then 𝐻0 is the correct model and if 𝛼 = 1, then it implies 𝐻1.  In principle, 𝐻0 could be tested by 

testing𝛼 = 0. It is impossible, however, to estimate 𝛼, 𝜃, and 𝛾 jointly.  Davidson and MacKinnon (1983) 

suggest that a simple solution will be to replace 𝛾 by its predicted value, 𝛾, under 𝐻1.  The composite 

model becomes  

  𝑦𝑖 = (1 − 𝛼)𝑚(𝑥𝑖, 𝜃) + 𝛼𝑔 + 𝑢𝑖     (17). 

A test of 𝛼 = 0 is known as J-test and is a routine t-test.  

 Since 𝐻0 
involves a nonlinear model, (24) is also a nonlinear regression, and one which may be 

computationally difficult if 𝐻0 and 𝐻1 are very similar.  To overcome this problem, (17) can be linearized 

around the point 𝛼 = 0 and 𝜃 = 𝜃, so as to obtain the linear regression 

  𝑦 − 𝑚̂ = 𝑴̂𝜃 + 𝛼(𝑔 − 𝑚̂) + 𝑢     (18)  

where 𝑚̂ = 𝑚(𝑥𝑖 , 𝜃), 𝑔 ̂𝑗 = 𝑔𝑗(𝑧𝑗, 𝛾) and 𝑴̂ is the matrix of derivatives of m with respect to 𝜃, evaluated 

at the non-linear square estimates  𝜃. This procedure is called a P test. If the null hypothesis that 𝛼 = 0 is 

not rejected, then von Liebig model is the correct model specification. 
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  The P test can be easily extended to handle several alternative hypotheses. Let the null hypothesis 

still be 𝐻0, given by (3), and the alternative hypotheses be 

  𝐻𝑗: 𝑦 = 𝑔𝑗(𝑧𝑗, 𝛾𝑗) + 𝑢𝑗, 𝑗 = 1,2, … , 𝐽     (19). 

The compound model becomes 

  𝐻𝑐: (1 − ∑ 𝛼𝑗
𝐽
𝑗=1 )𝑚(𝑥, 𝜃) + ∑ 𝛼𝑗𝑔(𝑧𝑗 , 𝛾𝑗)

𝐽
𝑗=1    (20), 

and the corresponding P test regression is 

  𝑦𝑖 − 𝑚̂ = ∑ 𝛼𝑗(𝑔𝑗 − 𝑚̂) + 𝑴̂𝜃 + 𝑢𝑗
𝐽
𝑗=1     (21).  

The appropriate test statistic is then an asymptotic F test of the hypothesis that 

𝛼1 = 𝛼2 = ⋯ = 𝛼𝑗. 

 

5. Results  

 The summary statistics for all the explanatory variables in the non-linear estimation that are used 

throughout the study are presented in Tables 2.  In this section, we present formal statistical and empirical 

evidence about whether the two restrictions mentioned above are satisfied.   

 

5.1. Is the critical N concentration of the plant’s dry matter is constant at 1.2 percent? 

 Table 3 presents the estimation results using the von Liebig model by U.S. state. All the 

parameters are found to be significant at the one percent level, indicating a clear response for corn to 

applied N, except for the intercept, θ0, in Georgia in section A.  The values of θ, which represent the 

critical N concentration of corn yield in each U.S. state, range from 0.62-0.86. The hypothesis, 𝐻0:𝜃 =

1.2, is rejected in F tests for each state (in Alabama, F(1,77) = 140.19, p-value = 0.00; Georgia, F(1,45) = 

54.42, p-value = 0.00; Mississippi, F(1,58) = 359.41, p-value = 0.00; Nebraska, F(1,1630) = 3158.06, p-

value = 0.00). This implies that the maximum attainable yield is not associated with 1.2 percent N 

concentration in total dry matter. Using the parameter estimates in section A, fertilizer recommendations 

based on the 1.2 Rule overestimate the minimum N requirement of corn, (N
k
), necessary to achieve 

maximum yield potential. Fertilizer recommendations given to farmers can result to over-fertilization.  In 

Alabama for example, the estimated θ was 0.62 of plant’s dry matter. Since Stanford assumes that corn 

typically has a harvest index of 50 percent and a bushel of shell corn contains 49.3 pounds dry matter, 

making total above ground dry matter 98.6 pounds (grain plus stover), a corn plant only needs to absorb 

0.61 pounds of N to achieve one bushel of corn (98.6 x 0.62%) with adjustments on other factors, and not 

1.2 pounds of N.  
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 Using the estimates in Section B, where grain yield and N rate applied are used in the estimation, 

a farmer in Alabama needs to apply about 0.63 pounds N per bushel of corn instead of 1.2 pounds.
6
  If the 

yield goal is set at estimated P=80.39 bushels per acre (which is assumed to have 12% water), then its 

equivalent dry matter is equal to 70.74 bushels/acre grain and there is about 70.74 bushels/acre of stover.  

