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Abstract.  

This study evaluates normative (NMP) and positive (PMP) mathematical 

programming methods for the recursive dynamic agent-based sector model 

SWISSland, which determines production decisions for 3400 farm-level models for the 

ex-post period 2005 to 2012. This study clearly shows that PMP for crop production 

activities improves the forecasting performance of farm based agent-based models 

compared to NMP. It also shows that combining PMP and NMP could be a suitable 

approach for agent-based sector models. For short-term forecast PMP for all 

production activities and PMP combined with NMP lead to similar results. The 

results either show that PMP calibration based on revenues and PMP calibration 

based on the entropy approach lead to similar results. By combining PMP with NMP 

some limitations of PMP could be reduced. In branches where the adoption of new 

production activities is expected due to market, the NMP approach could be an 

appropriate solution.  
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1. Introduction 

Agricultural policy models apply either normative (NMP) or positive mathematical programming 

(PMP) to analyse the impact of policy changes. The main difference between the two is that NMP 

models are not calibrated to historical data, while PMP could reproduce observed data.  

Studies evaluating the practice of PMP more than 15 years after the first paper on this subject 

published by Howitt in 1995 show that it has become very popular in aggregated policy-decision 

support models (Garnache et al., 2014; Heckelei et al., 2012). This is because it guarantees exact 

calibration to the base year and avoids predicting overspecialisation without adding weakly justified 

constraints to the model formulation (Kanellopoulos et al., 2010). The popularity of PMP is 

underscored by the fact that the majority of both European and non-European aggregated sector 

models1 have used it for the calibration of crop and animal production since 2000.  

All these studies show that PMP is less popular in farm-level models, however. To date, only a few 

farm-level models have used PMP for calibrating the crop activities of arable farms (Kanellopoulos 

et al., 2010) and both animal and crop production activities of dairy-farm models (Buysse et al., 

2007). One of the reasons for the limited use of PMP in this context is that farm-level models 

generally only take account of activities observed during the reference period, even though new 

policies and market conditions allow farmers to undertake new production activities. Buysse et al. 

(2007) show that PMP is recommended for farm-level models when only modifications of existing 

policies are analysed, whilst NMP is preferred for modelling policy changes that are more radical. 

A review of the most popular agent-based models which apply mathematical programming to 

determine the production decisions of single farm agents leads to the same results. confirms this 

preference. To give several examples, the German AGRIPOLIS model (Happe 2004), the Italian 

RegMAS model (Lobianco and Esposti, 2010) and the agent-based software package MP-MAS 

(Schreinemachers et al., 2011) still use NMP.  

The aim of this study is to assess the best mathematical programming method for the recursive 

dynamic agent-based sector model SWISSland, which determines production decisions for 3400 

farm-level models based on mathematical programming, and extrapolates production results to 

sectoral scale. We analyse the forecasting performance of NMP and PMP for farm-level models. 

Because there is not only one PMP approach in practice, but rather several different mathematical 

                                                           
1

 Examples of PMP-based, aggregated models representing either farm-type groups or whole regions are the German FARMIS model (Offermann 

et al., 2005), the Italian FIPIM model (Arfini et al., 2011), the Spanish PROMAPA model (Júdez et al., 2008), the European CAPRI-FARM model 
(Gocht and Britz, 2011), the Swiss SILAS model (Mann et al., 2003), the German-Austrian Glowa-Danubia Decision-Support System model (Winter, 

2005), the European CAPRI-REG model (Britz and Witzke, 2014), the Dutch DRAM model (Helming, 2005), the USDA REAP model (Johansson et 

al., 2007), the Californian SWAP model (Howitt et al., 2012) and the New Zealand model NZFARM (Daigneault et al., 2014). 
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versions of PMP which all influence the forecasting performance of the model, this study reviews 

the most frequently used approaches for application in the agent-based model SWISSland. Based on 

the finding of Buysse et al. (2007) we further investigate whether the forecasting performance of 

farm-level models could be improved by applying PMP for branches with minor policy changes, 

and by NMP for branches with further-reaching policy changes. This is why we are validating a 

combination of PMP for crop-production activities and NMP for animal-production activities for 

the ex-post period 2005 to 2012, in which policy changes in animal production (abolition of the 

milk quota in 2007, introduction of direct payments for dairy farms) in Switzerland were further-

reaching than in the crop-production sector (tariff-rate decrease for cereals).  

Section 2 of this paper gives a brief overview of the most relevant PMP versions considered for the 

evaluation. Section 3 gives an overview of the agent-based sector model SWISSland. In Section 4, 

we describe the different PMP and NMP modelling options tested within the SWISSland model for 

the ex-post period 2005 to 2012. By drawing a comparison with the historical pathway, Section 5 

illustrates the forecasting performance of the single-farm models and Chapter 6 provides 

conclusions as to how PMP could be used in agent-based modelling.  

2. NMP and the applied versions of PMP  

NMP has been used in agricultural economics since more than 50 years now. A NMP model starts 

from a decision rule of the decision maker, which determines the levels of the different variables 

when aiming to optimise the objective set by the decision maker (Hazell and Norton, 1986). NMP 

farm models often maximize the profit in the objective function according to equation 1: 

max 𝑍 = ∑ 𝑝𝑖𝑥𝑖 − 𝑐𝑖𝑥𝑖𝑖          (1)  

In equation 1, parameter 𝑍 denotes the objective function value, 𝑝 is the vector of product prices, 𝑐 

is the vector of variable costs, 𝑥 the vector of production levels, and 𝑖 is the index for the production 

activities. NMP models assuming constant marginal costs in the objective function become 

generally known as linear models (LP). 

NMP does not guarantee the reproduction of the observed data. Positive mathematical programming 

models have been developed to overcome this normative character of NMP. The general idea of 

PMP is to use information contained in shadow values of an NMP model which is bound to 

observed activity levels by calibration constraints (Step 1). Based on these shadow values, a non-

linear objective function is specified such that observed activity levels are reproduced by the 

optimal solution of the new programming problem without bounds (Step 2). For the mathematical 

details of this two-step procedure, see Heckelei et al. (2012), Sanders (2007), or Gocht et al. (2005). 
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PMP has been criticised for many years for a number of methodological and theoretical reasons. 

