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Process-based simulation of regional agricultural supply functions 
in Southwestern Germany using farm-level and agent-based models

By Christian Troost and Thomas Berger,

Land Use Economics in the Topics and Subtropics, 
Universität Hohenheim, Germany

In  combination  with  crop  growth  models,  farm-level  models  allow  an  in-depth,

process-based  analysis  of  farmer  adaptation  to  climate  change  and  agricultural

policy. Evaluated for all farms in an area and extended by interactions, farm-level

models  become  agent-based  models  that  allow  simulating  aggregate  regional

production and structural change. Confined to a local or regional scope, however,

they cannot directly incorporate price feedbacks that play out at global scale. In this

contribution, we use experimental designs to evaluate a non-connected agent-based

model  for  the  full  space  of  potential  future  price  developments.  We discuss  and

compare  the  use  of  standard  regression  analysis  and  non-parametric,  automatic

methods (MARS and Kriging) to summarize supply behavior over the simulated price

ranges.  Estimated  supply  functions  constitute  a  surrogate  model  for  the  original

agent-based model   and could  be  used  to  iterate  detailed  regional  analysis  with

national or global market models in an efficient way. 



1. Introduction 

Climate change has the potential to profoundly affect agriculture in many regions of the world

and confront farmers with conditions that have not been observed in their area before. Given this

potential for structural shifts in agricultural production systems, scientists cannot simply rely on

statistical  analysis  of  past  observations  to  extrapolate  future  agricultural  supply  and  policy

response  (Antle  and  Capalbo  2001).  Mathematical  programming  farm-  and  household-level

models (both, farm-level MP models and agent-based models) can play a key role in analyzing

the consequences of climate change for agricultural production and livelihoods (van Wijk et al.

2012): Combined with crop growth models, they are arguably the closest equivalent to process-

based  models  available  to  agricultural  economists.  They  are  able  to  reflect  the  complex

interlinkages between different production options, farm resources, farmer characteristics, and

household objectives and provide the necessary whole-farm perspective needed for adaptation

analysis (Reidsma et al. 2010).  They are able to incorporate projected, but unobserved changes

in yield responses, but also climate impacts not reflected in yield simulations (Troost and Berger

2015). If run for all (or a sufficiently large and representative set of) farms of an area, they can

capture the regional heterogeneity of vulnerability and adaptative capacity and enhanced with

interactions  they  become  agent-based  models  that  help  to  analyse  innovation  diffusion,

cooperation, local resource conflicts and local, fragmented  market outcomes (Berger and Troost

2014). In short, they provide the means to base ex ante, out-of-sample analysis on a combination

of theoretical and empirical process knowledge. 

However, the greatest strength of farm-level models is also their most important weakness: the

ability to model real-world processes explicitly and to reflect heterogeneity and locally specific

conditions requires very detailed data and knowledge of the agricultural  system under study

(Buysse et al. 2007).  Their scope is therefore usually confined to local or regional scales and it is

not always easy to upscale these models or generalize results (Gibbons et al. 2010). 

This  regional  confinedness  also  means  that  feedbacks  with  global  or  national  agricultural

markets  cannot  be  simulated  directly,  so  that  the  model  remains  ignorant  to  price  changes



triggered by the simulated climate adaptation response.  Moreover, it  may be anticipated that

climate change effects may differ with the prevailing agricultural crop prices. For this reason, a

meaningful simulation analysis  has to  evaluate  climate change effects  over the full  range of

anticipated future price developments. Depending on the computational complexity of the model,

this can be challenging. Still, if the farm-level model is run for a sufficiently large share of farms

in the area, such an analysis cannot only highlight the price level dependency of climate change

impacts, but will provide a process-based estimate of potential shifts in regional crop supply

functions caused by climate change.      

