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Abstract: Recent studies point to climate change being one of the long-term 

drivers of agricultural market uncertainty. To advance in the understanding 

of the influence of climate change on future agricultural market 

developments, we compare a reference scenario for 2030 with alternative 

simulation scenarios that differ regarding: (1) emission scenarios; (2) 

climate projections; and (3) the consideration of carbon fertilization effects. 

For each simulation scenario, the CAPRI model provides global and EU-

wide impacts of climate change on agricultural markets. Results show that 

climate change would considerably affect agrifood markets up to 2030. 

Nevertheless, market-driven adaptation strategies (production 

intensification, trade adjustments) would soften the impact of yield shocks 

on supply and demand. As a result, regional changes in production would 

be lower than foreseen by other studies focused on supply effects. 
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1 Introduction  

Agriculture is one of the most sensitive sectors to climate variations since production 

largely relies on climatic conditions (Adams et al, 1998, Gornall et al., 2010). 

Understanding the physical and socio-economic responses of the agricultural sector to 

future climate change scenarios is crucial for designing agricultural policies likely to 

have an impact on sustainable food security.  

To deal with this challenge, a number of studies have analysed the effects of climate 

change on crop yields. These studies have shown that, while there is a small impact on 

global world food production, geographical differences are significant (Parry et al. 

2004, Tubiello and Fischer 2006). Focusing on EU agriculture, most of the studies 

indicated a strong regional divergence: climate change may produce positive effects on 

average crop yields in northern Europe, but effects are likely to be mostly negative in 

southern Europe (Wolf and Van Diepen 1995, Donatelli et al. 2012).  

Nevertheless, both biophysical and economic aspects need to be considered and 

combined in order to study the full range of climate change impacts on agriculture 

(Hillel and Rosenzweig, 2010). Seminal works by Tobey et al. (1992) and Reilly and 

Hohmann (1994) attempted to anticipate how climate change will affect future food 

production and prices. They concluded that the consequences of climate change on 

agriculture would be diffused throughout the world since the market acts as a significant 

adjustment mechanism. Recent global assessments of climate change impacts confirm 

these early findings (Nelson et al. 2010, Hertel et al. 2010, Lobell et al. 2011).  

With regard to the European Union, a high proportion of the studies analysing the 

economic impacts of climate change focus on selected regions irrespective of changes in 

agricultural production elsewhere (Ciscar et al. 2011, Möller et al. 2011, Shrestha et al. 

2013). It is only very recently that several authors have analysed climate impact on 

agriculture at the regional level in the EU while considering international trade (Blanco 

et al. 2014a, Frank et al. 2014).  

The aim of this paper is to assess the influence of climate change on agriculture in terms 

of food prices and market balances up to 2030. The innovative side of our approach is to 

combine the biophysical and economic impacts of climate change both globally and at 

subnational level within the EU, based on the Fifth Assessment Report of the 



3 
 

Intergovernmental Panel on Climate Change scenarios (IPPCC AR5), while taking into 

account the uncertainty with respect to CO2 fertilization effects. 

2 Methodology 

2.1 Bio-economic modelling approach 

In order to assess the biophysical and economic impacts of climate change on 

agriculture, we enter exogenous yield changes from biophysical simulations (WOFOST 

and LPJmL models) into the CAPRI agro-economic model, capable of predicting global 

and EU-wide impacts on agrifood markets. As long-term macroeconomic and 

agricultural projections are highly uncertain, we refrain from using a very long-range 

projection period. Thus, the time horizon chosen for this study is 2030. In our analysis 

we compare a reference scenario for 2030 (current climate or 2010 climate) with several 

simulation scenarios (representing different crop yield projections over the next 20 

years). 