One of these is that arbitrary assumptions necessary for calibration will affect forecasting 

performance (Kanellopoulos et al., 2010). Another is the weak – or at least unclear – theoretical 

basis of PMP and the difficulties in justifying the functional forms used for PMP calibration (Doole 

and Marsh, 2013; Heckelei and Woolf, 2003). Several versions of PMP have therefore been 

developed which can either be differentiated by type of objective function and method for 

estimating the matrix coefficients of the objective function on the one hand, or by the calibration 

method on the other hand. Regarding the type of objective function and the calibration method this 

study uses an “extended variant” of PMP published by Kanellopoulos et al. (2010), which was 

developed for the simulation of single farm models. This variant assumes increasing marginal costs 

in the objective function whilst returns to scale remain constant (see Kanellopoulos et al., 2010):  

max 𝑍 = ∑ 𝑝𝑖𝑥𝑖 − 𝑑𝑖𝑥𝑖    −  1

2
 𝑥𝑖𝑄𝑖𝑖𝑥𝑖       𝑖           (2) 

In equation 2, parameter 𝑑 denotes the vector of the linear term of the quadratic objective function, 

whilst 𝑄 denotes the symmetric, positive (semi-)definite matrix of the quadratic cost term. For 

determining the coefficients 𝑑𝑖 and 𝑄𝑖𝑖 shadow values 𝜆𝑖    for both marginal and preferential 

activities need to be recovered from a primal LP model described in equation 1. Because such a LP-

model is not able to recover shadow values for the marginal activities, increasing marginal costs are 

only assumed for the preferential activities while constant costs are applied for marginal activities. 

To overcome this problem the “extended variant” of PMP was developed. This variant is able to 

estimate a Q matrix either for marginal and preferential activities by using exogenous land rents g in 

the linear objective function for the available area 𝑦 according to equation 3: 

max 𝑍 = ∑ 𝑝𝑖𝑥𝑖 − 𝑐𝑖𝑥𝑖 − 𝑔 ∗ 𝑦𝑖        (3) 

 

Most PMP models estimate the matrix coefficients 𝑄 and 𝑑 of the quadratic cost terms based on 

exogenous supply elasticities from the literature. Due to the absence of empirical supply elasticities 

for Switzerland this study tests two different approaches. The first approach estimates the matrix 

coefficients  

𝑄𝑖𝑖 =
1

𝜌𝑖𝑖
∗

𝑟𝑒𝑣𝑒𝑛𝑢𝑒∗

𝑥𝑖 ∗
           (4) 

 

and 

𝑑𝑖 = 𝑐𝑖 − 𝜆𝑖 − 𝑞𝑖𝑖𝑥𝑖
∗,          (5) 

 

based on revenues whilst all supply elasticities 𝜌𝑖𝑖 were set to the value of one. Parameter 𝑥𝑖
∗ denotes 

the observed production levels of the base year and parameter 𝜆 the shadow values of calibration 

constraints. The second approach estimates the matrix coefficients based on maximum entropy 
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(ME), which was proposed by Paris and Howitt (1998). In this study, we use the maximum entropy 

approach to recover all the n*(n+1)/2 elements of the Q matrix as well as the Cholesky factorisation 

of this Q matrix to guarantee that the recovered Q matrix is symmetric, positive and semi-definite. 

The maximum entropy technique in combination with the PMP calibration allows recovering a 

quadratic activity variable cost function accommodating complementarity and substitution relations 

between activities. To estimate the parameter vector d and the matrix Q of the variable cost support 

points for the parameters were defined. As a starting point one could center the linear parameters d 

around the observed accounting cost per unit of the activity. For example, we could choose 5 

support points for each parameter. The entropy problem is maximized using a support-space 

consisting of a Zd vector and a ZQ matrix. Because no cross cost effects are expected between crop 

and animal activities, the linear vector d of the quadratic activity cost function is partitioned into a 

vector including the crop activities and a second vector including the animal activities. Similarly, 

the quadratic matrix Q is partitioned into a matrix including the crop activities and a second matrix 

including the animal activities.  

3. The SWISSland Model  

The agent-based SWISSland2 model (‘SWISSland’ being the German acronym for ‘Structural 

Change Information System Switzerland’) depicts 3400 FADN farms as realistically as possible in 

terms of their operational and cost structures as well as their social behaviour, as a representative 

sample of the approx. 50 000 family farms in Switzerland. The model allows us to assess the 

consequences of agricultural-policy measures, the impacts of both internal and external market 

influences, and the effects of heterogeneous site conditions specific to the alpine region on income 

trends, structural change and land management in the Swiss agricultural sector. At the same time, it 

is meant to enable us to make differentiated statements for regions and farm groups. SWISSland 

serves primarily as a policy advisory tool (Möhring et al., 2010).  

The key objects of the model are agents representing real-life farms. We are dealing here with 

family farms operating year-round whose overall income is predominantly generated on the 

agricultural holding, or with alpine farms operating exclusively in the mountain region, primarily in 

the summer at an altitude of more than 1000 m.a.s.l. The model simulates a forecast period of up to 

30 calendar years, corresponding more or less to a generational cycle of the farming family. The 

adaptive reactions of the individual agents and their behaviour when interacting with other agents 

are depicted in annual steps. The model flow described in Figure 1 applies for each time interval. 
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 A detailed technical description of the model can be found on www.swissland.org. 

http://www.swissland.org/
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The annual iteration process is preceded by an initialisation step which is necessary for processing 

all input information for the model in the form required in each case. 