In this contribution, we demonstrate the use of a non-connected agent-based model, a farm-level

model  that  is  solved  for  every  (full-time)  farm  in  the  Central  Swabian  Jura  (Southwest

Germany), for a process-based, bottom-up simulation of climate change effects on agricultural

supply  functions.  After  presenting  the  study  area  and  model  in  the  next  section,  Section  3

explains the experimental design we used to cope with the uncertainty and considerable run-time

of the model. Section 4 analyzes the simulated dependency of agricultural supply on prices and

model uncertainty, and shifts in supply caused by three climate adaptation scenarios. Section 5

discusses outcomes and the merits of different statistical methods used for summarizing supply

functions. Section 6 concludes.

2. The Farm-level Model for the Central Swabian Jura

2.1. Study Area

The Central Swabian Jura is a low mountainous area (650-850 m.a.s.l.) that covers about 1,300

km² and located between Stuttgart and Ulm in Southwest Germany. Agriculture in this area is

characterized by a relatively balanced mix of crop production, dairy farming, bull fattening, pig

production,  and biogas production.  Most  farm holdings simultaneously produce three to five

different crops, with summer barley, winter wheat, winter barley and winter rapeseed being the

dominant crops, while dairy and cattle farmers tend to also grow silage maize, clover and field

grass. Farmer production decisions have to respect a complex set of crop rotation constraints,

feed and manure balances, machinery and labor capacity constraints, and policy restrictions. 



The area has mostly shallow soils and a comparatively harsh climate (mean annual temperatures

around 7 °C, mean annual precipitation 800-1,000 mm) that has been a constraining factor for

agricultural production when compared to neighboring regions. Besides producing changes in

expected crop yields, climate change might relax current weather constraints on field work: Field

work requires suitable weather conditions and farmers need to plan production such that they can

muster the necessary amount of labor and machinery power with sufficient certainty within a

critical time-slot. In a warmer climate, these windows of opportunity may widen. This would

also relax crop rotation constraints: Currently, late wheat harvest dates that overlap with rapeseed

sowing dates make wheat-rapeseed sequences infeasible for most farms in the study area.  If

wheat could be harvested slightly earlier or rapeseed sown slightly later, this might become an

important crop rotation option (Troost and Berger 2015). 

2.2. The Model

Our analysis builds on the farm-level model that was originally developed in Troost et al. 2012

and  Troost  and  Berger  2015.  It  consists  of  a  mixed  integer  programming  (MIP)  model

representing the generic production and investment problem of farmers on the Central Swabian

Jura. This MIP problem is solved for each full-time farm in the area setting capacities (and a few

farm-specific  matrix  coefficients)  according to  the  observed characteristics  of  the  farm.  The

complete  MIP  matrix  comprises  around  6,900  variables  in  about  3,800  equations.  In  the

following, we will summarize only the main features of the model. A full documentation of the

MPMAS Central Swabian Jura model including all equations can be found in in the electronic

supplement to Troost & Berger 2015 or in Troost 2014.

The  model  has  been  implemented  using  the  agent-based  software  package  MPMAS

(Schreinemachers & Berger 2011), although the model as used in the present article does not

include  any  agent-agent  interactions  (i.  e.  it  is  a  non-connected  agent-based  model  in  the

definition of Berger et al. 2006). Still, in keeping with MPMAS conventions, we will use the

term farm agent to refer to the model representation of an individual farm throughout this article.

Solving the MIP, each farm agent allocates production factors (land, labor and capital) such that

they maximize expected farm income given its individually specific resources and production



options,  sales  and  input  prices,  and  the  technical  and  agronomic  constraints  governing

agricultural production. Expected farm income is the sum of revenues from crop production (Rc),

animal husbandry (Rh), biogas production (Rb) and received premiums from EU CAP and MEKA

schemes (Rp) subtracting variable costs (V), fixed costs (respectively annualized investment cost

for new investments) (F), and the balance of interest paid and received (I) as shown in Equation

1. Here  pe denotes expected prices;  ye, expected yields;  a, crop and grassland activities;  f, the

part of the crop that is used as animal feed; h, animal husbandry activities; k, biogas production;

z,  the first year of biogas production;  M,  machinery owned and employed;  B, buildings and

infrastructure owned; Ar, the amount of land rented in and l, hired labor.

max !π e=Rc ( pe , ye ,a , f )+Rh( pe ,h)+Rb(k , z)+Rp (a , h)−V ( pe ,a ,h , f ,M , l)−F ( pe ,B ,M ,Ar)+ I