CAPRI (Common Agricultural Policy Regionalized Impact Modelling System) is a 

partial equilibrium model for the agricultural sector developed to assess the impact of 

the Common Agricultural Policy (CAP) and trade policies from global- to regional-

scale with a focus on the European Union (Britz and Witzke, 2012). It is a comparative 

static and spatial equilibrium model solved by iterating supply and market modules:  

• The supply module consists of a set of regional agricultural supply models, covering 

all EU regions (NUTS 2 level), Norway, the Western Balkans and Turkey. This 

module captures the details of farming decisions for all the activities covered by the 

economic accounts for agriculture (EAA), as well as the interactions between 

production activities and the environment. Major outputs of the supply module 

include crop and livestock activity levels, yields, input use, farm income, nutrient 

balances and GHG emissions. 

• The market module is a global spatial multi-commodity model, where about 50 

commodities – including primary and secondary agricultural products – and around 

40 trade blocs (individual countries or country groups) are modelled as a constrained 

system of equations. Major outputs of the market module include bilateral trade 

flows, market balances and producer and consumer prices for the agricultural 

commodities and world country aggregates. 
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The CAPRI baseline describes the agricultural situation in a future year, the so-called 

simulation year, based on the situation in historical years and expected developments 

from the base year to the simulation year. A distinguishing feature of the CAPRI 

baseline is its sub-EU regional resolution, down to regions at NUTS 2 level within EU-

28 member states. Therefore, the CAPRI baseline reflects the likely developments in 

agricultural markets for the year 2030 time horizon on a global to regional scale under 

exogenous assumptions (population growth, technological change, GDP growth, 

inflation rate, exchange rate, crude oil price) and a status quo policy setting. For a 

detailed description of the baseline scenario as well as the baseline results, see Frank et 

al. (2014). 

2.2 Definition of simulation scenarios 

We defined different scenarios to embrace the whole variability of future agricultural 

market developments due to uncertainty about future crop yields, caused by climate 

change and carbon fertilization effects. The scenarios are based on a plausible 

combination of representative concentration pathway (RCP) and shared socioeconomic 

pathway (SSP) taken from the Intergovernmental Panel on Climate Change (IPCC) 

Fifth Assessment Report. The RCP (climate signal) represents the future mitigation and 

adaptation challenges as the level of radiative forcing, and the SSP denotes mitigation 

and adaptation capacities “but also system exposure to climate impacts” (von Vuuren et 

al. 2011). The RCPs correspond to four different possible trajectories of future 

greenhouse gases concentration, expressed by the level of possible radiative forcing 

values (2.6, 4.5, 6 and 8.5 W/m2). Regarding the SSPs, there are five different 

projections: SSP 1 (sustainability), SSP 2 (middle of the road), SSP 3 (fragmentation), 

SSP 4 (inequality) and SSP 5 (conventional development). We chose to use SSP 2 since 

the socio-economic conditions are developing rather sluggishly. Therefore, the selected 

pathway represents a storyline consistent with the socio-economic developments 

observed in recent decades.  

The chosen time horizon is 2030, as our study sets out to analyse the long-term impacts 

of climate change on agrifood markets.  

The scenarios differ with respect to: 
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1) Climate projections according to different climate conditions forecasted by two 

different general circulation models (GCM): HadGEM2-ES (Hadley Centre, UK 

Meteorological Office) and IPSL-CM5A-LR (Institute Pierre-Simon Laplace, 

France). The reason for using more than one GCM was to include all possible 

different climate projections in order to take into account the whole spectrum of 

uncertainty. These two GCMs were selected because they provided data for the 

types of crop yield simulation models used. 

2) Two different RCPs (4.5 and 8.5) used to compute the two GCMs for the climate 

change scenario. The employed RCPs reflect two radiative forcing levels that 

represent different anthropogenic-induced climate challenges: a high level 

according to RCP 8.5 (highest scenario, with a radiative forcing of 8.5 W/m2 by 

2100 and a subsequent upward trend) and a lower level according to RCP 4.5 

(medium-low scenario targeting stabilization at 4.5 W/m2 after 2100). 

3) The CO2 fertilization effect surrounding which there are also major uncertainties. 

Thus, all biophysical simulations were performed with and without the carbon 

fertilization effect. 

