

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Argentine Agricultural Policy: Economic Analysis and Impact Assessment Using the Producer Support Estimate (PSE) Approach

By Daniel Lema^{1,2} and Marcos Gallacher² ¹Instituto de Economía-INTA ²Universidad del CEMA

Abstract

This paper analyzes agricultural policy in Argentina and calculates the degree of support received by producers and consumers. We present a summary of developments in the agricultural policy environment that have occurred in the last decades in Argentina, as well as the resulting performance of the agricultural sector. The concepts of Producer Support Estimates, Consumer Support Estimates, General Services Support Estimates, Producer Nominal Assistance Coefficient and Nominal Protection Coefficient are used to analyse different dimensions of transfers occurring between agricultural producers, consumers and taxpayers in the period 2007-2012. Total transfers from producers have averaged US\$ 11.000 million annually or 26% of total gross farm receipts. Support flowing from the public sector to producers in the form of R&D, infrastructure and other "public good" type of inputs totalize some 500 million annually.

JEL classification codes: Q18, Q11

Keywords: Agricultural Policy, Agricultural Prices, Producer Support Estimates

1. Introduction

This paper presents an analysis of policy measures resulting in producer and consumer support in the Argentine agricultural markets. We focus the analysis on a subset of the production activities of the Argentine agricultural sector: wheat, corn, sunflower, soybeans, beef, pork poultry and dairy production. These commodities represent more than 70% of the value of agricultural production of the country, and more than 85% of total agricultural-based exports. Calculation of support measures follows the methodology of the "OECD's Producer Support Estimate and Related Indicators of Agricultural Support – The PSE Manual" (OECD, 2010)¹.

Understanding the impact of policy on prices paid by consumers and received by farmers is important for several reasons. First, it constitutes an important input for policy makers engaged in trade-related international discussions. Second, it allows progress to be made in understanding response of the agricultural sector to different kinds of interventions. Third, it results in important data for the design of domestic programs aimed at reducing the impacts of increases of commodity prices on low-income population groups.

In Argentina – and in contrast with most other countries – agriculture is discriminated against. The extent of the "negative protection" has changed over the years, however in general public policy has resulted in decreased output prices received by farmers, and increased input prices paid by these farmers. We can anticipate then that, in general, incomes have been transferred from agriculture to both consumers in the form of lower prices, as well as to the government in the form of taxes. The organization of the paper is the following: section 2 summarizes main aspects of agriculture and agricultural policy in Argentina. Estimates of transfers to and from agriculture are presented in Section 3. Conclusions follow in Section 4.

2. Agriculture and Agricultural Policy: 1970-2012

The last decades witnessed significant growth in the Argentine agricultural sector. Indeed, performance of agriculture in this country contrasts sharply with lackluster

¹ The OECD PSE conceptual model is based on supply-demand interactions among farmers, consumers and taxpayers in the economy in order to measure transfers for the agricultural sector. The methodology allows comparability of policy indicators between countries and is currently used by OECD members to monitor agricultural policies. Recently, the IDB developed "Agrimonitor: PSE Agricultural Monitoring System" for Latin American and Caribbean countries to track agricultural policies and to assess and measure the composition of the support to agriculture (see the IDB web site "Agrimonitor" for details).

performance – during most of the period – of the non-agricultural economy. Moreover, performance of Argentine agriculture compares favorably not only with other sectors of the economy, but also with the agriculture of other major exporters and producers.

In Argentina public policy has affected the agricultural sector in particular through measures that result in "wedges" between international and domestic prices of outputs and inputs (including among these capital inputs). These price differences have originated in (i) export and import taxes, (ii) multiple exchange rates and (iii) State participation in grain handling and exports. Macroeconomic policy has also affected the agricultural sector through the impact of general price increase (inflation), interest rates and credit availability. Inflation, coupled with uncertainty as regards to export taxes was the primary cause of the near-disappearance of futures markets that occurred until the early 1990's.

With variations, the 1950-1990 period can be characterized by:

- 1. Output price gap between international and domestic markets due to Statemonopoly of exports (early 1950's and mid 1970s) and export taxes or multiple exchange rates (late 1960's and 1980s),
- 2. Higher input prices due to import taxes (1950's to late 1980s),
- 3. Periods of high inflation (mid-1970's, late 1980's)
- 4. Public-sector management of ports and grain terminal export facilities,
- 5. A "closed economy" environment, with resulting low levels of investment in private agricultural R&D, as well as in general infrastructure.
- 6. On the positive side, creation in the late 1950s' of INTA, the public-funded agricultural research organization. Creation of the CREA groups, a private applied research and technology non-profit.

Despite the generally negative environment, between 1970-74 and 1980-84 total grain output more than doubled. Output increases resulted from improvements in wheat, sunflower and corn crop genetics, from the introduction of the soybean crop as well as from improved management practices. Output increases were caused both by increases in land productivity as well as by a shift in land allocation from livestock to crop production. Land in major crops increased, in this period, by 40 percent.

The macroeconomic reform program implemented in 1990 can be considered an important turning point for the agricultural sector. Sonnet (1999) points out that price stabilization, reduction of barriers to trade, privatization and de regulation resulted in

substantial changes in items 1 - 5 mentioned previously. As pointed out by Bour (1994) between the late 1980s'and the mid 1990s the relative price of capital with respect to labor fell by approximately 30 percent. This fall was a result of both (i) a reduction in the price of capital inputs themselves, resulting from elimination of import taxes and (ii) a reduction in the interest rate charged to investors. As a result of these changes, from 1988 to 2002 total capital input (in the "*pradera pampeana*") increased by more than 40 percent, while capital per worker increased by a factor of 3 to 4 (Gallacher, 2010). The combined impact of (i) increased capital per unit of land and of labor and (ii) the adoption of no-tillage (which reduced the number of machine-hours necessary to prepare and plant one hectare of land) has resulted in significant improvement in timing of operations in the Argentine agricultural sector.

Research in crop genetics resulted in a more vigorous inflow of new varieties: in the 1995-99 period the number of new cultivars was 109 per year, as compared to 77 per year in 1980-84, and only 21 per year in 1985-89 (Castro, Arizu and Gallacher, 2008). Crop genetics, of course, is a major factor determining productivity growth. Lema (2010) analyzes changes in output, input and productivity occurring in the Argentine agricultural sector since the 1970'and finds that in the 1968-2008 period Total Factor Productivity increased 2.4 percent annually. Increase in TFP was higher in the 1990 – 2008 period: 4.4 percent annually. This indicates a substantial increase in TFP growth occurring in the last two as compared to the first two decades of the 1968-2008 period. The available evidence thus indicates that in order to understand changes occurring in Argentine agriculture, attention should be focused on the pathways through which improved technologies flow into the sector, as well on the determinants of technology adoption by farmers, input suppliers and output demanders.

Changes in output and productivity that occurred in the last decades have been accompanied by changes in farm numbers, farm size and production organization. This is to be expected – as pointed out by Schultz (1975) under "disequilibrium" conditions (e.g. those resulting from rapid inflows of new technologies) adaptation by economic agents occurs at differential rates. Some adapt rapidly, profiting by new opportunities. Adjustment by others occurs more slowly. In some cases adjustment results in the need to re-allocate labor and other resources from agriculture to other sector of the economy.