(Eq. 1) 

The model as used in the present article allows for investments in farm machinery and biogas

plants.  Crop  production  comprises  winter  wheat,  winter  rapeseed,  summer  malting  barley,

summer and winter fodder barley, silage maize, field grass production and fallow on arable land

as well as grassland cultivation at four levels of intensity (abandonment, extensive use, 2 or 3

uses per year) and with five potential uses: hay, grass silage, pasture, cutting of fresh grass for

direct  feeding  as  well  as  late  and  very  late  maintenance  cuts  compatible  with  MEKA

requirements. The agents distinguish nine different soil classes for arable land, which affect crop

yields and tractor power required for field work. Crop yields are based on simulations with the

crop  modeling  package  Expert-N using  the  parameterization  developed  by  Aurbacher  et  al.

(2013).  Grassland is considered a separate soil class, which has not been subdivided further.

Grass yields depend only on management and are based on grass regrowth functions calculated

from data by Berendonk (2011). Crop production is constrained by the field work capacity of the

farm, which is calculated as a function of labor and machinery endowments as well as expected

days with suitable weather.1 Also, agronomic limits to crop shares in the rotation and preceding-

following  crop  relationships  have  to  be  respected.  Possible  preceding-following  crop

relationships are shown in Table 1. It is important to notice that under current climate conditions

1 For a detailed discussion, cf. Troost and Berger 2015. 



farmers are virtually forced to grow either summer barley or fallow between wheat and winter

rapeseed.

Animal production comprises dairy production, calf and heifer raising, bull fattening, suckler

cow herding, piglet production and raising, and pig fattening and is constrained by existing stable

capacities and the manure usage of crop production. Animal feeding requirements have been

formulated in terms of nutrient and fiber demands (LfL 2010, 2011) allowing the farm agent a

great deal of flexibility in the combination of bought and self-produced fodder. Other inputs and

labor demands are based on extension service data (KTBL 2010). Sales, input and machinery

prices are based on public statistical and extension service data (destatis 2012d; KTBL 2011;

LEL 2010, 2011a,b). 

For their model, Troost and Berger (2015) created a sample of  agent populations, each of which

contains one model agent for each full-time farm in the area. Due to privacy restrictions, a direct

reproduction of observed farms was not possible. Instead, they used a sampling and matching

algorithm to create synthetic,  but  statistically  consistent  agent  populations  for the study area

combining information from Agricultural Census and Farm Structure Survey data (FDZ 2010), a

farm survey as well as population statistics (destatis 2011, 2012a-c). For each of the years 1999,

2003, and 2007, several agent populations were created. The simulations in this article use the

sample of agent populations representing the 533 full-time farm households observed in 2007.

3. Scenarios and Experimental Design 

3.1 Price Variation

To be able to estimate supply functions, we need to evaluate the model over the full range of

potential price combinations. The time-series of prices observed between 2000-2009 serves as

the basis to determine price ranges for crops, animal products and important inputs that were

then expressed as  coefficients ( pcx ) relative to the 2000-2009 price average( P̄x ).2 To take

account of the fact that crop prices are correlated and usually move in similar directions, price

2 For the simulations, we then extended the ranges by about 20-30% at both ends, to capture also 
unobserved but not unrealistic price relations.



coefficients ( prwx )for grain maize, malting and fodder barley, rapeseed and animal feed (ready-

mixes, soy and rapeseed meal, etc.) were expressed relative to the development of the wheat

price, which consequently served as general crop price level. As an example, the price coefficient

of malting barley was calculated as  prwmb=
Pmb , t

P̄mb

∗pcwh, t  and the malting barley price in the

simulations was consequently calculated as  P'mb=P̄mb∗pcwh∗prwmb . It is important to notice

that prwmb  is not the malting barley to wheat price ratio, but its relative change compared to the

2000-2009 average.  The new price  ratio  can be  determined by multiplying  prwmb  with  the

original price ratio 
P̄mb

P̄wh

. The 11 price coefficients used and their ranges are shown in Table 2. 