Table 1: Scenario characterization 

Code RCP GCM Crop model CO2 effects 

Reference Present climate None None None 

HADGEM2_8.5_CO2 RCP 8.5 HadGEM2 WOFOST- LPJmL Full CO2 

IPSL_8.5_CO2 RCP 8.5 IPSL WOFOST- LPJmL Full CO2 

HADGEM2_8.5_noCO2 RCP 8.5 HadGEM2 WOFOST- LPJmL No CO2 

IPSL_8.5_noCO2 RCP 8.5 IPSL WOFOST- LPJmL No CO2 

HADGEM2_4.5_CO2 RCP 4.5 HadGEM2 WOFOST- LPJmL Full CO2 

IPSL_4.5_CO2 RCP 4.5 IPSL WOFOST- LPJmL Full CO2 

HADGEM2_4.5_noCO2 RCP 4.5 HadGEM2 WOFOST- LPJmL No CO2 

IPSL_4.5_noCO2 RCP 4.5 IPSL WOFOST- LPJmL No CO2 

 

For EU regions, the impact of climate change and carbon fertilization on crop yields 

was simulated using the WOFOST (World Food Studies) model, developed at 
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Wageningen University (Van Diepen et al. 1989, Boogaard et al. 1998). We used yield 

changes at a 25 km grid resolution all over the EU for nine of the most grown crops 

(wheat, maize, barley, rye, rice, field beans, rapeseed, sunflower, sugar beet and potato) 

across the 1990-2060 period. The results of the simulations were aggregated at regional 

level (NUTS 2) using regional statistics on crop areas. For more details on the 

biophysical simulations, see Blanco et al. (2014b). 

For non-EU countries, we used crop yield projections supplied by the ISI-MIP 

modelling initiative1. In particular, we used yield projections by the LPJmL model 

(Bondeau et al. 2007) for the 1990-2060 period and the following seven crops: wheat, 

maize, rice, rapeseed, soybean, sugar beet and sugar cane. LPJmL projections were 

available for both rainfed and irrigated crops and the eight simulation scenarios 

specified above. Statistics on crop areas were used to aggregate grid-level data to the 

spatial units of the global CAPRI model (trade blocs). 

3 Results and discussion 

In order to assess the influence of climate change on agriculture in terms of food prices 

and market balances, we compared the baseline with the different scenarios outlined 

above. The baseline represents current climate and SSP2, which assumes a continuation 

of recent trends up to 2030 (Frank et al. 2014). 

The analysis focuses on climate change impacts on global and regional production for 

four main crops: wheat, maize, soybean and rapeseed. To evaluate the role of trade 

adjustment we particularize it for wheat. 

3.1 Climate-induced effects on global agricultural production and prices 

Results from biophysical models show variations in crops yields as a consequence of 

climate change. Analysing the different scenarios worldwide, we observe that yields 

increase when CO2 effects are considered and decrease when carbon fertilization is left 

out of the equation, except for the HADGEM2 scenario with RCP 4.5 and without CO2 

effects, where yields for maize, rapeseed and soybean rise slightly.  

                                                 
1 Grid data are available for download from PIK (http://esg.pik-potsdam.de/esgf-web-fe/) 

http://esg.pik-potsdam.de/esgf-web-fe/
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Figure 1: LPJmL-simulated world changes in yields (2010 - 2030) 

 

For production, Figure 2 shows the scenarios for maize and rapeseed, with and without 

the carbon fertilization, conform to a general pattern: production increases with full 

fertilization and the opposite applies without carbon fertilization. Wheat also follows 

this pattern with exception of scenario HADGEM2 RCP 4.5 without CO2 effects which 

presents a modest increase in production. Soybean production increases in all scenarios 

except for scenarios IPSL without carbon fertilization.  

With regards to the variations between the scenarios based on the use of different RCP 

(4.5 and 8.5), the highest pathway does not appear, surprisingly, to yield the highest 

production level in the case of full carbon fertilization. In the case of the HADGEM2 

projection, the amount produced under a 4.5 RCP is greater than yields for an 8.5 RCP. 

This does not apply in the IPSL model. Therefore, the use of different RCPs proves to 

have mixed results.   