The total dry matter is then equal to 141.48 bushels/acre.  A fertilizer recommendation using a factor of 

1.2 pounds N per bushel of expected yield will have predicted a fertilizer need of about 170 pounds of N 

per acre. This is equivalent to about 81 pounds N per acre in excess of the predicted N based on this 

analysis with adjustments for fertilizer efficiency and existing nutrients in the soil.  The excessive N use 

due to Stanford’s 1.2 Rule is not acceptable from either an economic or environmental viewpoint.  The 

farmer will decrease his profit by $34 per acre if the 1.2 Rule is followed.  This varies with N and corn 

prices.  The cost presented here is based on N costing 42 cents per pound and corn price at $5 per bushel. 

The excessive N use is also a potential pollution hazard as fertilizer N application in excess of crop need 

dramatically increases residual N in the soil, which is likely to move into the ground or surface waters 

(Olsen et al., 1970; Lory, et al., 1995).  

 There are cases however when the Stanford’s 1.2 Rule may be correct and/or can also result to 

under-fertilization. We fail to reject the hypothesis,𝐻0: 𝜃 = 1.2, in Georgia (F(1,45) = 0.96, p-value = 

0.3322), Iowa (F(1,1995), p-value = 0.5522) and Illinois (F(1,717), p-value = 0.7795).  If indeed the 

correct functional form is linear von Liebig, then Stanford’s 1.2 Rule does not mislead in these states.  On 

the other hand, the hypothesis in Nebraska (F(1,1630) = 80.83, p-value = 0.00) is rejected suggesting that 

the 1.2 factor in Stanford’s rule needs to be adjusted given the correct functional form is indeed linear von 

Liebig. 

 While Stanford (1973) claimed that the critical N concentration of the plant’s dry matter is 

constant, our results show that θ across U.S. states take on different values and are statistically different 

from each other (Table 4).  The tests are performed by temporarily holding each θ in each state as null and 

testing in a pair-wise fashion with θ from a different state and against all the other θs. Results imply that 

the kinks of the linear von Liebig response curves do not line up on a common ray, which suggests that the 

critical concentration for corn (on N) varies in every state. For example, we reject the hypothesis that θAL = 

θGA = θMS = θNE (chi-square(3) = 99.98, p-value = 0.00). This is also evident when the predicted values of 

dry matter yield are plotted against the N uptake (Figure 3). Although the kinks seem to be quite close to 

each other especially those from Alabama, Georgia, and Mississippi, they do not line up on a common 

ray,
7
 hence not corroborating with Stanford’s findings. The estimated optimum N rate needed in each 

                                                           
6
 A bushel of corn is assumed to be 56 pounds. The total above ground yield on a per bushel basis is 112 pounds. 

7
 Nebraska appears to be much different than the other states in terms of yield plateau because the state has the 

highest irrigated land per country.  The water supply comes from the Ogallala Aquifer and reservoirs that capture 

water from snow-melt and rains.   
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specific state differs. On the other hand, using data on grain yield and N applied, the critical concentration 

of N is similar in Georgia and Iowa, Georgia and Nebraska, and Iowa and Illinois (Table 4).  We also test 

Stanford’s 1.2 Rule at the experimental station level and similar results are found.  