The modelling of the behaviour of the agents substantially influences the manner in which the 

actors make their decisions. The behaviour of the individual agents is divided into fairly small, 

independent units (‘microbehaviours’), individually parameterised, and modelled as an autonomous 

process (Kahn, 2007). Table 1 identifies the behavioural models previously modelled in SWISSland 

(categorised according to An (2012)). Also listed are the various data sources and the methods 

underlying the data survey.  

The model is not spatially explicit. The FADN agents are distributed throughout Switzerland, and 

do not actually have neighbourly relationships with one another. Despite this, and to enable the 

simulation of the land market between the agents, the spatial structures of representative reference 

municipalities were implemented in the model (Mack et al., 2013). This allows both the home farms 

and the alpine farms to interact on the land market. These interactions are only possible within the 

lease regions and with (constructed) neighbouring agents, however. A lease algorithm enables the 

plot-by-plot allocation of the land of exiting farms to the remaining farms operating in the 

immediate vicinity. Exiting farms are those where the farm manager is not passing on the farm to a 

successor, or those where the potential successor decides against farm takeover on economic 

grounds. Income and farm-size criteria for farm-exits and farm entries were calibrated iteratively to 

the levels observed in the past period 2005 to 2012. A plot-by-plot bidding process models which 

neighbouring agent receives the freed-up land at what lease price. The neighbouring agent 

achieving the highest expected increase in income with the lease of the plot receives the lease plot.  

Integrated into the iteration process is the SWISSland market module, which is, however, only used 

for ex-ante simulations. For ex-post simulations, the individual-farm prices and average sectoral 

price trends deduced from the FADN data are assumed. Exogenous variables ascribed to the model 

are ‘technical progress’, ‘quota regulations’, ‘direct payments’ and ‘allowances’, among others.  

SWISSland calculates sectoral parameters via an extrapolation algorithm. Zimmermann et al. 

(2014) have compared various extrapolation alternatives for the model. Product quantities and 

prices, land-use and labour trend, income trend according to the Economic Accounts for 

Agriculture, the sectoral input and output factors for calculating environmental impacts, and 

important key structural figures such as number of farms, sizes and types of farm, or number of 

farms changing their farming system, are all sectoral output indicators. 

Three different software components communicate with each other in the model via interfaces:  
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 A MySQL database organises all input and output data for depicting the behaviour 

algorithms for the decision-making of the individual agents (e.g. accounting data, group-

formation data for forming population clusters, etc.) and manages the data for sequence- and 

data-transfer control. 

 A Java platform models all heuristic behaviour models and rules, the interactions of the 

agents, program control, and control of the database interfaces, as well as paving the way for 

the transfer of information to the extrapolation module. 

 A recursive-dynamic GAMS (=General Algebraic Modelling System) model optimises the 

production and investment decisions individually for each agent via a loop algorithm and 

ensures the PMP calibration. 

Table 1: Behavioural and decision models and data-collection sources 
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Agent rational 

decision module 

Production 

decisions 
x     x   x  X 

Farm manager’s 

life cycle 

Farm takeover, 

Farm exit 
 x    x x   x  

Land market 
Lease decisions 

for land plots 
  x x  x x x   X 

Growth and 

investment 

Investment 

decisions 
x     x   x  X 

Entry or exit, 

year-round 

activities 

x     x x    X 

Strategy for 

shifts in labour 

input 

x    x x x   x  

Alpine farming 
Entry or exit, 

alpine activities 
x x  x  x  x  x  
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Figure 2: Design and process overview of SWISSland 

 

The use of individual-farm FADN data ensures that various factors influencing the objective-

function and production-coefficient matrix are also automatically taken into account, allowing the 

depiction of numerous management options that are typical for Switzerland. These management 

options are characterised by different arable, forage and animal-production systems within the 

various forms of agriculture, and thus by corresponding input/output intensity levels. The cost and 

output parameters of the production activities are therefore heterogeneous, and influence the 

decision-making scope of the agents. 

The coefficients derived using the base year apply only for the current situation of the agents, 

however. Because future production and investment decisions can sometimes alter the ratios 

significantly, the individual-farm decision framework must be plausibly limited. For one thing, 

missing information from the base year must be added with the help of average values of other 

farms, or extrapolated using standard data. Here, it must be borne in mind that the given climatic or 

local conditions rule out certain production methods for some agents, and that high transaction and 

start-up costs would make inclusion in the agent’s production programme fairly unlikely. For all 

agent activities occurring in the production programme of the forecast years rather than in the base 
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year, the yield and price coefficients are estimated with the aid of a random distribution based on 

means and standard deviations of the values of all agents from the same region and form of 

agriculture.The following assumptions – explained in greater detail in the SWISSland ODD 

Protocol (Möhring et al., 2014) – therefore apply in the model. 

Rational agent behaviour is taken as an important basic assumption of the model. Hence, each agent 

(Index a) maximises its annual household income (INCOME) for each time period (Index t). 

In keeping with the theory of adaptive expectations, the agents (a) make their production decisions 

based on price (𝑝) and yield (𝜀) expectations of the previous year for the various animal (Index l) 

and crop production activities (Index g). Prices and yields were estimated for each agent on an 

individual-farm basis from the FADN data of the base year, with the observed price trends and 

average annual yield changes (∆) resulting from 2000 to 2012 being stipulated exogenously for 

every time period.  

Household income (INCOME) results from the sale of agricultural products, from off-farm work 

(OFFFARM, Index o), and from the proceeds of the direct payments (PAYMENT, Index d) less the 

means-of-production costs. The level of the direct payments corresponds to the year-specific, 

production-dependent and production-independent approaches in each case, in accordance with 

current agricultural-policy provisions. Because this study tests various linear and PMP-based 

quadratic cost functions for plant- and animal-production activities they are described in Chapter 4.  