3.2 Scenarios

To illustrate how supply functions might change in response to climate change and agricultural

policy, we repeat the simulation experiment for three different scenarios defined in Troost and

Berger  (2015):  Baseline  scenario  `B',  is  based  on  the  crop  yields  simulated  for  1981-2010

weather observations, the current distribution of days suitable for field work and no rapeseed-

after-wheat rotations.  The climate adaptation scenario C1 reflects a 'standard' assessment that

considers  only  yield  effects.  It  is  based  on yields  simulated  for  the  2000-2030 WETTREG

projection  retaining  current  rotation  options  and  field  work  days.  The  extended  adaptation

scenario C2, on top of yield changes, also considers the additional climate impacts explained in

Section 2.1: Wheat-rapeseed rotations  become possible  and  weather constraints on field work

are relaxed to become similar to current conditions in neighboring lower-lying regions.

3.3 Model Uncertainty

Farm-level models that are based on theoretical and empirical process knowledge are typically

subject to considerable  uncertainty as the necessary data is not available in the required depth

and breadth for a full region (Buysse et al. 2007). Standard technical coefficients have to be used,

parameters have to be chosen ad hoc, parameter variability has to be neglected, processes are

omitted and other process representations are uncertain or incomplete. Good modeling practice



requires to clearly communicate this uncertainty to readers and analyze it in order to assess the

robustness of results and, on the long run, improve process understanding (Jakeman et al. 2006).

One  should  therefore  refrain  from identifying  a  single  parameter  combination  that  best  fits

observation data. For the Central Swabian Jura model, for example, Troost and Berger reduced

the parameter space only, where clearly superior settings could be determined in a conservative

calibration  experiment  that  tested  parameter  combinations  against  three  structurally  different

observation years and then used an elementary effects screening 8Campolongo et al. 2007) to

determine the 11 of the 19 unfixed parameters that caused the greatest variance in simulated

differences between their climate and price scenarios (cf. Table 3) (Troost and Berger 2015). As a

consequence, the Central Swabian Jura model has to be solved repeatedly to cover the space

spanned  by  these  11  parameters  and  model  results  are  communicated  as  ranges  over  this

parameter space.

3.4 Experimental Design

For the present analysis, we extend the experimental design of Troost & Berger in order to allow

for the estimation of crop supply functions. With a model runtime of about 20-30 minutes for a

single period, it is infeasible to evaluate the model for all the potential value combinations  –  or

a full factorial design – of 11 price coefficients, 11 uncertain parameters and 3 scenarios. In such

a  situation,  Latin  hypercube  sampling(McKay  et  al.  1979)  allows  the  fullest  coverage  of  a

parameter space when the number of model runs is limited. For our simulation experiments, we

created a Latin Hypercube design with 600 design points covering the combination of the 11

price coefficients and the 11 parameters. The full sample is evaluated for each of the 3 scenarios.

As common in the sensitivity analysis literature (Saltelli et al. 2004), we will use the term input

factors when we refer to these 22 parameters from which the LHS is formed.

4. Analyzing Simulated Climate Change Effects on Supply Functions

To provide an illustrative example, we will concentrate our result analysis on changes in market

transactions of wheat and barley under potential climate change conditions. As we will see, these

two  crops  are  especially  suited  to  highlight  the  complexity  and  mutual  interdependence  of

production and supply responses of different crops in the study area. As mentioned above, the



model distinguishes winter fodder barley, summer fodder barley and malting barley production,

where the later is exclusively cultivated as a summer crop. Malting barley also is a pure cash

crop, while fodder barley and wheat can be sold, but also used for animal feeding. Some of the

farmers in the model are net buyers of wheat or fodder barley making also the demand for these

crops an interesting output of the model.