Total farm numbers in Argentina reached a peak in the late 1960's (540.000 units). Farm numbers decreased in a linear fashion thereafter, reaching in 2008 some 280.000 units (Gallacher, 2008). The reasons for the decrease in farm numbers are not

easy to identify². They include both "push" factors such as economies of scale as well as "pull factors" such as access to improved jobs out of the agricultural sector (Gallacher, 2010). Aspects related to access to financial capital and, in particular, improved possibilities for risk-bearing are also relevant. In particular, "investor pools" have played an increasingly important part in the organization of production. This arrangement allows investors outside agriculture to pool financial resources in order to enter into the agricultural sector. These "virtual firms" in some cases do not own land or machinery but instead hire these resources from others. Planted area varies from 20.000 to 500.000 hectares. Diaz Hermelo and Reca (2010) argue that cost of financial capital is lower for these "pools" than for ordinary farms. They also have better access to technical and managerial know-how. This has important implications for aspects such as cost of capital in the agricultural sector, technology adoption and capacity for riskbearing.

2.1. Prices and Supply

Behavior of the agricultural sector results from both price ratios faced by farmers themselves, as well as those faced by input suppliers and output processors/exporters. In Argentina, economic policies directed towards agriculture have in general depressed output prices and increased (tradeable) input prices with respects to those of the world market.

In Argentina, the existence of export duties in the 1980-2012 period resulted in an inverted "U" type pattern of domestic prices relative to international prices: during the 1980's domestic prices were some 50-75 percent of international prices. During the 1990s this ratio increased to 80 - 100 percent, decreasing after 2001 to 65 - 80 percent, a level slightly higher than during the 1980's.

In the absence of technical change, increase in output can only be forthcoming from increases in the use of inputs. Input use is increased only in response to reductions in the prices of inputs in relation to outputs: i.e. the relative input/output price ratio. In relation to this point, fertilizer prices increased substantially in the 2000-09 period as compared to the previous decade. In turn, labor prices, and the price of machinery services remained fairly constant (see Table 1). The fact that the crop price index fell

² A piece of land is "farmed" according to the Census by the operator that makes production decisions: a piece of land rented out is part of the tenants' and not landowners' farm. However, we suspect that difficulty exists in this classification: some units that appear as "farms" are really rented out by another unit. Farm numbers is thus overestimated.

slightly from 1990-99 to 2000-09 indicates that relative input/output prices increased substantially for some inputs (fertilizer) and increased somewhat for others (labor, machinery services)³.

The overall ratio of input to output prices in Argentina fell by 10 percent from the 1980's to the 1990's, but remained fairly constant or increased slightly thereafter. The substantial increase in crop production that occurred in the last two decades is thus not a result of a fall in the relative input/output prices. On the contrary, output expansion has occurred with simultaneous increase in (real) input prices. Since the early 1990's fertilizer use increased fifteen-fold while agricultural chemical use increased tenfold. Clearly, a rightward shift in the demand for these inputs has taken place, due in part to the increased marginal productivity of new technologies.

In summary: relative prices at the farm level are an important determinant of output in the agricultural sector. However, changes that have occurred in Argentine agriculture since the early 1970's suggest that factors such as the availability of technology, the accumulation of managerial and technical know-how, the development of a modern input-supply and output processing industry, as well the overall efficiency of grain handling have all had a part in explaining observed output and (in particular) efficiency changes.

2.2. Response to Price

The magnitude of farmers' response to price has obvious implications for public policy. In particular, if supply is highly inelastic policies resulting in lower output prices will benefit consumers (and government through tax revenues) with "small" losses due to inefficiency. Conversely, efficiency loss will increase as supply elasticity increases. Early studies of supply elasticity in Argentine agriculture (e.g. Reca, 1967, 1969) resulted in general in elasticity estimates (for single crops) well below 1: i.e. inelastic response to price. The study by Brescia and Lema (2007) uses Nerlove's "distributed lag" model to estimate response to price of wheat, corn and soybeans. They find inelastic response to own price in wheat and soybeans (ϵ yalues are wheat = 0.43, soybeans = 0.53) and elastic response in corn (ϵ = 1.3) in the short run, but greater than one own price elasticities for all crops in the long run. The paper by Fulginiti and Perrin

³ Herbicides are an exception to this general trend: for example, the price of Roundpup decreased by more than one half in this period.

(1990) uses modern production theory to obtain supply and input demand elasticity values for a set of seven commodities and three input classes. Estimates show that for most production activities own-price ε values greater than 1. They also find an elastic response to the price of capital and labor inputs. The authors estimate the impact of changes in selected policies on quantity supplied. For example, elimination of distortions would increase aggregate output by 27 percent (in the case of export taxes), 29 percent (import restrictions) and 25 percent (domestic taxes). Clearly, even if the above effects are not "additive", substantial increase in production would result through policies that align domestic prices more in line with prices prevailing in international markets

As pointed out half a century ago by Schultz (1956), understanding the dynamics of supply requires considerably more than analyzing short-run response of the firm to changing prices. Additionally, following the idea of Robert Lucas Jr. (1976) (*the Lucas critique*), optimal decision rules of economic agents vary systematically with changes in policy. As a result, underestimation of supply elasticity may result if response is estimated on the basis of yearly price changes, without taking into account that response may be considerably higher when farmers perceive that a change in *price regime* has taken place. An example of change in price regime is the opening of the Argentine economy in 1990. Similarly, the posterior (partial) "closing" of the economy in 2001 is a return to conditions prevailing in the 1980's. The point then is that the response of farmers to prices in one regime may be different from that in another.

Economic policy will affect the agricultural sector through many channels: directly through output and input prices, interest rates, labor costs as well indirectly through the supply of infrastructure and other inputs. The impact of policies will depend on the nature of the "cost structure" in production agriculture. For example, the short-run impact of currency devaluation will be different in the production of a labor-intensive as opposed to a capital–intensive activity. Analysis of partial budgeting data for corn and soybeans under alternative production technologies in the "central corn/soybean" production area of the country in mid 2011⁴ shows the following:

1. Some 60 percent of total cost corresponds to tradeable inputs. Currency depreciation will not lower the input/output relative prices for this broad

⁴ Revista Agromercado, June-July 2011.

category of inputs. If devaluation is accompanied by imposition of export taxes (such as occurred in 2001) input/output price ratios will instead increase.

- Currency depreciation if not accompanied by general price increase will improve the relative prices only with respect to the non-tradeable inputs, representing here 40 percent of total cost. Increase in the price of non-tradeables (as occurred in Argentina in the post-2001 period) will negate these improvements in relative prices.
- Inputs used "on farm" represent between 64 and 76 percent of total inputs. The remaining 24 36 percent results from transport and marketing. Corn because of a lower per-ton value is more dependent than soybeans on non-farm costs.
- 4. Transport and marketing costs result in reduction in net prices received by farmers. The fact that transport and marketing prices may be relatively inflexible implies that the difference between gross and net prices received by farmers will increase in percentage terms when crop prices are low as compared to high.
- 5. Direct labor costs (excluding labor used in transport and marketing, but including labor used in harvesting) account for 13 15 total costs in corn production, and 15-17 percent in soybeans. Seed, fertilizer and ag chemical costs (all tradeable inputs) are thus considerably more important than labor, a non-tradeable. This, plus a possible relatively "easy" substitution of capital for labor in extensive grain production protects this sector against possible increases in the price of the labor input.

Item 3 points out to the importance – for farm production – of public policy measures that increase the supply of inputs that allow transport and marketing costs to fall. Public and private infrastructure investment and labor market deregulation are examples of these. In turn, item 4 emphasizes that a fall in output price of (say) 10 percent may result in an increase in the relative price of tradeable inputs by more than 10 percent. Inputs may thus be more expensive both because output prices have decreased, as well as because transport costs result in a higher (percentage-wise) price discount from gross to net prices when gross prices are lower. This occurs because transport costs are incurred per unit of weight, not value. Thus, a fall in output prices (for example soybeans from US\$ 450 to 350 per ton) will result in an increase in the input-output (w/p) price greater than that suggested from w/450 to w/350. In summary, upwards or downwards changes in (final market) output prices may underestimate changes in farm-

level prices. This effect will be more marked for relatively lower-value (e.g. corn) as compared to higher-value (e.g. soybeans) crops.