            (6) 

𝑀𝑎𝑥 𝐼𝑁𝐶𝑂𝑀𝐸𝑎,𝑡 = ∑ 𝑝𝑎,𝑔 ∗ ∆𝑝𝑡−1,𝑔 ∗ 𝜀𝑎,𝑔 ∗ ∆𝜀𝑡−1,𝑔 ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔

𝑔

+ ∑ 𝑝𝑎,𝑙 ∗ ∆𝑝𝑡−1,𝑙 ∗ 𝜀𝑎,𝑙 ∗ ∆𝜀𝑡−1,𝑙 ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙

𝑙

+ ∑ 𝑝𝑎,𝑜 ∗ ∆𝑝𝑡−1,𝑜 ∗ 𝑂𝐹𝐹𝐹𝐴𝑅𝑀𝑎,𝑡,𝑜

𝑖

+ ∑ 𝑝𝑑,𝑎 ∗ ∆𝑝𝑡,𝑑 ∗  𝑃𝐴𝑌𝑀𝐸𝑁𝑇𝑎,𝑡,𝑑

𝑑

− 𝐶𝑂𝑆𝑇𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁𝑎,𝑡   

  

 subject to 

∑ 𝜔𝑎,𝑔,𝑤
𝐿𝐴𝑁𝐷 ∗  𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔

𝑔

 +  ∑ 𝜔𝑎,𝑙,𝑤
𝐴𝑁𝐼𝑀𝐴𝐿 ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙

𝑙

 +  ∑ 𝜔𝑎,𝑓,𝑤
𝐿𝐴𝐵𝑂𝑈𝑅  ∗  𝐿𝐴𝐵𝑂𝑈𝑅𝑎,𝑡,𝑓

𝑓

 ≤  𝛽𝑤,𝑎    

for all w  g,l,f. 

 

The resource endowment (w) of a farm consists of the available area (Index g), the animal places on 

the farm (Index l), the other capacities limiting animal and crop production (e.g. sugar-beet quota, 

milk quota up to 2007, provisions on the receipt of direct payments), and the labour force (Index f).  

Information on the historically observed crop mix of the agents was derived from ten years of 

FADN-farm land-management data. The assumption is made that plant-production methods which 

were not observed in the base year, but which occur in the farm’s historic crop mix, are taken into 
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account in the agent’s decision portfolio. This prevents over- or underestimates in the flexible 

extension of individual production methods, thereby limiting specialisation exclusively to base-year 

production decisions (cf. also Wiborg et al. (2005)). 

The ex-post evaluation was carried out for the period 2005-2012 with the 2003-2005 three-year 

average as a base year. Over this period, Swiss agricultural policy changed decisively, particularly 

for milk and meat production. To cite an example, Switzerland concluded a free-trade agreement for 

cheese with the EU in 2007. The same year saw the country’s gradual withdrawal from the milk 

quota system (FOAG, various years; Mack and Pfefferli, 2004), as well as the introduction of an 

RCLU payment for dairy cows. These and all further policy framework conditions decided on 

during this period form the exogenous bases for the agents‘ production decisions. 

 

4.  Method 

4.1 Modelling options 

Five different options for modelling animal- and crop-production decisions were analysed in this 

study (Table 2). Option 1 determines both crop- and animal-production decisions based on linear 

cost functions for 17 crops and 8 animal-production activities according to equation 7:  

𝑀𝑎𝑥 𝐼𝑁𝐶𝑂𝑀𝐸𝑎,𝑡 = 𝑅𝐸𝑉𝐸𝑁𝑈𝐸𝑎,𝑡 − ∑ 𝑐𝑙,𝑎 ∗ ∆𝑐𝑡−1,𝑙 ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙𝑙 − ∑ 𝑐𝑔,𝑎 ∗ ∆𝑐𝑡−1,𝑔 ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔𝑔    (7) 

Option 1 does not calibrate the production activities to base-year levels. Since policy changes in the 

animal sector were greater than those in the crop sector from 2004 to 2012, option 2a and 2b apply 

linear cost functions for animal-production activities only while PMP-based quadratic cost 

functions are used to determine crop-production decisions (equation 8):  

𝑀𝑎𝑥 𝐼𝑁𝐶𝑂𝑀𝐸𝑎,𝑡 = 𝑅𝐸𝑉𝐸𝑁𝑈𝐸𝑎,𝑡 − ∑ 𝑐𝑔,𝑎 ∗ ∆𝑐𝑡−1,𝑔 ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔𝑔 − ∑ 𝑑𝑎,𝑔 ∗𝑔 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔 − 0.5 ∑ 𝑄𝑎,𝑔  ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔
2

𝑔 −

∑ 𝑐𝑙,𝑎 ∗ ∆𝑐𝑡−1,𝑙 ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙𝑙                 (8) 

 

Option 2a estimates the matrix coefficients 𝑄 of the non-linear cost term based on revenues and 

uses supply elasticities equal to one owing to the lack of empirical data (equation 9).  

𝑄𝑔,𝑎 =
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑔,𝑎 ∗

𝐿𝐴𝑁𝐷𝑔,𝑎 ∗
           (9) 

For those production activities for which the output is used on the farm itself, 𝑄 is calculated based 

on linear costs 𝑐 and shadow values 𝜆 according to the German farm type model FARMIS 

(Schrader, 2009):    

𝑄𝑔,𝑎 = (𝑐𝑔,𝑎 + 𝜆𝑔,𝑎)/𝐿𝐴𝑁𝐷𝑔,𝑎
∗         (10) 

 



10 

The linear term d of the quadratic cost function is calculated according to equation 11. 