 

5.2. What is the correct functional form? 

 The non-nested hypothesis results based on a P test are reported in Table 5.   The tests are 

performed by temporarily holding each hypothesis as null and testing in a pair-wise fashion with each 

alternative and against all alternatives.  The quadratic functional form outperforms all the rival 

specifications in Illinois while the Mitscherlich-Baule model is more appropriate than any other 

alternatives in Nebraska, both on a pairwise comparison as well as in a collective test against all 

alternatives.  As for the other states, the results are inconclusive. In Alabama the null hypothesis that 

𝛼 = 0 rejected at 10 percent level suggests that the von Liebig model is not the correct specification when 

it is the null hypothesis.  Information is insufficient however to choose the correct model specification 

from among the alternative models.  Neither the polynomial functions nor the Mitscherlich-Baule function 

is rejected over any other model when they are the null hypothesis. In Iowa, the non-nested hypothesis test 

rejects square root and linear von Liebig functions but fails to reject quadratic and Mitscherlich-Baule 

functions.   Failure to reject these alternatives in Alabama and Iowa suggest that the corn response on 

yield and N fertilizer tends to be smooth and allows diminishing marginal productivity. If this is the case, 

then the marginal product schedule and the input and output prices matter in the determination of the 

economically optimum N rate. Given a non-zero price ratio, there is a difference between the yield 

maximizing and profit maximizing input levels. An optimum fertilization level is attained when the 

marginal product of fertilizer is equal to the fertilizer price and output price ratio.  In Georgia and 

Mississippi, none of the four specifications is rejected.  The data do not allow us to say much about which 

functional form best represents corn response to N fertilizer.  

 Out of the 42 experimental locations in the study, only in two locations that the linear von Liebig 

model outperforms all the rival specifications, both on a pairwise comparison as well as in a collective test 

against all alternatives. The non-nested hypothesis tests reject the linear von Liebig but fail to reject 

quadratic, square-root, and Mitscherlich-Baule in other 18 locations. In all the remaining experimental 

locations, the non-nested hypothesis tests favor none of the four rival specifications.  The results are 

inconclusive on what the best specification is to interpret the data set.   
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6. Conclusion 

The empirical results indicate no strong empirical evidence to support Stanford’s 1.2 Rule. The 

linear von Liebig production function is rejected in various locations and the kinks of the von Liebig 

response curves for different growing conditions do not lie on a ray out of the origin with slope 1.2. The 

production function and the critical concentration of N can vary widely both among states and within 

states, and therefore the level of optimal N can also vary. Site-specificity matters in making fertilizer 

recommendations.  

We conclude that there exists little scientific justification of the 1.2 Rule, and that its long-term 

and widespread use basically resulted from its long-term and widespread use. Given these, it is noteworthy 

to revisit the fertilizer recommendation algorithms that rely on the 1.2 Rule or yield goal-based 

approaches and test if they satisfy the two restrictions mentioned earlier. Unlike before, data from high-

quality agronomic experiments and the necessary statistical and empirical procedures for such an 

empirical test are now available.  

Several states in the Corn Belt have in recent years abandoned the 1.2 Rule and moved toward 

more data-driven recommendations.  One example is the use of the MRTN (“Maximum Return to N”) 

algorithm to make N make N fertilizer recommendations by many U.S. land grant universities (Sawyer et 

al. 2006; Sawyer, Laboski, and Nafzier 2012; Camberato and Nielsen 2015; Iowa State University 

Agronomy Extension 2015). The underlying premise of MRTN is to provide rate guidelines based directly 

from the results of many N response trials and flexibility for producers in addressing risk and rice 

fluctuation. Note however that this approach cannot be used to predict site-specific N requirements 

(Sawyer, Laboski, and Nafziger 2012). The N fertilizer rate guidelines need to be more site-specific to 

account for farmer’s specific crop growing conditions, crop and soil management, and climate which can 

vary greatly among fields, seasons, and years. This is an area of research in great need of interdisciplinary 

research among agronomists and agricultural economists.   

There is one caveat to keep in mind when interpreting our results. So far we only assume that the 

farmer is risk-neutral and the response function is non-stochastic. Farmer’s input decisions, including 

fertilizer use, are typically influenced by risks (e.g. risks from pests and other unmanageable inputs) and 

stochastic factors (e.g. soil variability, weather). That is the recognition that the nutrient choice does not 

determine mean response alone. And given farmer objectives other moments of the distribution might be 

important. How risk-aversion affects nutrient management depends on whether fertilizer is seen as a risk-

reducing or risk-enhancing input. An interesting extension of this study is the inclusion of risks and 

stochastic factors in the analysis.  
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Table 1. Description of experiment duration and N fertilizer rate, all sites