2.3. Interventions in Domestic Markets

2.3.1. Quantitative Restrictions

Beginning in 2008 the "ROE" ("Registro de Operaciones de Exportación") were introduced as export permits for exports of grains, beef and milk administrated by the Oficina Nacional de Control Comercial Agropecuario ("ONCCA"⁵). The stated objective of ONCCA was to guarantee supply of products to the domestic market. Conceptually at least, ONCCA's preoccupation would appear misplaced as local industry has strong incentives to forecast domestic demand and supply in forthcoming months: if a "shortage" appears possible, profit can be made by carrying grain from one period to the next.

Passero (2011) surveys the impact of ONCCA on the Argentine wheat market. He clearly shows the proliferation of regulation in grain markets the 2007/2010. According to the author's estimates, export quotas for wheat resulted in price decreases of 10 -15 percentage points *below* the levels resulting only from export taxes. Lema (2008) presents similar econometric estimates: between May 2006 and April 2007 the additional price wedge was on average 15 US\$/t, or 9 percentage points of the FOB price, implying a total loss for wheat producers of some US\$ 300 million/year.

2.3.2. Differential Export Duties

In the absence of quotas or other quantitative restrictions on exports, domestic "FAS" prices should equal FOB prices minus taxes and marketing/handling costs involved in transferring grain from "along side" to "on board". In Argentina these costs have ranged from US\$ 3-9 per ton of soybeans, wheat and corn. However, differential export taxes on primary products (e.g. wheat or soybean grain) and processed products (e.g. wheat flour, soybean oil, soybean meal) has raised the issue of transfer of incomes from one sector to another. In Argentina export taxes for primary products have been higher than for processed products. For soybeans, for example, export taxes are 32 percent for oil and pellets, but 35 percent for grain.

⁵ ONCCA was finally closed down in February 2011, its activities transferred to sections of the Ministry of Economics

The relevant question is what impacts these differential taxes have on soybean producers and processors. Lema and Figueroa Casas (2010) analyze the impact of differential export taxes for soybean and grain on price differences between these two products. They find that a substantial increase in the "processing margin" occurring after the change in export tax regime. For soybeans used for crushing (soy oil and meal) processing differentials with and without export taxes are estimated at US\$ 6 per ton of grain, or an increase of 26 percent over the no-tax situation. Assuming a total soybean crop of some 50 MT, and exports of grain of 14 MT, the above differential would result in a transfer from producers to processing industry of some US\$ 216 million per year. Additional (albeit very crude) evidence of the impact of differential export taxes results when comparing the soybean price ratio [grain (domestic)/oil(FOB)] in 2000 (preexport taxes) with the same ratio after the imposition of taxes. The ratio is 0.55 for the former period, as compared to 0.30 - 0.35 for the latter. This increasing gap may be a result of processing capacity being still below available output, processing plants not having thus to "bribe" primary producers by offering part of their rent in order to attract grain from other processing firms. Increased unionization in transport and processing could have played an additional part.

2.3.3. Price Subsidies

Starting in 2007 and until 2011, a price subsidy mechanism was put in place for processors selling wheat, corn, soybean and sunflower products in the local market. Actions fell under responsibility of the ONCCA. The per-unit subsidy is calculated as the difference between the market and a domestic "reference" price ("precio de abastecimiento interno").

In the case of wheat, both producers selling to domestic-market processors as well as processors could receive subsidies. In some cases, subsidy payment was conditional on processing maintaining prices for their output within set limits. Beginning 2008 "small farmers" are eligible for subsidies. These are defined as producers with total output of less than 500 tons, and less than 350 hectares in the *pradera pampeana* or 500 hectares in the *zona extra pampeana*. This subsidy attempts to refund to smaller producers part of the price reduction due export taxes. The plan, if successful, would result in "differential" export taxes according to farm size. In this same year, an additional subsidy on grain transport costs is offered to producers in the *zona extra pampeana*. The subsidy is justified by the high transport costs of producers

of this area. Again, the plan can be seen as an attempt at "price discrimination" the reasoning being that export taxes are justified as a way of transferring land rents of the highly productive *pradera pampeana* to other sector of the economy. For the *zona extra pampeana*, or for "small" farmers this transfer of land rents is seen in unfavorable light, thus the subsidy decision on output or on transport.

Subsidies were also paid for livestock producers. Feed-lot producers were eligible, the aim being reductions in the cost of production of grain-fed animals. Subsidy is calculated on the basis of an estimate of the quantity of grain used, a "technical conversion" factor of 6 kg of corn to 1 kg of beef is used to calculate amount of compensation to be paid.

The important increase in feed-lot production that occurred since 2008 is the result, in part, of subsidy payments – some observers believe that in the absence of subsidies, beef production under feedlot conditions would have been in most years unprofitable – lower prices for beef in Argentina as compared to for example the U.S or Australia make grain feeding a marginal proposition unless (i) export taxes exist on grain and not beef, and (ii) some subsidy is applied to feedlots. A point to note is that concurrent with feedlot subsidies, export "permits" (resulting in some cases in *de facto* quotas) were imposed on beef exports. The aim of these measures is to reduce beef prices in the domestic market. With variations, similar subsidy schemes have been in effect for pork and poultry production.

In the case of dairy, subsidies of the order of US\$ 0.015 (or 5 percent of milk price) were paid in 2007 and 2008, with a limit of 3000 litres/day of output. Only farms producing up to 3000 litres/day were eligible. For a farm producing this upper limit, the annual subsidy would be US\$ 16.000 or approximately the annual labor costs of 1.5 workers. In 2010 subsidy is increased to approximately US\$/lt 0.02. Subsidies were also directed to milk processors. In this case, eligibility conditions included agreement with maximum prices for milk products set by authorities.

Summarizing, since 2007 until 2011 public policy has aimed at reducing domestic prices in particular of wheat flour, beef, pork, poultry and milk products by various forms of subsidy payments. In some cases, the logic behind subsidy measures is to "help" processors compete with the export sector for primary products. Cursory reading of program design and administration conditions (eligibility, subsidy calculations) suggests a host of problems that could result from the scheme.

Independent of the impact on efficiency in resource allocation, questions can be raised on how subsidies will be rationed among potential claimants.

3. Estimates of Policy Transfers 2007-2012

Most of the agricultural commodities produced in Argentina are internationally traded and the country is a net exporter in major crops, beef and milk markets. The set of commodities for the calculation of the PSE and related indicators was selected following the OECD's criteria that more than 70 percent of the total value of agricultural production should be covered. Following this criteria, eight commodities were selected for the analysis: wheat, corn, soybeans, sunflower, beef, pork meat, poultry and milk from 2007 to 2012 (see Table 2). Approximately one half of the total value of production corresponds to cereal and oilseed crops and the other half to animal production, beef production being the most important with 20% of the total⁶.

As mentioned previously, export taxes have been an important source of fiscal revenue. The analysis of "policy transfers" for Argentina is thus different than that for OECD countries: in the former transfers have taken place from producers to consumers, in most of the latter, transfers have followed the opposite direction. In addition, in Argentina the analysis of transfers is relatively "simple" as compared in particular both to OECD countries as well as to several developing economies. Argentine economic policy has resulted in relatively few programs transferring financial or other resources to individual agricultural producers. Moreover – and in contrast to the situation existing in several OECD countries - most of these programs have had relatively straightforward eligibility requirements.