The variability of the reported results corroborates the need to use different climate 

models, as well as different RCPs to comprehend and unveil uncertainty. 
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Figure 2: World production (% change from the baseline) 

 

With respect to prices, small variations in production appear to have big impacts on 

prices (Figure 3). A possible explanation is the low elasticities of supply and demand 

for most agricultural commodities. The price of wheat, maize and rapeseed appears to 

rise (fall) when production decreases (increases), although this is not always the case for 

soybean. 

 
Figure 3: World producer prices (% change from the baseline) 
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3.2 Climate-induced effects on regional agricultural production  

Climate change effects are different throughout the world, and we carry out a more 

thorough geographical analysis. Thus, we have studied the production variations of the 

main exporters and importers of each crop. 

The major net exporters of wheat are the European Union (EU-28), the USA, Canada 

and Australia and New Zealand, with the major importers being the Middle East and 

North Africa (MENA)2, South-East Asia (SEA)3, Sub-Saharan Africa (SSA) and Brazil 

(BRA). 

A common feature of wheat is that a major increase or decrease in production is caused 

by changes of the same sign in yields. Wheat production is determined by its own yields 

rather than by price variation, which might be a consequence of an inelastic supply. 

Figure 4 below shows that Canada presents the most significant variability in 

production, ranging from -9% in the IPSL projection without the CO2 effect and with a 

4.5 RCP to 13% in the HADGEM2 scenario with the CO2 effect and a 4.5 RCP. This 

variation corresponds to changes in yield. In the case of the EU, we have observed that 

an increase in production is related to a 4.5 RCP, whereas a decrease is caused by the 

8.5 RCP, irrespective of carbon fertilization. 

   

                                                 
2 Middle East and North Africa (MENA) includes Middle East, North Africa and Turkey. 
 
3 South-East Asia (SEA) consists of Indonesia, Malaysia, South Korea, Vietnam, Thailand, Japan, Taiwan 



10 
 

 
Figure 4: Wheat production (% change from the baseline) 

 

The key maize exporters in the world are the USA, Argentina and Brazil. The main 

importers that we identified are South and Central America (OSA) -excluding Brazil 

and Argentina -, SEA and MENA.  

Following the pattern of wheat, maize production also appears to be more influenced by 

yields than by global prices, with Argentina and the USA having the biggest variability 

in production. 
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Figure 5: Maize production (% change from the baseline) 

 

With regard to soybean, the main exporters are the USA, Brazil and Argentina, while 

the major importers are the China, EU-28 and SEA. 
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variation is observed for a 4.5 RCP, except in Argentina where the highest change 

coincide with 8.5 RCP. Taking into account yield changes (Annex 1), we find that these 

are significantly higher in the case of Argentina and USA when carbon fertilization 

effects are taken into account. This suggests that there is a price-related adjustment in 

production (Figure 3) since the world soybean market price increases when CO2 effects 

are disregarded. 
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Figure 6: Soybean production (% change from the baseline) 

In the case of rapeseed, Canada, EU-28 and Australia and New Zealand are the main 

exporters, whereas China, EU-28 and SEA are the main importers. 

Figure 7 highlights that, contrary to expectations, rapeseed production in Canada 

increases most when carbon fertilization is not considered. This could be explained by 

taking into account changes in market prices, as illustrated in Figure 3, where rapeseed 

prices rise when CO2 effects are not taken into account. 

 
Figure 7: Rapeseed production (% change from the baseline) 
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The level of production is not only determined by changes in yields, but also by global 

price variations. Hence, we observed that the production of wheat and maize, which can 

be considered staple foods, follows the pattern of changes in yields, whereas soybean 

and rapeseed production varies significantly with the global price level. 

On the other hand, we also observed that extreme changes in production level are not 

always determined by the highest RCP, as we might have expected.  

3.3 The role of trade adjustments 

To illustrate how trade adjustments counterbalance the effects of climate change on 

production, we focused on the wheat trade, considering the European Union and its 

trading partners. We focussed the analysis for one GCM, HADGEM2, with and without 

CO2, for a 4.5 and 8.5 RCP, since it highlights sizeable variations in global production 

(Figure 2). 