𝑑𝑔,𝑎 = 𝜆𝑔,𝑎 − 𝑄𝑔,𝑎𝐿𝐴𝑁𝐷𝑔,𝑎
∗           (11) 

   

Option 2b estimates the matrix coefficients of the quadratic cost functions for crop production 

activities on the basis of maximum entropy. Option 2a and 2b combine the advantages of both PMP 

and NMP modelling, with PMP calibrating crop-production activities to observed base-year levels 

taking into account the pedo-climatic conditions of the individual farms, and NMP enabling the 

modelling of the adoption of new animal production branches. In all models with a linear cost 

function in animal husbandry, the agents can invest in new barns, thereby considerably expanding 

their herd size even within a time period, provided that all other necessary resources are available in 

sufficient quantity. Moreover, a switch to new production activities in the animal husbandry sector 

is easily possible. In order to avoid an objective function with an integer formulation, however, 

individual barn construction variants (previously selected and evaluated according to plausibility) 

are tested iteratively with the aid of the loop process for each agent entitled to investment. Here, the 

annual external costs of the entire building (depreciation, repair, insurance and interest) are borne in 

mind, regardless of whether or not the barn can be fully utilised. If the agent is entitled to receive 

investment credits or investment aid, these lower the interest charges. Ultimately, the variant with 

the highest positive objective-function value is implemented. In the following year, all animal 

places resulting from the investment in the barn are available to the farmer. In this case, further use 

of the old barn is ruled out. Investment activities in new animal branches are taken into account 

when a farm successor takes over from his predecessor. Only for older agents it was assumed that 

investment was primarily in the animal branches pursued to date.  

Option 3a and 3b test PMP-based quadratic production-cost functions for both animal- and crop-

production activities:            (12) 

𝑀𝑎𝑥 𝐼𝑁𝐶𝑂𝑀𝐸𝑎,𝑡 = 𝑅𝐸𝑉𝐸𝑁𝑈𝐸𝑎,𝑡 − ∑ 𝑐𝑔,𝑎 ∗ ∆𝑐𝑡−1,𝑔 ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔

𝑔

− ∑ 𝑑𝑎,𝑔 ∗

𝑔

𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔 − 0.5 ∑ 𝑄𝑎,𝑔  ∗ 𝐿𝐴𝑁𝐷𝑎,𝑡,𝑔
2

𝑔

− ∑ 𝑐𝑙,𝑎 ∗ ∆𝑐𝑡−1,𝑙 ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙

𝑙

− ∑ 𝑑𝑎,𝑙 ∗

𝑙

𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙 − 0.5 ∑ 𝑄𝑎,𝑙  ∗ 𝐴𝑁𝐼𝑀𝐴𝐿𝑎,𝑡,𝑙
2

𝑙

 

 

Because investments in new barns result in a complete change in the cost structure, the PMP-based 

cost function completely changes the function values derived in the base year. Since no methods 

were previously available to estimate the change in the PMP-based cost functions derived from the 

base year, a continuous model approach in which the agents continuously expand their barns by 

individual animal places was chosen for option 3a and 3b. 

Table 2: Modelling options for determining production decisions 
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Opti

on 

No. 

Name Cost function 

for  

crop production 

activities (g)  

Cost function for 

animalproduction 

activities (l) 

PMP 

calibratio

n method 

Estimate of 

matrix 

coefficients 

of quadratic 

cost function 

Investments 

1 Linear Linear Linear - - Investment 

activities for 

new buildings 

2a Linear-

Quad-

Revenues 

PMP-based; 

quadratic  

Linear Extended Revenues Investment 

activities for 

new buildings 

2b Linear-

Quad-

Entropy 

PMP-based; 

quadratic  

Linear Extended Maximum 

entropy 

Investment 

activities for 

new buildings 

3a Quad- 

Revenues 

PMP-based; 

quadratic  

PMP-based; 

quadratic  

Extended Revenues Continuous 

new-

investment 

costs 

3b Quad- 

Entropy 

 

PMP-based; 

quadratic  

PMP-based; 

quadratic  

Extended Maximum 

entropy 

Continuous 

investment 

costs for 

buildings 

 

The criteria for farm take-overs and farm exits (household income, labour income and farm size) 

were calibrated iteratively to the observed number of farm exits in the period 2005 to 2012 using 

model option 3a. 

4.2 Assessing forecasting performance 

In this study, we assess the forecasting performance of the options on the basis of the average 

forecasting error AFE  measuring the difference between forecasted and historical parameters at 

farm-scale and at sectoral scale. The farm-scale parameters assess the forecasting performance from 

those agents only, which remain over the whole simulation period 2005 to 2012 in the sample. In 

contrast sectoral parameters take into account farm sample changes due to farm exits and entries. 

Therefore simulation results from all agents were extrapolated to sectoral scale based on 

Zimmermann et al., 2014.  

At farm-scale the forecasting error AFE measures the percentage difference between historical and 

forecasted average production levels for each production activity. The weighted forecasting error of 

crops WAFE aggregates the forecasting error AFE of each crop based on its average production 

share in the FADN farm sample. The forecasting error is calculated analogously for animals. 

Finally, the total weighted average annual forecasting error WAFE aggregates weighted forecasting 

error for crops and animals equally.  
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At sectoral scale we calculate the production changes from 2005 to 2012 in per cent: The 

forecasting error measures the deviation from historical values.  

 

5. Results 

Linear cost functions for both crop- and animal-production activities (option 1) lead at farm scale to 

the highest weighted forecasting error of almost 50% for crops and to the highest forecasting error 

for both animal and crop production in both time periods (Table 3). The results in table 3 also show 

that crop activities supported by direct payments such as extensive grassland, fallow land, oilseed 

rape, soya and sunflower are highly overestimated in the linear version, whilst PMP for crop-

production activities significantly reduce the forecasting error in both time periods. The approach 

with quadratic production costs for crop activities and linear production costs for animal activities 

(option 2a and 2b) show a better forecasting performance in the long term than option 3a and 3b 

with quadratic production costs for both animal and crop production activities. The forecasting 

performance of option 2a and 2b improves in particular for the livestock categories of cattle, dairy 

cows, sucker cows, horses and hens, which showed a production increase above-average from 2005 

to 2012 due to investment activities. Furthermore the forecasting error of fodder- and grassland-

activities decreases in the versions with linear production costs for animals and PMP for crop 

production activities because these activities are highly influenced by the cattle production level. 