4.1 Means and Variation of Climate Change Effects

It is important to understand that by repeating each design point of the LHS for each of the three

scenarios, we can control for model uncertainty and price variation and isolate the pure effect of

the adaptation scenarios. A first overview of climate change effects on barley and wheat market

transactions is show in Table 4. The first column shows the relative standard deviation (= the

absolute value of the coefficient of variation) of the supply response in the baseline with respect

to the design points of the LHS. It provides an indication in how far the supply or demand for the

crop is affected by price variation and model uncertainty. The second and fourth columns, show

the mean difference between the baseline and the adaptation scenarios over all design points

normalized by the mean supply observed (Md1/Mb, Md1/Mb). It provides a measure for the

average effect of the respective climate adaptation scenario. The third and fifth columns show the

relative  standard  deviation  of  this  scenario  effect  indicating  how strongly  it  varies  over  the

design points of the LHS.

In the climate scenarios, we observe a strong increase in wheat sales and comparable reduction in

fodder barley sales, wheat purchases are also strongly reduced, while fodder barley purchases

increase slightly on average. In all four cases, the effect of the additional impacts in scenario C2

is  to  exacerbate  the  yield  effect  isolated  in  C1.  In  the  case  of  malting  barley  sales,  this  is

different.  Malting  barley  shows a considerable  supply  increase  on  average  for  C1 with  non

negligible variation over the LHS design points. In C2, by contrast, the average effect is close to

zero, still the high relative variance over the LHS shows that it differs strongly with price effects

(in this case that it is positive in some and negative in other cases). This could mean that the

climate change effect  shifts  or turns the supply function or that  the climate change effect is

affected by the uncertainty in the model. 



4.2 Distance Correlations

As a first step towards disentangling the influence of price variation and model uncertainty on

supply, Table 5 shows the correlation of the outcome variables with selected price coefficients

and model  parameters  in  the LHS. In order  to  capture also non-linear  and non-monotonous

correlations, we chose to calculate distance correlations (Szekely et al. 2007; Szekely and Rizzo

2013;  Rizzo  and  Szekely  2013)  instead  of  the  common  Pearson's  correlation  coefficient  or

Spearman's  rank  correlation.  The  distance  correlation  coefficient  ranges  between  0

(independence) and 1 (perfect correlation). As a consequence of capturing also non-monotonous

relationships,  they  cannot  indicate  the  sign  of  the  correlation.  For  comparison,  the  distance

correlation between the input factors in the LHS did not surpass 0.1 for any pair of parameters

underlining that the sample was largely uncorrelated as desired.

As we can see from the table, the malting barley supply is, as one might expect, correlated with

the price coefficients for malting barley, wheat and fodder barley. There is no correlation with

any of the uncertain model parameters that would be worth mentioning. (The table includes only

those input factors that show a distance correlation greater than 0.1 with any of the five outcome

variables.) While this does not completely rule out higher-order influences of model uncertainty,

it strongly suggests that the observed variance in climate change effects is not caused by model

uncertainty. Between the scenarios we only observe minor changes in correlations. In contrast to

malting barley supply, wheat supply is correlated with all crop price coefficients and several

model parameters. Here, we can also observe a major change in correlations between scenarios:

From B over C1 to C2, the correlation of wheat sales with the relative malting barley price

coefficient  – which we have to interpret as the influence of the malting barley-to-wheat price

ratio on wheat sales in our modeling context – increases, while the correlation with the relative

fodder barley price coefficient decreases. At the same time, the correlation between wheat and

malting barley sales (not shown in the table) increases from 0.11 in scenario B to 0.46 in C2,

while the correlation of wheat and fodder barley sales decreases from 0.41 to 0.26. 



4.3 Scatter Plots and LOWESS Smoothing

As often in any data analysis, it is a good idea to use scatter plots to get a first impression of the

relationship between the outcome of interest and its major determinants. Figure 1 shows a scatter

plot of the simulated malting barley (a) and winter wheat (b) production quantities. Each dot

represents one of the design points of the LHS600 sample. Dots are  ordered along the x-axis

according to the malting barley-to-wheat price ratio assumed for that design point.  Red dots

represent the design points of the baseline scenario B, yellow and blue dots represent adaptation

scenarios C1 and C2, respectively. The variance in simulated production quantities for similar

malting barley-to-wheat price ratios is caused by the differing assumptions for the other input

factors at each design point. 