In this section we present estimates of transfers resulting from economic policy in Argentina in the 2007-2012 years. General aspects related to estimation of transfers are detailed in the OECD *Producer Support estimate and related Indicators of Agricultural Support* Manual (OECD, 2010). We follow closely calculation procedures presented in the manual and our tables are designed correspond to tables in Chapters 6-8

⁶ The values of production for MPS commodities in Table 2 were calculated at farm gate using the PSE methodology by commodity. The share of MPS commodities in the total agricultural value of production (73%) was estimated using data from the National Accounts System from 2007 to 2012.

of the OECD manual.⁷. We thus present here a summary of these procedures as relates to the situation existing in the Argentine agricultural sector.

5.1 Market Price Differentials and Market Price Support Estimates

Tariff and non-tariff measures affecting trade result in price differentials between international and domestic prices. Differentials between prices received by farmers and international prices faced by the country capture not only these tariff and non-tariff aspects, but also transport costs, processing costs and quality differentials. In order to gauge transfers between farmers, consumers and the government it is necessary to "net out" the multiple aspects determining price differentials: i.e. transport costs lower farm gate prices as compared to export prices, the difference being payments for transport services received by the farmer. A tax on exports, in contrast, lowers farm gate prices but results in government tax revenue: i.e. a transfer from farmers to government. But the tax on commodity exports, by reducing domestic prices, also results in a transfer from farmers to consumers.

The approach adopted to calculate the Market Price Differentials (MPD) for the relevant commodities is *the price gap method*. The underlying principle is to measure the difference between two prices, i.e. a domestic market price in the presence of policies and a border price, representing the theoretical opportunity price for the domestic producers⁸. We need to compare the price received by producers at the farm gate, with a border price that has been adjusted to make it comparable with the farm gate producer price. To do so, adjustments are needed for both marketing margins (representing the costs of processing, transportation and handling) and weight conversion (e.g. grain processing into oil or pellets as in the case of sunflower). As a result of these adjustments, a border price measured at the farm gate level is obtained: this is the *Reference Price* (RP). The MPD for a commodity estimated through this method is:

 $MPD_i = PP_i - RP_i$

and

 $RP_i = (BP_i \times QA_i - MM_i) \times WA_i$

Where:

⁷ The lower left corner of each of our tables contains a reference to the corresponding table in the OECD manual and the data sources. Additional information on the calculation procedures and data sources is available to interested readers upon request to the authors.

⁸ We assume that the country is a price taker in the selected commodities.

 PP_i : producer price for commodity *i*

RP_i : reference price for commodity *i* (border price at farm gate)

BP_i: border price for commodity *i* or products derived from commodity *i*

QA_i : quality adjustment coefficient for commodity *i*

 MM_i : marketing margin for commodity i

WA_i : weight adjustment for commodity *i*

Cereals and oilseeds are the most important agricultural export products from Argentina. The four major crops selected (wheat, corn, soybeans and sunflower) are products were the agricultural policy induces a lower domestic market price. This occurs through export duties and market interventions (quantitative restrictions and export licensing). Taxes on agricultural exports are a source of budgetary revenue and also contribute to the government objective of lowering food prices for domestic consumption. Consequently the domestic price decreases relative to the border price, creating for these products a negative market price differential (MPD). For the crops analyzed Argentina is an exporter. Thus, policies that reduce the domestic market price of a commodity create transfers from producers to consumers (TPC), who also finance transfers to the public budget (TPT).

For grains, calculations are relatively straightforward as border prices exist for basic commodities produced at the farm level. In these cases, differences between border and farm prices only result from: (i) export taxes and (ii) transport and handling costs. Given that (ii) may be readily estimated, the impact of (i) can be obtained by directly comparing border (net of item (ii)) and producer prices.

In the case of livestock commodities calculations are more involved: for meats the producer prices refer to live weight, while export prices refer to processed meat products. Corrections thus have to be made to take into account: (i) the transformation ratio from live weight to carcass weight (the exported product), (ii) processing costs, and (iii) handling and transport costs. In the case of milk, additional calculation need to be done as the price received by the producer is expressed per-liter of milk, while dairy exports occur not as fluid milk but as powdered milk and different kinds of cheese. Again, the transformation ratio of milk into these outputs needs to be considered, as well as the processing costs necessary to transform fluid milk into the different dairy products that are exported.

5.2 Producer Support Estimates: Price Transfers

Export taxes are by far the most important policy instrument used in Argentina for "support". In this case, producers receive lower prices than what would be the case in the absence of market intervention. As mentioned in previous sections, the magnitude of export taxes has varied through time. Currently (2014) taxes are 23 percent for wheat, 20 percent for corn, 32 percent for sunflower, 35 percent for soybeans and 15 percent for livestock products.

Export taxes result in income transferred from producers to consumers and from producers to tax revenue. The difference between the Producer Price (PP) and the Reference Price (PP), multiplied by the total amount produced represents total transfer from producers to consumers and tax revenues. This is called the "Market Price Support" (MPS) of the commodity. In some cases, adjustments have to be made on account of part of exported commodity being used as animal feed, and not consumed directly by consumers

Table 3 shows MPS levels for the five years analyzed here, and for the chosen 8 commodities. Simple extrapolation allows an estimate to be obtained for the MPS of other commodities not included in the calculations. For the 2007-2012 period total MPS was always negative, indicating that revenues were transferred from producers to others (consumers and tax revenues). Country-wide MPS (MPS(c)) averaged some US\$ 12.000 million of which 40 percent corresponds to transfers from the soybean crop. Beef and corn production respectively account for 17 and 10 percent of total MPS. Important inter-year variation in total MPS (MPS(c)) occurs: the level of this variable in 2008 is more than double that of 2009. Important changes also occur in 2011 as compared to 2010 (see Figure 1).

International prices and export quantities are the major drivers of these variations, because ad-valorem export taxes (the most important policy instrument used in Argentina) remained relatively fixed after 2008. For example, the significant drought occurring in the 2008/09 crop year resulted in a drop of soybean production of more than 30 percent. Table 4 shows an analysis of inter-year changes in MPS (%DMPS) by commodity. A decomposition analysis is made between changes resulting from (i) changes in the quantities produced (%DQP) and (ii) changes in the differential between reference (border) and producer prices adjusted for processing, handling and transport

costs (%DMPSu).⁹ Recall than in Argentina MPS are negative, that is transfers occur from producers to consumers and taxes, and not the other way round. With this in mind, the following points can be highlighted:

- Large inter-year variation in MPS is observed: for soybeans percentage variations (in absolute terms) range from 20 to nearly 60 percent, for corn from 15 to nearly 230 percent.
- 2. In the case of soybeans, maximum percentage increase and decrease is similar for quantity- and price-related sources of variation. In the case of corn, however (and contrary to a-priori expectations) maximum percentage increases and decreases appear to be greater from price than from quantity-related variation.
- 3. Wheat is similar to corn: wide variations in MPS are observed; however variations resulting from changes in prices appear to be greater than those resulting from changes in quantities.
- For beef production MPS variations resulting from quantity variations are low (in absolute terms from 6 to 20 percent). However, variations resulting from prices are much higher, and range from 50 to 410 percent.