As explained above, wheat production in the European Union increases when 

considering RCP 4.5 with and without CO2 but decreases for RCP 8.5 (Figure 4). 

Surprisingly, increased production results in import increases, whilst exports reduce, 

especially for those scenarios which consider carbon fertilization. This remarked decline 

in wheat exports is related to a drop in the price of this product in scenarios considering 

CO2 effects (Figure 3), but also to an increase in wheat demand. Therefore, we 

observed a significant increase in the use of wheat for animal feed, which varies 

between 4 and 16%, whereas human consumption rises by only 0.01-0.06% for all 

scenarios with respect to the baseline. As shown in Figure 8, this change in wheat 

demand is linked to maize demand, since wheat acts as a substitute of maize, whose 

production in the EU is negatively affected by climate change. 
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Figure 8: Feed use in European Union by product (% change from baseline) 
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the increase in wheat demand for feed (Figure 9). The significant decline in exports 
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these regions from Canada (Annex 2). 

 

-11000

-9000

-7000

-5000

-3000

-1000

1000

3000

5000

7000

9000

45_HAD_CO2 85_HAD_CO2 45_HAD_NOCO2 85_HAD_NOCO2

Maize

Oil cakes

Wheat

Barley

Soya cake

Rapeseed cake

Other



15 
 

 
Figure 9: Wheat trade in European Union: changes in a) imports and b) exports from 

baseline (values in 1000 t). 

 

4 Conclusions 
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but having divergent effects across regions and sectors depending on the magnitude and 

direction of yield changes and their impact on productivity.  

The results of this study suggest that agrifood market projections up to 2030 are very 

sensitive to changes in crop productivity and, therefore, to the uncertainties linked to 

climate change. They also show that market forces and changes in competitive 

advantages can reverse the effects of yield changes. 
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Annex 1. LPJmL and WOFOST simulated world changes in yields (2010 - 2030) for wheat, maize, soybean and rapeseed 

WHEAT 45_HAD_CO2 85_HAD_CO2 45_IPSL_CO2 85_IPSL_CO2 45_HAD_noCO2 85_HAD_noCO2 45_IPSL_noCO2 85_IPSL_noCO2 
EU28 6.1 2.0 2.5 1.8 0.3 -5.2 -2.9 -5.3 
USA 0.1 6.1 2.4 1.2 -4.9 -0.4 -2.8 -5.2 
CAN 14.5 10.7 -4.3 4.0 7.9 2.2 -10.3 -3.9 
ANZ 3.4 -4.9 0.6 -0.8 -1.6 -11.0 -4.4 -7.1 
JAP 2.5 6.7 3.2 4.6 -4.0 -1.0 -0.1 0.5 
BRA 3.4 1.5 1.8 1.6 -4.6 -8.9 -5.5 -8.1 
MAIZE 45_HAD_CO2 85_HAD_CO2 45_IPSL_CO2 85_IPSL_CO2 45_HAD_noCO2 85_HAD_noCO2 45_IPSL_noCO2 85_IPSL_noCO2 
USA 6.0 2.3 0.2 3.4 1.6 -3.8 -4.2 -2.1 
ARG 1.5 13.8 -5.7 4.0 -3.5 7.4 -10. -1.7 
BRA -1.7 -1.8 -2.6 -3.3 -2.4 -2.8 -3.2 -4.2 
MEX 8.0 5.1 -2.1 2.1 5.6 2.2 -5.0 -1.7 
JAP 2.0 1.1 2.0 4.1 0.1 -1.0 1.2 2.8 
SOYBEAN 45_HAD_CO2 85_HAD_CO2 45_IPSL_CO2 85_IPSL_CO2 45_HAD_noCO2 85_HAD_noCO2 45_IPSL_noCO2 85_IPSL_noCO2 
USA 14.8 11.5 5.1 8.5 4.3 -2.3 -5.1 -4.6 
BRA 6.0 2.9 3.8 2.6 -5.8 -12.3 -7.1 -11.2 
ARG 13.4 25.6 -8.0 14.7 -1.4 6.1 -22.7 -6.0 
EU28 4.5 7.3 7.6 9.4 -2.8 -1.8 1.0 1.1 
CHI 10.8 10.0 9.0 9.1 1.2 -1.8 0.6 -1.5 
RAPE 45_HAD_CO2 85_HAD_CO2 45_IPSL_CO2 85_IPSL_CO2 45_HAD_noCO2 85_HAD_noCO2 45_IPSL_noCO2 85_IPSL_noCO2 
CAN 15.6 12.1 -7.2 5.1 8.3 2.5 -13.6 -3.7 
EU28 1.2 1.8 3.8 4.0 -6.2 -7.7 -3.4 -5.5 
ANZ 4.9 -6.8 -5.3 -5.1 -1.0 -14.0 -10.9 -12.5 
CHI 6.1 7.2 8.3 7.7 0.4 -0.2 2.8 0.7 
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Annex 2. Wheat exports from major exporters (% change from baseline). Baseline 