For each scenario,  we overlaid a nonparametric LOWESS smoother to highlight  the median

response of malting barley and wheat production to the malting barley-to-wheat price ratio. As

expected,  malting  barley  production  increases  with  an  increasing  ratio  in  all  scenarios.  In

scenarios B and C1, the variance around the smoothing line is  considerably higher at  ratios

between 1 and 1.3 than at higher or lower values. This phenomenon can be explained by the

specific constraints to crop rotation in the area: At current climate conditions, most farmers are

virtually forced to grow summer barley at some point in their crop rotation. At lower malting

barley-to-wheat price ratios, the reduction in malting barley area is compensated by an increase

in summer fodder barley as shown in Figure 1 (c) leading to a near-flattening of the response

curve of the summer barley area at lower price ratios (Fig. 1 d). The exact point at which farmers

switch from malting to summer fodder barley is, of course, mainly determined by the malting

barley-to-fodder barley price ratio  (Fig.  1 e).  This explains the correlation of malting barley

production to the fodder barley-to-wheat price ratio we observed in the previous section.

The adaptation scenario C1 assumes an increase in wheat yields, an increase in summer barley

yields on some soils and a decline in winter barley yields (Figs. 1 a,b). As a consequence, the

simulation  results  show  an  increase  in  both,  winter  wheat  and  summer  barley  production

compared with the baseline scenario.  This production increase is  a consequence of both the

higher yields and an increase in the area allocated to these crops. Adaptation scenario C2 allows

the additional rotation option winter rapeseed after winter wheat eliminating the need to grow



summer barley for rotational reasons for many farmers. This leads to a general increase of winter

wheat production at the cost of both, summer fodder and malting barley production, except at

high malting barley-to-wheat price ratios. As a consequence, at ratios between 1.2 and 1.4, both,

malting  barley  and  wheat  production  are  much  more  sensitive  to  price  relation  changes  in

scenario C2 than in the baseline or scenario C1. 

Since a reduction of malting barley area is compensated by an increase in summer fodder barley

in B and C1, changes in the malting barley-to-wheat price ratio indirectly affect the fodder barley

market. As we can see from Figure 2, the additional fodder barley production is mainly absorbed

by increased fodder barley sales (a), while the amount of  fodder barley used for feeding (b),

winter  fodder  barley  production  (c),  and  fodder  barley  purchases  (d)  remain  more  or  less

unaffected  by  the  malting  barley-to-wheat  price  ratio.  Both,  adaptation  scenarios  lead  to  a

reduction in winter barley production, which is uniform along the malting barley-to-wheat price

ratio, though it is stronger in C2 than in C1. In scenario C1, this reduction is partly compensated

by increased summer fodder barley production at low malting barley-to-wheat price ratios. As

purchased and used amounts of fodder barley remain,  again,  largely unaffected,  scenario C1

leads to a steeper, more sensitive price response curve of fodder barley supply, while scenario C2

shows merely a shift of the price response curve to lower levels.

4.4 Regression Models

With that in mind, we can now e. g. estimate a regression model for malting barley supply in the

study  area  based  on  our  simulation  results.  Given  our  analysis  in  the  previous  section,  we

formulate the following  regression model for malting barley supply:

qmb,s=β0+β1D+β2D Pm /w+β3 D Pm /f+β4 D Pw  (Eq. 2)

where D is a dummy variable that is 1 if the malting barley-to-fodder barley price ratio is greater

than 1.1 (value derived from Fig. 1 e) and zero otherwise; Pm /w  is the malting barley-to-wheat

and Pm /f  the malting barley-to-fodder barley price ratio; Pw  denotes the wheat price index. As

the estimation results in Table 6 (upper part) show, the model fits the simulated results with R²s

around 0.9 for all  scenarios and we can conclude that the model summarizes the simulation

response well.  The coefficients very clearly confirm the lower general malting barley supply



level and the steeper response curves to the malting-barley-to-wheat price ratios. They also show

a flatter response curve with respect to wheat price levels and the malting barley-to-fodder  price

ratio.