In the period analyzed here (2007-2012) commodity prices varied substantially: from US\$/t 290 to 480 for soybeans, US\$/t 150 to 230 for corn, US\$/t 200 to 290 for wheat and US\$/t (carcass weight) 4000 to 8200 for beef. Under these conditions, the same export tax rate on commodities obviously results in widely varying transfers from producers to consumers and taxes. Under the high commodity prices prevailing since 2007, high farm incomes received by producers make these transfers "easier to digest" by these producers, however in absolute magnitudes these high commodity prices result in massive transfers out of the production sector.

5.3. Producer Support Estimates: Other Transfers

⁹ To obtain the decomposition results at the individual commodity level the formula is:

$$\begin{split} &\% \Delta MPS_{i}^{t} = \frac{MPS_{i}^{t} - MPS_{i}^{t-1}}{MPS_{i}^{t-1}} \times 100 \\ &= \left(\frac{QP_{i}^{t} - QP_{i}^{t-1}}{abs(MPS_{i}^{t-1})} \times \frac{MPSu_{i}^{t} + MPSu_{i}^{t-1}}{2} \times 100\right) + \left(\frac{MPSu_{i}^{t} - MPSu_{i}^{t-1}}{abs(MPS_{i}^{t-1})} \times \frac{QP_{i}^{t} + QP_{i}^{t-1}}{2} \times 100\right) \end{split}$$

Where: i: individual commodity; MPS_{ui}: per unit MPS; QP: quantity produced and Abs(MPS): absolute MPS.

(See Equation 11.6 -page 149 contribution analysis- of the OECD "PSE Manual")

Transfers may occur not only as a result of export taxes, but from budgetary allocations. In particular, producers may be eligible for different kinds of payments and/or subsidies on inputs used. Adding up non-budgetary price-based transfers (MPS) plus these other budgetary transfers, a total measure of transfers from/to agricultural producers is obtained: the *Producer Support Estimate* (PSE). Table 5 shows for the 2007-2012 period total MPS transfers and the different categories of budgetary transfers used to calculate the PSE. For Argentina the Producer Support Estimates are always negative, representing a net transfer from primary producers to consumers and taxes (see Figure 2). The following results are highlighted:

- In round numbers for the 6-year period, MPS annual transfers total from producers US\$ 12.000 million. Producers "received back" as budgetary transfers some US\$ 430 million or 4 percent of the total MPS figure.
- Some 25 percent of budgetary transfers (US\$ 119 million) are represented by the state-run extension service. Public extension services are provided "free of charge", thus representing a 100 percent subsidy on the input price of the service.
- 3. 75 percent of budgetary transfers correspond to direct payments based on some measure of output. Interestingly, most (70 percent) of these subsidies go to relatively large-scale "industrial" agricultural producers (feedlots and poultry operations). This issue was analyzed in greater detail in previous sections of this paper. Dairy operations received a significant portion of remaining output-based subsidies.
- 4. Credit subsidies, either as interest-rate or as refinancing subsidies represent 2 percent of total subsidies.

Market Price Support transfers from producers to consumers and taxes are significantly higher than transfers to producers. This results in inter-year variation of PSE's being basically a result of variations of MPS's, and not of variations in budget allocation from government to producers.

5.4. General Service Support Estimates (GSSE)

The General Services Support Estimates (GSSE) capture investment in public goods focused on the agricultural sector. Accounting for these investments is of particular

importance, given the linkages existing between agricultural public goods (in particular, scientific and technical research) and output growth.

Table 6 shows measures of support belonging to this category. For the period under study, total support averaged some US\$ 260 million, 80 percent of which was allocated to two organizations: INTA (Instituto Nacional de Tecnología Agropecuaria) and SENASA (Servicio Nacional de Sanidad y Calidad Agroalimentaria). INTA is the principal government R&D organization. In turn, SENASA has mandate over animal and plant health, food safety and agricultural input quality monitoring.¹⁰ Table 6 also shows that the total budget allocations to INTA (R&D) plus SENASA increased from US\$ 134 million in 2007 to US\$ 382 million in 2012, that is they increased almost three-fold. Of the total GSSE, R&D (basically INTA) has in the 2007-2012 period averaged some 40 percent of total expenditure. Of total GSSE resources, these expenditures can most closely be related to the productivity increased observed in the agricultural sector. In the case of SENASA, the animal and plant inspection services agency, a significant portion (approximately 40 percent) of its budget is basically allocated to foot and-mouth disease prevention activities. As such, they do not directly result in *observed* productivity enhancement: their "impact" relates to the counterfactual comparison of the current sanitary situation with what would happen if a disease outbreak occurs.¹¹

5.5. Producer Support: %PSE

The Percentage PSE (%PSE) is the PSE as a share of gross farm receipts (including support) at a national level and is a relative indicator of support provided to producers. Table 7 shows that the negative %PSE reached an (absolute) minimum of 19.1 % in year 2010 and a maximum of 39.9 % in year 2008, averaging 32% in the 2007-2012 period. An average %PSE of -26% means that the estimated total value of policy transfers from individual producers to consumers and tax revenue represents 26% of total gross farm receipts¹². Table 7 also presents the Producer Nominal Assistance Coefficient (producer NAC) that is the ratio between the value of gross farm receipts (including support) and gross farm receipts valued at border prices (measured at farm

¹⁰ INTA's budget was partitioned into extension (54 percent of total) and R&D 46 percent. Extension is imputed to PSE (a "free" input to individual producers), while R&D is imputed to "public godos" (GSSE).

¹¹ Which indeed was the case in 2001.

¹² Gross farm receipts is the value of production, plus Budgetary and Other Transfers provided to producers (i.e. VP+BOT)

gate). The NAC reached a maximum of 0.84 and a minimum of 0.71, meaning that producers receive between 71 to 84% of the gross farm receipts valued at border prices.

The negative support is relatively high; but with an unequal distribution between the subsectors. For example, soybean grain production and beef production are very highly taxed, but dairy, poultry and pig meat production have had in fact positive support. The absolute increase in the negative PSE in 2008 was basically a result of the market price support and was caused both by in rising international prices and an increase in export duties.

5.6. Total Support Estimate (TSE), Percentage GSSE and Percentage TSE

The TSE is the annual monetary value of all gross transfers from taxpayers and consumers arising from policies that support agriculture net of the associated budgetary receipts. In order to assure consistency in calculations, the TSE was estimated by two methods. The first sums up the transfers distinguished by recipient, i.e. transfers to producers (PSE) transfers to general services (GSSE) and transfers to consumers from taxpayers (TCT). The second sums up the transfers over different sources. Transfers from consumers (TPC+OTC) and transfers from taxpayers¹³. Table 8 presents the calculation results in US\$ million. The average TSE for the period is negative in US\$ 10700 million. This result confirms the already mentioned small effect of GSSE to offset the negative MPS.

The Percentage GSSE (%GSSE) and Percentage TSE (%TSE) are two relative indicators of support derived from absolute values of GSSE and TSE. The %GSSE indicates the importance of support to general services within total support. It is calculated as the percentage share of the TSE (GSSE/TSE). The %TSE indicates the level of total support to agriculture relative to the country gross domestic product (GDP). Table 8 presents the results of these calculations for Argentina in the period 2007-2011. The average %GSSE is estimated at -3% and the average %TSE is estimated at -3.1%. The value of %GSSE indicates that the agricultural producers "received back" 3% of the negative TSE during the period 2007-2011. At the same time, the %TSE suggests that the agricultural producers transferred to consumers and tax revenues, on average and per year, 3.1% of the GDP.