Only for marginal animal activities such as sheep and goats, which are underrepresented on Swiss 

FADN farms, the forecasting error is higher in the linear than in the PMP versions. For all 

aggregated crop activities as a whole, the entropy versions and the revenue versions lead to similar 

results in the short and long term. The results show that the method to estimate the coefficients of 

the non-linear cost term (revenue or entropy) does not influence the forecasting performance when 

PMP is only applied for crop production whilst linear production activities are used for animal 

activities. When PMP is used for both production categories, the entropy method leads to a slightly 

better forecasting performance in the long term.  
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Table 3: Results at farm scale: Average forecasting error for animal- and crop-production activities.  

 

Average  

ha/LU for all FADN 

Farms 

Average forecasting error AFE (%) 

Production activity 

2003- 2006- 2010- No 1 No 2a No 2b No 3a No 3b 

2005 2008 2012 Linear 

Linear-

Quad-

Revenues 

Linear-

Quad-

Entropy 

 

Quad-

Revenues 

Quad-

Entropy 

    S L S L S L S L S L S L 

Bread grain  1.39 1.40 1.46 50 52 10 13 8 12 8 10 6 10 

Feed grain 1.07 1.13 0.92 84 80 14 5 14 6 12 12 9 12 

Grain maize 0.22 0.20 0.21 28 21 8 2 8 2 4 6 11 4 

Silage maize 0.88 0.91 1.00 9 17 7 3 7 3 2 6 3 6 

Sugar beet 0.30 0.32 0.32 11 12 3 4 3 4 2 3 3 3 

Potatoes 0.30 0.27 0.25 299 326 2 4 2 5 13 8 3 9 

Oilseed rape 0.21 0.23 0.30 237 162 14 34 14 33 12 33 12 32 

Sunflower 0.04 0.05 0.04 321 444 11 15 11 15 15 15 11 15 

Legumes 0.07 0.08 0.05 130 236 19 18 18 19 12 24 15 24 

Vegetables 0.09 0.10 0.11 237 224 13 16 13 16 11 15 12 15 

Fallow land 0.04 0.05 0.03 73 148 13 25 15 23 2 29 14 24 

Temporary grassland 2.86 2.92 3.34 10 22 5 8 3 10 1 11 0 13 

Extensive grassland 1.30 1.30 1.31 68 64 1 1 3 5 20 1 3 5 

Less-intensive 

grassland 
0.69 0.68 0.65 8 13 16 21 17 23 2 25 18 24 

Intensive grassland 8.66 8.79 8.92 9 11 1 2 0 2 14 3 1 2 

Extensive pastures 0.21 0.25 0.25 20 21 11 13 7 9 3 16 8 9 

Intensive pastures 1.77 1.78 1.69 2 3 2 3 5 0 3 2 6 1 

LU (total) 26.98 27.65 29.83 10 13 5 5 4 6 5 11 5 13 

Cattle (total) 21.60 22.07 24.00 13 16 7 8 6 8 7 14 8 14 

Dairy cows 14.80 14.97 16.21 11 15 6 6 3 6 4 11 4 11 

Suckler cows 1.28 1.57 1.86 15 5 1 2 7 5 22 34 22 35 

Horses 0.19 0.22 0.20 16 2 1 11 10 2 6 27 4 34 

Sheep 0.21 0.22 0.22 14 33 29 33 14 30 4 7 3 8 

Goats 0.05 0.05 0.06 8 6 11 10 7 11 5 23 2 23 

Sows 3.98 4.14 4.08 5 7 9 10 7 10 6 9 5 7 

Fattening pigs 2.52 2.61 2.67 7 1 2 4 8 3 14 13 14 2 

Hens 0.34 0.35 0.59 1 25 19 18 0 21 1 40 3 39 

Poultry 0.60 0.60 0.67 1 11 13 23 6 12 0 10 0 12 

Crop production       50 55 4 5 4 5 4 7 4 7 

Animal production      10 14 6 10 6 10 7 13 7 11 

Average       30 34 5 8 5 8 5 10 5 9 

S= Short term; L=long term. 

 

Because farm take-over and farm exit criteria were calibrated iteratively to the observed number of 

farm exits in the period 2005 to 2012 using the model option 3a this option shows the lowest 

average absolute deviation from historical values of around 3 %. Table 4 shows that all model 
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options using PMP could reproduce the observed farm exits, whilst the linear version 

underestimates farm exits significantly. These results indicate that the linear version overestimates 

farm specialisation and farm income significantly. A comparison of the extrapolated production 

changes of all agents with the historical production changes of the agricultural sector shows that the 

option with linear cost functions for animals lead to better results, particularly in the production 

branches where the highest production increase were previously observed, such as suckler cows 

hens, horses, goats and poultry. In these animal sectors, above-average investments in new stables 

which overcompensate for the decrease in production owing to farm exits were observed in the past. 

The results show that modelling investments in new animal capacities based on linear cost functions 

leads to better results than using continuous investment activities combined with quadratic cost 

functions. The results also show that PMP for crop-production activities underestimates production 

increases above-average (such as rape seed, sugar beet, field vegetables etc). These results are 

caused by the characteristics of PMP. On the one hand the farm-level models only take account of 

activities observed during the reference period 2005, whilst an adoption of new crop production 

activities in the ongoing years could not be taken into account. On the other hand the quadratic cost 

functions prevent an overspecialisation and a production increase above-average for single 

activities. 
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Table 4: Results at sectoral scale: deviation from historical sectoral change (+/-%) 

  

Observed 

sectoral 

change from 

2003/05 - 

2010/12 

No1 

 

Linear 

 

No 2a 

 

Linear-Quad-

Revenues 

 

No 2b 

 

Linear-Quad-

Entropy 

 

No 3a 

 

Quad-

Revenues 

 

No 3b 

 

Quad-

Entropy 

Farm exits   Deviation from historical sectoral change (+/-%) 