Location
Year of 

Experiment
Nitrogen Fertilizer Rate

Alabama

Belle Mina 1955, 1957, 1959 0, 50, 100, 200

Pratville 1955, 1957, 1960 0, 50, 100, 201

Thorsby 1956, 1958, 1959 0, 50, 100, 202

Georgia

Tifton 1958, 1959 0, 30, 60, 90, 120

Watskinville 1957, 1958, 1959 0, 30, 60, 90, 121

IA

Site0 1987 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site1 1986-1988 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site3 1986-1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site4 1988 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site5 1985-1987 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site6 1985-1987 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site8 1986-1988 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site9 1986-1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site10 1987-1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site11 1987-1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site12 1987-1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site13 1987-1989 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site14 1989 0, 50, 100, 150, 200, 250, 300

Site15 1989 0, 50, 100, 150, 200, 250, 300

Site16 1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Site17 1990 0, 25, 50, 75, 100, 125, 150, 200, 250, 300

Illinois

Monmouth 1983-2012 0, 60, 120, 180, 240

Perry 1980-1992 0, 60, 80, 120, 160, 180, 240, 320

Mississippi

Brooksville 1956, 1957, 1959 0, 50, 75, 100, 150, 200

Poplarville 1956-1959 0, 50, 75, 100, 150, 200



 17 

 

 

 

Location
Year of 

Experiment
Nitrogen Fertilizer Rate

Bellwood 2002-2003 87, 105, 112, 145, 162, 185, 187, 212, 235, 287, 335

Box Butte 2002-2004 0, 75, 100, 125, 150, 175, 200, 223, 300

Brosius 2004 0, 100, 150, 171, 200, 300

Brunswick 2002-2004 0, 50, 75, 100, 125, 150, 170, 175, 250

Cairo 2002-2004 0, 92, 100, 125, 132, 150, 156, 175, 192, 200, 210, 

225, 300

Clay Center 2002 0, 92, 125, 175, 225, 300

Concord 2002-2004 0, 50, 75, 100, 110, 125, 150, 175, 250

Funk 2004 0, 100, 150, 200, 207, 300

Mead 1969-2004 0, 50, 75, 90, 100, 119, 125, 131, 140, 150, 175, 180, 

250, 270

N. Platte 2002-2003 0, 100, 125, 150, 175, 180, 195, 200, 225, 300

North Bend 2004 0, 50, 100, 110, 150, 250

Paxton 2002-2003 0, 100, 125, 150, 175, 200, 212, 214, 225, 300

Pickrell 2003-2004 0, 50, 100, 123, 131, 150, 250

Scal 2002-2004 0, 50, 75, 100, 115, 125, 150, 175, 250

Scottsbluff 2002-2003 0, 75, 100, 125, 150, 175, 200, 225, 300

Spurgin 2004 0, 100, 150, 193, 200, 300

Wymore 2002 0, 75, 112, 125, 175, 250

Table 1. Continued…
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Table 2.  Descriptive statistics

Variable
No.of 

observation
Mean S.D. Min Max

Alabama

Grain yield (bu/acre) 72 69.49 18.83 18.50 108.90

Dry matter yield (grain + 

stover, cwt/acre)

72 68.49 18.56 18.23 107.33

Nitrogen applied (lbs/acre) 72 94.44 50.04 0.00 200.00

Nitrogen uptake (grain + 

stover, lbs/acre)

72 106.44 29.04 46.00 202.00

Georgia

Grain yield (bu/acre) 43 75.83 21.00 19.70 113.20

Dry matter yield (grain + 

stover, cwt/acre)

43 74.73 20.70 19.42 111.57

Nitrogen applied (lbs/acre) 43 82.33 34.70 0.00 120.00

Nitrogen uptake (grain + 

stover, lbs/acre)

43 87.02 26.83 23.00 149.00

Iowa

Grain yield (bu/acre) 1998 127.66 45.32 4.12 218.08

Nitrogen applied (lbs/acre) 1998 127.93 93.45 0.00 300.00

Illinois

Grain yield (bu/acre) 720 122.01 56.58 0.40 217.47

Nitrogen applied (lbs/acre) 720 136.67 99.68 0.00 320.00

Mississippi

Grain yield (bu/acre) 58 49.94 22.53 6.70 90.30

Dry matter yield (grain + 

stover, cwt/acre)

58 49.22 22.21 6.60 89.00

Nitrogen applied (lbs/acre) 58 94.83 55.16 0.00 200.00

Nitrogen uptake (grain + 

stover, lbs/acre)

58 62.81 31.81 9.00 153.00

Nebraska

Grain yield (bu/acre) 1633 212.84 43.45 41.31 302.80

Nitrogen applied (lbs/acre) 1633 164.99 90.01 0.00 335.00

Nitrogen uptake (grain + 

stover, lbs/acre)