¹³ For details see Section 8.2 of the OECD PSE Manual

5.7. Consumer Support Estimates (CSE)

The Consumer Support Estimates (CSE) is the annual monetary value of gross transfers to consumers, measured at the farm gate level. Table 9 shows the CSE from agriculture for the Argentine economy. As mentioned previously, export taxes result in reduced domestic as compared to border prices, thus a transfer results from producers to consumers (and taxes). For the 2007-2012 period total CSE averaged US\$ 3700 million. Given the country's population of 41 million, these transfers averages US\$ 90 per person, or US\$ 360 for a four-person household.

The magnitude of these transfers can be put into perspective by comparing the average household income, in particular of the "low" income households. According to the National Institute of Statistics (INDEC), median household income of the 10-percentile was AR\$ 1680/month, or AR\$ 21840 per year in 2011^{14} . Assuming a fourperson household, and of course assuming that average food consumption of this household is equal to households of other income levels total CSE would, as mentioned above be US\$ 360 per-year. Given an exchange rate of AR\$ 6 per US\$, annual income of this household would be 21840/ 6 = US\$ 3640 thus CSE's represent approximately 10 percent of annual income. A-priori, for these households the reduction in domestic prices of food appear quite significant.

Lastly, note the highly variable nature of CSE: for the years analyzed here they range from US\$ 1300 to 8000. Clearly, in periods of high international prices, local consumers obtain substantial benefits from taxing agricultural exports. Of course, alternative measures of consumer support (e.g. a food stamp or an income transfer program) could reduce negative impacts of international price hikes with less distortion in incentives for agricultural producers.

4. <u>Conclusions</u>

During the last decades, Argentine agriculture has been the most dynamic sector of the economy. Rapid productivity growth, coupled with recent increased demand for agricultural commodities make agriculture an important sector of the economy. The agricultural sector has been subject to a changing policy environment: periods of relative openness and macroeconomic stability have alternated with periods of high

¹⁴ For formal workers, 13 months per year compensation.

inflation, and considerable restrictions on foreign trade. Despite changing "rules of the game" performance of agriculture has been significant.

Agricultural policy in Argentina has resulted - as compared to many other countries – to few (in many cases no) programs aimed at subsidizing input prices or affecting land allocating decisions via direct payments. For example, no programs have been in place in order to further agricultural insurance use. Environmental issues (such as deforestation, wetlands or ag-chemical use) are in general just now starting to crop up in the agenda. Price support or stabilization programs have also been absent. Since 2007, however, different kinds of interventions have affected the value chain: export permits or quotas, and of course export taxes have had a significant impact.

Transfers to and from agriculture have been estimated for the principal eight agricultural production activities of Argentina. Results indicate substantial transfers from agriculture to other sectors of the economy. The soybean crop accounts for a major portion of transfers from agriculture: the fact that 90 + percent of the soybeans are exported (either as grain or sub products) implies that these transfers go mostly from farmers to tax collection. For other activities, where exports are a smaller portion of total production (e.g. beef and poultry) lower domestic prices mainly benefit consumers, and only secondarily tax collection. The results for Argentina contrast sharply with estimates for other southern hemisphere countries with large agricultural sectors as Australia, Brazil, Chile, New Zealand and South Africa (OECD 2013). Figure 3 shows that for these countries the %PSE is relatively stable with low and positive values (5%) while for Argentina is volatile and negative in the order of -20% to -40%.

An important issue to be addressed in future research relates to the "costs and benefits" resulting from taxes on exports and the consequences in terms of productivity and efficiency. Clearly, export taxes distort incentives to producers and as such introduce inefficiency and reduce the relative productivity. The magnitude of this inefficiency depends on the elasticity of supply: the lower this elasticity the smaller the resulting inefficiency. Export taxes, however, result in lower food prices for consumers and tax revenue for government. Designing improved ways of subsidizing food consumption by low-income households, and alternative ways of financing government are challenges that remain.

Results also show increasing budgetary allocations over time to both R&D (basically INTA) as well as animal and plant health (SENASA). In Argentina, and in contrast with other countries, relatively few (if any) resources are channeled to support

projects addressed to environmental management, food subsidies to low-income population or agricultural insurance. Analysis of the efficiency of public intervention in agriculture is an important topic to be addressed in future research. The improvement of data on the different dimensions of the agricultural sector is a pressing issue.

References

Bour, J.L.(1994), Mercado de trabajo y productividad en la Argentina. Fundación Fiel.

- Brescia, V. and D.Lema (2007), Supply elasticities of selected commodities in Mercosur and Bolivia. EC Project EUMercopol (2005-2008).
- Castro, V., A.Arizu y M.Gallacher (2009), Impacto económico del conocimiento científico: el caso de la genética vegetal. *Revista de Economía y Estadística* XLVI (2008):45-68. Universidad Nacional de Córdoba.
- Cirio, F.M., R.Canosa and D.White (1980), Aspectos económicos del empleo de fertilizantes en el agro. Convenio AACREA-Banco de la Nación Argentina Fundación Banco de la Provincia de Buenos Aires.
- Diaz Hermelo, F. and A. Reca (2010), Asociaciones productivcas (AP) en agricultura: una respuesta dinámica a fallas de mercado y cambio tecnológico. In: Reca.
 L.G., D.Lema and C.Flood, editors (2010) *El crecimiento de la agricultura* argentina – medio siglo de logros y desafíos. Editorial Facultad de Agronomía.
- Fulginiti, Lilyan and Perrin, Richard, (1990), Argentine Agricultural Policy in a Multiple-Input, Multiple-Output Framework. American Journal of Agricultural Economics (72): 279-299.
- Gallacher, M.(2008), Tamaño de empresa en la agricultura argentina. *Revista de la Universidad del CEMA* (Agosto 2008): 23-25.
- Gallacher, M.(2010), The changing structure of production: Argentine agriculture 1998-2002. *Económica* LVI:79-104.
- Instituto Nacional de Estadísticas y Censos INDEC (2012), Encuesta Permanente de Hogares Evolución de la distribución del ingreso.
- Krueger, Anne O., Maurice Schiff and Alberto Valdés (1991), The Political Economy of Agricultural Pricing Policy, Volume 1: Latin America, Baltimore: Johns Hopkins University Press for the World Bank.
- Lema, D. (2008), Intenciones declaradas y efectos económicos de la regulación en el mercado de trigo de argentina. Asociación Argentina de Economía Agraria. Anales del 2do. Congreso Regional de Economía Agraria.
- Lema, D.(2010), Factores de crecimiento y productividad agrícola. El rol del cambio tecnológico. In: Reca. L.G., D.Lema and C.Flood, editors (2010) *El crecimiento de la agricultura argentina medio siglo de logros y desafíos*. Editorial Facultad de Agronomía.
- Lema, D. y G. Figueroa Casas, (2010) "Concentración, poder de mercado y eficiencia y en la industria del aceite de soja", Documento de Trabajo Instituto de Economía y Sociología INTA. (<u>http://inta.gob.ar/documentos/concentracion-poder-de-mercado-y-eficiencia-en-la-industria-del-aceite-de-soja/</u>)
- Lucas, Robert Jr, (1976), Econometric policy evaluation: A critique, Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1):19-46.