Total farms  Qty. -11% 5% 1% 0% 2% 3% 

Valley region  Qty. -12% 5% 4% 2% 4% 6% 

Hill region  Qty. -9% 4% -3% -4% 0% -1% 

Mountain region  Qty. -10% 3% 1% 1% 1% 1% 

Farm size < 20 ha  Qty. -18% 0% -3% 1% -1% 6% 

Farm size 20-30 ha  Qty. +4 8% 8% -4% 6% -2% 

Farm size >30 ha  Qty. +15% 9% -4% -13% -4% -19% 

Crop production        

Bread grain ha  -4% -17% -11% -14% -1% -3% 

Fodder crop ha -17% -36% -2% -5% 12% 9% 

Potatoes  ha -17% 28% -7% -7% -1% 1% 

Rapeseed  Ha 35% -52% -48% -50% -41% -43% 

Sunflower  Ha -32% 23% 12% 12% 18% 15% 

Field vegetables  Ha 11% 173% -14% -17% -9% -10% 

Silage maize  Ha 12% 2% -6% -5% -14% -6% 

Sugar beet  Ha 6% -23% -12% -12% -11% -7% 

Open arable land  Ha -6% 8% -6% -8% 0% 1% 

Temporary ley  Ha 9% 2% -3% -7% -15% -13% 

Total arable area  Ha -2% 5% -4% -7% -4% -3% 

Permanent grassland  Ha -2% 5% 2% -2% 3% -2% 

Total utilised 

agricultural area  Ha -2% 5% 0% -3% 1% -2% 

Total LU  LU 3% 1% -3% -5% -9% -11% 

Dairy cows  LU -6% 4% 2% 1% -3% -2% 

Suckler cows  LU 55% -6% -17% -20% -60% -60% 

Pigs  LU -3% -1% -6% -6% -3% -34% 

Fattening calves  LU -13% 2% 1% 2% 12% 24% 

Fattening bulls  LU -6% 14% 5% 2% 2% 2% 

Cattle total  LU 2% 0% -4% -4% -11% -9% 

Sheep  LU -1% -19% -21% -21% -5% -3% 

Goats  LU 25% 78% 78% 78% -39% -42% 

Horses  LU 13% 93% 81% -11% 88% 122% 

Broilers  LU 31% 18% 13% 8% -38% -40% 

Hens  LU 19% 10% 5% 2% -20% -20% 

   

Average of absolute deviation from historical sectoral change (%) 

All attributes   20% 12% 10% 13% 16% 
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6. Conclusions  

This ex-post validation clearly shows that the use of PMP-calibration for selected production 

activities improves the forecasting performance of an agent-based farm model significantly 

comparing with NMP. The above results corroborate the study of Buysse et al. (2007), which has 

shown that PMP is recommended for farm-level models when it is only modifications of existing 

policies that are analysed, whilst NMP is preferred for modelling more-radical policy changes. In 

this study, we analysed model options which applied PMP for crop-production and NMP for 

animal-production activities. This study shows that combining PMP and NMP in farm models could 

be a suitable approach for agent-based sector models. Using PMP for farm activities with minor 

policy changes and NMP for activities with further-reaching policy changes could improve the 

forecasting performance of farm-level models, in particular in long-term forecasts. For short-term 

forecast PMP for both animal and crop production and PMP combined with NMP lead to similar 

results. The results either show that PMP calibration based on revenues and PMP-calibration based 

on the entropy approach lead to similar results. The results support other studies by Gocht (2005) 

and Winter (2005), both of whom discovered that the different PMP versions led to similar model 

results. Although all tested approaches lead to deviations in the actual observable trends, we may 

conclude that the PMP combined with NMP is preferable to full PMP when assessing the 

forecasting performance of production changes over time. These results also show that some 

limitations of PMP could be reduced by combining PMP with NMP. In branches where the 

adoption of new production activities is expected owing to market and policy changes, the NMP 

approach could represent an appropriate solution. 

Moreover, the extent of the forecasting error of the extrapolated sectoral results could be influenced 

by the choice of extrapolation method. Zimmermann et al. (2014) have demonstrated that the choice 

of the extrapolation method in agricultural-sector models can strongly skew both the base-year 

results and the model results of the forecast years.  

At the same time, the present paper shows that in general, an ex-post validation makes a valuable 

contribution to improving the accuracy of the model, but can also make a theoretical contribution to 

the methods used. On the other hand, the present example demonstrates that all of the calibration 

methods used have their strengths and weaknesses in individual areas. For this reason, the 

methodological considerations for improving the calibration of models should be continued. Not 

only will this improve the goodness of projection of the calibration; just as importantly, it will also 

have positive consequences for the acceptance of the calibration for use in policy advice. 

 

References:  



17 

An, L., 2012. Modeling human decisions in coupled human and natural systems: Review of agent-

based models. Ecological Modelling, 229(0), 25-36. 

Arfini F., Donati, M., 2011. Impact of the Health Check on structural change and farm efficiency: A 

comparative assessment of three European Agricultural Regions. Proceedings of the OECD 

Workshop on disaggregated impacts of the CAP reforms. Paris: OECD, 75-90. 

Britz, W., Witzke, P., 2014. CAPRI Model Documentation 2014. <http:// www.capri-

model.org/docs/capri_documentation.pdf>, last accessed Okt. 30, 2014. 

Buysse, J., Huylenbroeck, v. G., Lauwers, L., 2007. Normative, positive and econometric 

mathematical programming as tools for incorporation of multifunctionality in agricultural policy 

modelling. Agriculture, Ecosystems and Environment 120, 70–81. 

Daigneault, A., Greenhalgh, S., Samarasinghe, O., 2014. A response to Doole and Marsh (2013) 

article: Methodological limitations in the evaluation of policies to reduce nitrate leaching from New 

Zealand agriculture. Australian Journal of Agricultural and Resource Economics, 58, 281-290. 

Doole, G., Marsh, D. K., 2013. Methodological limitations in the evaluation of policies to reduce 

nitrate leaching from New Zealand agriculture. Australian Journal of Agricultural and Resource 

Economics, 58, 78-89.  