values in 1000 t. 

From EU to 
 Baseline 45_Had_CO2 85_Had_CO2 45_Had_noCO2 85_Had_noCO2 
REU 1025 -5.7% -9.4% -1.0% -4.0% 
MENA 16739 -13.5% -21.5% 2.6% -5.5% 
SSA 7715 -12.3% -19.6% -2.8% -10.6% 
OSA 463 -19.9% -39.7% 0.1% -21.8% 
IND 32 -84.9% -81.5% 22.3% 63.9% 
SEA 1300 -25.7% -29.4% -0.2% -5.0% 
OAS 1505 -44.3% -48.3% 4.9% -0.6% 
From USA to 
 Baseline 45_Had_CO2 85_Had_CO2 45_Had_noCO2 85_Had_noCO2 
EU28 556 27.4% 64.4% 7.1% 34.5% 
REU 5 52.0% 66.4% -1.6% 6.5% 
MENA 1691 19.0% 47.3% 2.2% 24.0% 
SSA 3181 11.0% 24.4% -0.6% 10.2% 
CAN 312 -25.8% -8.7% -24.4% -7.5% 
BRA 895 -4.4% -2.8% -1.4% 0.0% 
OSA 8584 0.5% 5.0% -4.4% -0.6% 
SEA 11180 -1.1% 2.7% -0.1% 3.0% 
OAS 3438.1 -32.8% -30.2% -1.8% 2.6% 
From Canada to 
 Baseline 45_Had_CO2 85_Had_CO2 45_Had_noCO2 85_Had_noCO2 
EU28 29 42.2% 54.2% 34.7% 45.9% 
REU 80 32.0% 28.4% -0.7% 1.1% 
MENA 12438 20.1% 14.5% 14.0% 6.1% 
SSA 1141 44.2% 41.9% 26.1% 20.5% 
USA 3123 2.0% -9.7% 19.4% 9.4% 
BRA 524 36.8% 15.6% 20.2% -1.9% 
OSA 3548 23.5% 17.3% 10.2% 2.8% 
SEA 806 24.0% 19.1% 23.8% 15.0% 
OAS 383 -21.1% -21.8% 33.2% 23.3% 
From Australian and New Zealand to 
 Baseline 45_Had_CO2 85_Had_CO2 45_Had_noCO2 85_Had_noCO2 
EU28 28 14.4% 8.7% 11.3% 9.6% 
MENA 944 -6.0% -22.7% -8.9% -23.3% 
SSA 2259 8.3% -9.3% 1.3% -14.1% 
SEA 9707 -2.2% -8.9% 0.6% -5.9% 
OAS 2028 -1.1% -26.6% 5.1% -19.9% 

* Country aggregates: Rest of European Union (REU), Middle East and North Africa (MENA), Sub-

Saharan Africa (SSA), Canada (CAN), Brazil (BRA), Argentina (ARG), Other South and Central 

America (OSA), South East Asia (SEA), India (IND), China (CHI), Other Asia (OAS). 
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