1483 251.53 62.98 53.00 457.30
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Table 3. Production function parameter estimates using von Liebig model  by state

Alabama Georgia Iowa Illinois Mississippi Nebraska

A. Dry matter yield  vs N uptake
a

θ o 25.50** 10,35 - - 6.410** 64.79***

(9.20) (7.92) - - (2.06) (3.86)

θ N 0.421*** 0.764*** - - 0.700*** 0.603***

(0.10) (0.11) - - (0.03) (0.02)

θ 0.62*** 0.86*** - - 0.75*** 0.82***

(0.05) (0.05) - - (0.02) (0.01)

P 78.96*** 96.50*** - - 87.87*** 247.0***

(3.51) (3.33) - - (0.82) (1.12)

N
k

127.06***112.72*** - - 116,38 302.17***

(12.50) (7.83) (9.02) (3.60)

No. of obs 80 48 - - 61 1633

adj. R-sq 0.95 0.98 - - 0.98 0.98

B. Grain Yield  vs N rate applied

θ o 45.61*** 41.14*** 95.12*** 74.90*** 22.31*** 165.5***

(4.66) (7.46) (2.32) (4.16) 5.31) (2.63)

θ N 0.278*** 0.846* 0.401*** 0.578*** 0.303*** 0.404***

(0.05) (0.35) (0.04) (0.09) (0.06) (0.03)

θ 0.63*** 1.73*** 1.25*** 1.24*** 0.44*** 1.55***

(0.07) (0.54) (0.08) (0.14) (0.05) (0.08)

P 81.71*** 80.39*** 140.2*** 140.3*** 72.10*** 224.0***

(5.19) (2.71) (1.34) (2.43) (6.51) (1.19)

N
k

129.64*** 46.39*** 112.37***113.14***164.46***144.77***

(21.84) (14.81) (7.56) (13.41) (27.91) (7.98)

No. of obs 80 48 1998 720 61 1633

adj. R-sq 0.95 0.95 0.90 0.86 0.90 0.97

a
No available data in Iowa and Illinois

Standard errors in parentheses

STATE

VARIABLE

* p<0.05, ** p<0.01, *** p<0.001
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Table 5.  Nonnested Hypothesis Results Based on a P  Test by state

Linear von 

Liebig
Quadratic Square-root

Mitscherlich-

Baule

ALABAMA

Linear von Liebig - 0.14 1.13 0.11

Quadratic 1.48 - 2.45 0.79

Square-root 3.23* 2.47 - 0.36

Mitscherlich-Baule 3.87* 2.26 1.9 -

All alternatives 2.27* 1.54 1.02 1.57

GEORGIA

Linear von Liebig - 1.04 0.75 1.5

Quadratic 0.48 - 0.07 0.48

Square-root 0.16 0.07 - 0.11

Mitscherlich-Baule 0.23 0.13 0.01 -

All alternatives 0.1 0.58 0.76 0.82

IOWA

Linear von Liebig - 2.7 5.42** 1.28

Quadratic 74.95*** - 4.38** 1.39

Square-root 3.01* 2.62 - 1.83

Mitscherlich-Baule 3.92** 1.8 6.65** -

All alternatives 1.51 1.81 2.27* 0.69

ILLINOIS

Linear von Liebig - 0.4 1.06 5.24**

Quadratic 1.09 - 8.73*** 15.32***

Square-root 49.77** 2.59 - 17.55***

Mitscherlich-Baule 18.43*** 5.89** 7.86*** -

All alternatives 17.02*** 1.55 7.88*** 8.09***

MISSISSIPPI

Linear von Liebig - 0.00 0.01 0.37

Quadratic 2.07 - 0.06 0.78

Square-root 1.81 0.06 - 0.80

Mitscherlich-Baule 1.93 0.04 0.07 -

All alternatives 0.73 0.03 1.09 0.28

NEBRASKA

Linear von Liebig - 2.49 3.15* 0.00

Quadratic 39.45*** - 4.13** 0.01

Square-root 39.20*** 4.21** - 0.01

Mitscherlich-Baule 39.29*** 4.40** 2.44 -

All alternatives 6.57*** 1.5 0.22 0.04

* p<0.10, ** p<0.05, *** p<0.01

Null HypothesisState/                                          

Alternative 

Hypothesis