- OECD (2010), Trade and Agriculture Directorate, OECD'S Producer Support Estimate and Related Indicators of Agricultural Support – Concepts, Calculations, Interpretations and Use (The PSE Manual).
- OECD (2013), Agricultural Policy Monitoring and Evaluation 2013: OECD Countries and Emerging Economies, OECD Publishing. (DOI: 10.1787/agr_pol-2013-en)
- Olivo, S.L.(2010), Condiciones para el desarrollo del mercado de futuros en la Argentina. Motivos por los cuales no han logrado desarrollarse adecuadamente en la Argentina. Documento de Trabajo de la Universidad del CEMA 420. Marzo 2010.
- Passero, R.(2011), La comercialización del trigo. Un antes y un después. Agribusiness Seminar, University of CEMA, June 2011.
- Reca, L. (1967), The Price and production duality within argentine agriculture 1923-1965. Thesis (Ph.D.) - University of Chicago, 1967.
- Reca, L.G.(1969), Determinantes de la Oferta Agropecuaria en la Argentina 1934/35-1966/67. Estudios sobre la Economía Argentina, Agosto 1969, Buenos Aires.
- Reca. L.G., D.Lema and C.Flood (2010) *El crecimiento de la agricultura argentina medio siglo de logros y desafíos*. Editorial Facultad de Agronomía.
- Schiff, M. and C.E.Montenegro (1995), Aggregate agricultural supply response in developing countries. Policy Research Working paper 1485. The World Bank.
- Schultz, T.W.(1956), Reflections on agricultural productivity, output and supply. *Journal of farm Economics* (38-3):748-762.
- Schultz, T.W.(1975), The value of the ability to deal with disequilibria. *Journal of Economic Literature* (13):827-846.
- Sonnet, F.H.(1999) La reforma económica y los efectos sobre el secfor agropecuario (1989-1999). Asociación Argentina de Economía Política XXXIV Reunión Anual (Rosario).
- Sturzenegger, Adolfo (1990) "Trade, Exchange Rate and Agricultural Pricing Policies in Argentina", World Bank Comparative Studies, Washington D.C
- Sturzenegger, Adolfo, and Mariana Salzani (2006), "Distortions to Agricultural Incentives in Argentina", Agricultural Distortions Research Project, Working Paper, World Bank.
- White, D.(1977), Marco economico para el desenvolvimento de la producción agropecuaria. VIII Congreso de los grupos CREA, Mendoza.

Source: OECD (2013), "Producer and Consumer Support Estimates", OECD Agriculture statistics (database) and authors estimates

		1980-89	1990-99	2000-09
Output Prices - World				
Corn	US\$/ton	113	113	127
Wheat	US\$/ton	150	149	184
Soybeans	US\$/ton	238	228	264
Oil	US\$/barrel	26	18	50
Output Prices - Argentina				
Corn	US\$/ton	78	106	92
Wheat	US\$/ton	97	131	128
Soybeans	US\$/ton	150	210	195
Argentine/World Output Prices	Ratio	0.65	0.91	0.76
Tornqvist Crop Price Index - Argenti	ina (1980=100)	57	79	76
Input Prices - Argentina				
Nitrogen Fertilizer	US\$/ton	194	247	375
Phosphorus Fertilizer	US\$/ton	252	321	496
Machine Services ("UTA")	US\$/ha	11	17	19
Herbicide 1 ("Roundup")	US\$/lt	na	7	3
Herbicide 2 ("Atrazine")	US\$/lt	na	3	4
Labor		93	253	267
Tornqvist Input Price Index - Arge	ntina (1980=100) 57	71	71
w/p (= Tornqvist Input/Tornqvist	Ouptut prices)	100	90	93

Table 1: Output and Input Prices

Sources:

IMF (world prices) AACREA (domestic output and input prices)

Table 2: Selection of Commodities for MPS Calcula	tion

	2007	2008	2009	2010	2011	2012	Average 2007- 2012	Cumulative %
Soybeans	10326.1	12947.7	7859.1	13914.2	15547.2	14913.6	12584.6	30
Corn	2568.2	3014.0	1484.5	3200.8	3570.0	3597.6	2905.9	37
Wheat	2097.8	2780.0	963.3	1682.8	2616.1	2647.3	2131.2	42
Sunflowers	1232.9	851.0	578.6	761.7	1287.8	1237.9	991.7	44
Dairy	2101.4	2532.8	1978.7	3187.6	3913.4	3731.8	2907.6	51
Beef	4987.5	5698.3	5223.0	7260.0	8681.0	10335.0	7030.8	68
Poultry	1181.8	1394.8	1381.1	1559.0	1868.0	2625.7	1668.4	72
Pigmeat	280.0	347.6	341.7	483.3	627.4	745.9	471.0	73
Value of Production MPS								
Commodities -	047757	20566.2	10010.0	22040 4	20110.0	200247	20(01.2	72
Total Value of Production	24775.7	29566.2	19810.0	32049.4	38110.9	39834.7	30691.2	73
VP(c)	33939.4	40501.7	27137.0	43903.3	52206.8	54568.0	42042.7	100

		2007	2008	2009	2010	2011	2012	Average
VP(c)	Total value of production Total value of production	33939.4	40501.7	27137.0	43903.3	52206.8	54568.0	42042.7
VP (amc)	(mps commodities)	24775.7	29566.2	19810.0	32049.4	38110.9	39834.7	30691.2
MPS	Soybeans	-2981.6	-4584.9	-3862.6	-4776.9	-7348.1	-4895.8	-4741.7
MPS	Corn	-560.4	-1861.6	-895.3	-699.2	-2092.5	-1379.8	-1248.1
MPS	Wheat	-793.4	-1759.2	-592.9	-176.1	-1674.7	-2110.7	-1184.5
MPS	Sunflowers	316.2	-480.3	-372.7	-495.5	-789.3	-623.1	-407.5
MPS	Dairy	-190.2	-704.9	1282.4	169.2	718.7	915.6	365.1
MPS	Beef	-945.0	-3327.8	-1598.8	-706.7	-1843.6	-59.2	-1413.5
MPS	Poultry	58.1	159.5	258.5	-19.4	366.8	257.1	180.1
MPS MPS	Pigmeat	31.6	31.9	92.1	92.3	247.3	231.0	121.0
(amc)	commodities Market Price	-5064.8	-12527.2	-5689.2	-6612.3	-12415.4	-7665.0	-8329.0
MPS(c)	Support	-6938.1	-17160.6	-7793.4	-9058.0	-17007.4	-10500.0	-11409.6

Table 3: Calculation of national (agregate) MPS – US\$ million

Ref T 6.5 OECD Manual

		2008	2009	2010	2011	2012	Absolute Changes:	
							Minimum	Maximum
Soybeans	%DMPS	-54%	16%	-24%	-54%	33%	16%	54%
	%DQP	3%	37%	-60%	9%	17%	3%	60%
	%DMPSu	-57%	-21%	37%	-63%	17%	17%	63%
Corn	%DMPS	-232%	52%	22%	-199%	34%	22%	232%
	%DQP	-3%	37%	-53%	16%	-1%	1%	53%
	%DMPSu	-230%	15%	75%	-215%	35%	15%	230%
Wheat	%DMPS	-122%	66%	70%	-851%	-26%	26%	851%
	%DQP	-18%	40%	-3%	-226%	2%	2%	226%
	%DMPSu	-103%	26%	73%	-625%	-28%	26%	625% 0%
Suflower	%DMPS	-5%	22%	-33%	-59%	21%	5%	59%
	%DQP	-30%	57%	13%	-64%	8%	8%	64%
	%DMPSu	24%	-35%	-46%	5%	13%	5%	46%
Beef	%DMPS	-252%	52%	56%	-161%	97%	52%	252%
	%DQP	7%	-6%	17%	9%	-2%	2%	17%
	%DMPSu	-259%	58%	38%	-170%	90%	38%	259%
Milk	%DMPS	-271%	282%	-87%	325%	27%	27%	325%
	%DQP	-11%	0%	1%	30%	1%	0%	30%
	%DMPSu	-259%	282%	-88%	295%	-14%	14%	295%
Poultry	%DMPS	175%	62%	-108%	1991%	-30%	30%	1991%
	%DQP	13%	7%	2%	52%	1%	1%	52%
	%DMPSu	95%	74%	-127%	1939%	-31%	31%	1939%
Pork meat	%DMPS	1%	189%	0%	168%	-7%	0%	189%
	%DQP	-1%	10%	-3%	12%	7%	1%	12%
	%DMPSu	2%	177%	3%	155%	-56%	2%	177%