Garnache, C., Merel, P., 2011. Calibrating a regional PMP model of agricultural supply under 

multiple constraints: a set of matryoshka doll conditions. Paper prepared for presentation at the 

EAAE 2011 Congress, ‘Change and Uncertainty’, 30 August to 2 September 2011. ETHZ, Zurich, 

Switzerland. 

Garnache, C., Merel P., 2014. What can acreage allocations say about crop supply elasticities? A 

convex programming approach to supply response disaggregation. Journal of Agricultural 

Economics. Forthcoming. 

Gocht, A., 2005. Assessment of simulation behaviour of different mathematical programming 

approaches. In: Proceedings of the 98th EAAE Symposium: State of the Art and New Challenges. 

Parma, Italy, 2005, 166–187. 

Gocht, A., Britz, W., 2011. EU-Wide Farm Type Supply Models in CAPRI - How to Consistently 

Disaggregate Sector Models into Farm Type Models. Journal of Policy Modeling 33(1): 146-167. 

Happe, K., 2004. Agricultural policies and farm structures. Agent-based modelling and application 

to EU-policy reform. 30 Dissertation, Institute of Agricultural Development in Central and Eastern 

Europe (IAMO). 



18 

Hazell, P.B.R., Norton, R.D., 1986. Mathematical Programming for Economic Analysis in 

Agriculture. Macmillan Publishing Company, New York. 

Heckelei , T., Woolf, H., 2003. Estimation of constrained optimization models for agricultural 

supply analysis based on maximum entropy. European review of Agricultural Economics 30, 27-50.   

Heckelei, T., Britz, W., Zhang, Y., 2012. Positive Mathematical Programming Approaches – 

Recent. Developments in Literature and Applied Modelling. Bio-based and Applied Economics 

1(1): 109-124, 2012. 

Helming, J.F.M., 2005. A Model of Dutch Agriculture Based on Positive Mathematical 

Programming with Regional and Environmental Applications. PhD dissertation, 

Wageningen,University. Wageningen, Netherlands. 

Howitt, R.E., 1995. Positive Mathematical Programming. American Journal of Agricultural. 

Economics 77(2), 329-342. 

Howitt, R. E., Medellín-Azuara, J., MacEwan, D., Lund, J. R., 2012. Calibrating disaggregate 

economic models of agricultural production and water management. Environmental modelling & 

Software 38, 244-258. 

Johansson, R., Peters, M., House, R., 2007. Regional Environment and Agriculture Programming 

Model. Technical Bulletin 1916. United States Department of Agriculture, Economic Research 

Service. 

Júdez, L., Andres, R., Ibanez M., de Miguel, J.M., Miguel, J.L., 2008. Impact of the CAP Reform 

on the Spanish Agricultural Sector. Paper presented at the 109th EAAE Seminar the CAP after the 

Fischler Reform: National Implementations, Impact Assessment and the Agenda for Future 

Reforms. Viterbo, Italy, November 20-21st, 2008. 

Kahn, K. 2007. Comparing Multi-Agent Models Composed from Micro-Behaviours. In: 

Proceedings for the Third International Model-to-Model Workshop, March 2007, Marseille, France. 

Kanellopoulos, A., Berentsen, P., Heckelei, T., Van Ittersum, M., Lansink, A. O., 2010. Assessing 

the forecasting performance of a generic bio-economic farm model calibrated with two different 

PMP Variants. Journal of Agricultural Economics, 61, 274-294. 

Lobianco, A., Esposti, R., 2010. The Regional Multi-Agent Simulator (RegMAS): An open-source 

spatially explicit model to assess the impact of agricultural policies. Computers and Electronics in 

Agriculture, 72, 14-26. 



19 

Mann, S., Mack, G., Ferjani, A., 2003. Können Produktionsentscheidungen als 

Investitionsentscheidungen modelliert werden? German Journal of Agricultural Economics 52(7): 

333-340. 

Merel, P., Howitt, R., 2014. Theory and Application of Positive Mathematical Programming in 

Agriculture and the Environment. Annual Review of Resource Economics. 6, 451-470.  

Offermann, F., Kleinhanß, W., Hüttel, S., Küpker, B., 2005. Assessing the 2003 CAP Reform 

Impacts on German Agriculture using the Farm Group Model FARMIS. In: Arfini, F. (eds.), 

Modelling Agricultural Policies: State of the Art and New Challenges. Proceedings of the 89th 

European SeminarInstitute for Sustainability Sciences of the European Association of Agricultural 

Economics. Parma, Italy: Monte Università Parma, 546-564. 

Schreinemachers, P., Berger, T., 2011. An agent-based simulation model of human–environment 

interactions in agricultural systems. Environmental Modelling & Software, 267, 845-859. 

Sanders, J., 2007. Economic Impact of Agricultural Liberalisation Policies on Organic Farming in 

Switzerland. Research Institute of Organic Agriculture / Forschungsinstitut für biologischen 

Landbau (FiBL), Frick, Switzerland. 

Wiborg, T. et al. 2005. Aggregation and Calibration of Agricultural Sector Models Through Crop 

Mix Restrictions and Marginal Profit Adjustments. XIth EAAE Congress (European Association of 

Agricultural Economists): The Future of Rural Europe in the Global Agri-Food System. 

Copenhagen, Denmark. 

Winter, T. (2005). Ein Nichtlineares Prozessanalytisches Agrarsektormodell für das Einzugsgebiet 

der Oberen Donau - Ein Beitrag zum Decision-Support-System Glowa-Danubia, PhD thesis, 

University of Hohenheim, Stuttgart. <http://opusho. uni-

stuttgart.de/hop/volltexte/2005/91/pdf/Dissertation.pdf> (accessed 25/10/14). 

Zimmermann, A., Möhring, A., Mack, G., Ferjani, A., Mann, S., 2014. Pathways to truth:  

Comparing different upscaling options for an agent-based sector model. Journal of Artificial 

Societies and Social Simulation (submitted). 

 

 