 Table 4: Source of Variation (contribution analysis)

%DMPS = % difference in total MPS

%DQP = % difference due to quantity variation

%DMPSu = % difference due to price & tax rate variation

	2007	2008	2009	2010	2011	2012	Average
Producer Support Estimate (PSE)	-6743.5	-16447.0	-7244.0	-8492.5	-16824.2	-10227.6	-10996.5
A. Support based o	on commod	ity output	S				
A.1 Market Price Support (MPS) A.2 Payments based on output (ONCCA	-6938.1	-17160.6	-7793.4	-9058.0	-17007.4	-10500.0	-11409.6
subsidies*):	108.6	595.0	431.1	415.0	0.0	0.0	258.3
Soybeans and sunflower producers Wheat and Corn producers	0.0 19.1	0.2 52.5	0.0 30.5	0.0 3.5	0.0 0.0	0.0 0.0	0.0 17.6
Dairy producers	25.0	104.8	104.5	79.0	0.0	0.0	52.2
Pig producers	7.2	20.8	0.3	0.0	0.0	0.0	4.7
Poultry producers	49.6	220.2	113.6	160.0	0.0	0.0	90.6
Beef feed-lot producers B. Payments	7.7	196.6	182.1	172.5	0.0	0.0	93.2
based on input use Interest rate	86.0	118.6	118.4	150.4	183.2	272.4	154.8
subsidies & credit restructuring Extension and	5.2	6.5	9.2	16.9	23.5	40.5	17.0
advisory services	80.8	112.1	109.2	133.5	159.7	231.9	137.9

Table 5: Calculation of PSE – US\$ million –

Data sources: SAGPyA

Ref T 6.7 OECD Manual

* Note: Since February 2011 the ONCCA was replaced by another agency called UCESCI (Unidad de Coordinación y Evaluación de Subsidios al Consumo Interno). The UCESCI is now in charge of the administration of subsidies to specific activities. The new agency does not provide any public information on the amounts of subsidies allocated.

Description	2007	2008	3 2009	2010	2011	2012	Average			
US\$ Million										
General Services Support Estimates (GSSE)	189.5	229.2	252.9	263.3	356.4	500.5	298.6			
H. Research and Development										
INTA	68.	95.5	93.0	113.7	136.0	197.6	117.4			
INASE	2.7	3.3	3.6	5.2	6.3	11.5	5.4			
I. Agricultural Schools										
J. Inspection Services										
SENASA	65.2	92.2	116.4	109.6	137.7	184.9	117.7			
PROSAP (animal & plant health, food quality)	12.5	0.0	0.3	0.0	0.0	0.0	2.1			
K. Infrastructure										
PROSAP (infrastr, inst strengthening)	23.8	26.8	17.5	15.5	37.3	44.8	27.6			
L. Marketing and Promotion										
PROSAP (technology & mkt development)	4.0	1.4	0.6	0.2	16.2	0.0	3.8			
M. Miscellaneous										
Social Programs	8.9	6.7	17.1	17.2	20.7	7.9	13.1			
Productive reconversion	3.5	3.4	4.3	1.9	2.1	53.8	11.5			

Table 6: Calculation of GSSE

Ref T 8.1 OECD Manual

Table 7: Calculation of PSE and Producer NAC

		Units	2007	2008	2009	2010	2011	2012
	Total value of	US\$						
VP(c)	production	mill	33939.4	40501.7	27137.0	43903.3	52206.8	54568.0
	Producer Support	US\$						
PSE(c)	Estimate	mill	-6743.5	-16447.0	-7244.0	-8492.5	-16824.2	-10227.6
		US\$						
MPS(c)	Market Price Support	mill	-6938.1	-17160.6	-7793.4	-9058.0	-17007.4	-10500.00
	Budgetary and Other	US\$						
BOT(c)	Transfers	mill	194.6	713.6	549.5	565.4	183.2	272.4
		US\$						
GFR(c)	Gross Farm Receipts	mill	34134.0	41215.3	27686.5	44468.8	52389.9	54840.4
% DSE (c)	Dercentage DSE	0⁄~	10.8	30.0	26.2	10.1	32.1	18.6
70FSE(C)	Producer Nominal	70	-19.0	-39.9	-20.2	-19.1	-32.1	-10.0
Flouteer								
NAC(c)	Assistance Coefficient	Ratio	0.84	0.71	0.79	0.84	0.76	0.84

Ref T 6.8 OECD Manual

		Units	2007	2008	2009	2010	2011	2012	Average
	General Services	US\$							
GSSE	Support Estimate	mil	190	229	253	263	356	501	299
	Total Support	US\$							
TSE	Estimate	mil	-6554	-16218	-6991	-8229	-16468	-9727	-10698
	Percentage General								
	Services/Support								
%GSSE	Estimate	%	-2.9	-1.4	-3.6	-3.2	-2.2	-5.1	-3.1
	Gross Domestic	US\$							
GDP	Product	mil	260769	326677	307082	370389	446005	175658	364430
ODI	Percentage Total		200707	520077	307002	570507	++0005	+75050	304430
%TSF	Support Estimate	0/2	-2.5	-5.0	_23	_2 2	-37	-2.0	-3.0
70 I SL	Support Estimate	/0	-2.5	-5.0	-2.5	-2.2	-5.7	-2.0	-3.0
	Exchange Rate	AR\$	3.12	3.16	3.73	3.89	4.13	4.55	4

Table 8: Calculation of %GSSE and %TSE

Ref T 8.3 OECD Manual

Table 9: Calculation of CSE

Symbol	Description	Units	2007	2008	2009	2010	2011	2012	Average
		US\$							
VP(c)	Value of production	mill	33939	40502	27137	43903	52207	54568	42043
VP	Value of production	US\$							
(amc)	MPS commodities	mill	24776	29566	19810	32049	38111	39835	30691
	Transfer to consumers	US\$							
TCT(c)	from taxpayers	mill	0	0	0	0	0	0	0
	Transfer to consumers								
TCT	from taxpayers for	US\$							
(amc)	MPS commodities	mill	0	0	0	0	0	0	0
	Transfer to consumers								
	from taxpayers for								
	non-MPS	US\$							
TCT(xe)	commodities	mill	0	0	0	0	0	0	0
	Transfers to producers	US\$							
TPC(c)	from consumers	mill	-2770	-9015	-2300	-3113	-7270	-2806	-4546
	Transfers to								
	consumers from								
TPC	producers all MPS	US\$							
(amc)	commodities	mill	-2022	-6581	-1679	-2273	-5307	-2048	-3318
	Other transfers from	US\$							
OTC(c)	consumers	mill	0	0	0	0	0	0	0
	Other transfers from								
OTC	consumers MPS	US\$							
(amc)	commodities	mill	0	0	0	0	0	0	0
	Excess Feed Costs	US\$							
EFC(c)	(feed crops only)	mill	-337	-930	-948	-509	-1343	-988	-842
	Consumer Support	US\$							
CSE	Estimate	mill	2433	8085	1352	2605	5928	1819	3703

Ref T 7.2 OECD Paper