To see how well the model generalizes, we constructed another LHS sample this time with 100

runs, in which no design point was exactly equal to any design point in the LHS600. We used the

regression model estimated from the LHS600 to predict the malting barley supply at each design

point of the LHS100 and compared them to the actual simulation results created by the MPMAS

Central Swabian Jura for the LHS100. As a measure for goodness-of-fit, we calculated the Nash-

Sutcliffe model efficiency with similar interpretation as the R². (In fact, for OLS regression they

are equal.)

ME=1–
∑i

(Ypred i –Yobsi)
2

∑i
(Yobsi– Yobsmean)

2 (Eq. 3)

As we can see from Table 6, goodness-of-fit for the validation sample is not very different from

the R² for the LHS600 sample. We also reversed the experiment, estimating the regression model

from the LHS100 and predicting simulation results for the LHS600 sample and obtained similar

results  with  respect  to  goodness-of-fit  (Tab.  6,  lower  part).  There  is  some  variation  in  the

estimated  coefficients  providing an indication  of  the uncertainty introduced by sampling the

design  points.  Still,  differences  between  scenarios  and  orders  of  magnitudes  of  coefficients

remain unaffected by this uncertainty.

4.5  Multivariate Adaptive Regression Splines and Kriging

We might be able to improve the fit of our regression model, e. g. including quadratic or cubic

terms or more input factors or more interaction terms, but here we prefer to explore a different

approach. Instead of defining a parametric regression model, as done step-by-step in the previous

sections,  we  may  also  resort  to  a  non-parametric,  more  automatized  procedure  in  order  to

estimate a model that summarizes the simulation results  of our agent-based model including

potentially  overlooked  factor  interactions.  In  the  following,  we  use  two  non-parametric

techniques, Multivariate Adaptive Regression Splines and Kriging. 



The Multivariate Adaptive Regression Splines (Friedman 1991) technique automatically includes

non-linearities and interactions between independent variables estimating a model of the form

f (x)=c1+∑i=2

k
c iBi (Eq. 4)

where B i  stands for a hinge function of the form max(0,x−d) or max(0,d−x) , or a product

of several such hinge functions (interactions between variables). The hinge functions allow for a

continuous recursive partitioning of the input factor space that gives the approach its flexibility.

The model is estimated in two passes. In a forward pass, the algorithm subsequently adds pairs of

complementary hinge functions for a factor or factor interaction. It always chooses a partitioning

for the factor or factor interaction that generates the strongest reduction in prediction error. This

continues until an overall limit of terms is reached or a threshold of minimum improvement is

not surpassed anymore. In the following backward pass, the algorithm prunes terms from the

model in order to improve the generalizability of the model and reduce the danger of over-fitting.

It prunes always the term that shows the least effectiveness with respect to a Generalized Cross

Validation criterion.

We estimated four MARS models3: For the first (mars1), we allowed no interactions between

variables; for the second (mars3), we allowed interactions up to the third degree; and for the third

(mars10), up to the 10th degree. While for these first three model we allowed all 22 input factors

to be included in the model trusting in the automatic selection capacity of the algorithm, the

fourth  MARS  model  (marsS)  was  restricted  to  consider  only  the  four  price  coefficients  (

prwmb , prw fb , prwr , pcw ) that showed a correlation with malting barley supply above 0.1 (cf.

Section  4.2)  with unrestricted  interactions.  Again,  we estimated  the models  for  the  LHS600

sample and validated it against the LHS100 sample, and vice versa. 

The formula for an estimated MARS model very easily gets large and is not necessarily easy to

interpret. For space reasons, we report only the estimated formula for the mars1 model estimated

for malting barley supply in scenario B from the LHS600 sample to provide an illustration what

such a model may look like.

3 The MARS models were estimated using the R package DiceEval.



^qmb,s = 4,024 + 25,125 max(0, prwmb−0.700) + 3024 max(0, pcw−0.884 )

−16,022 max(0,0.884−pcw) + 59,810 max(0, prwmb−0.875)

−55,177 max(0, prwmb−1.218)− 1,531 max(0,1.725−pth)

− 5,383 max(0, pcbf−0.930) − 4,775 max(0,0.920−pc ft)
− 2,454 max (0, prwr−0.814) − 2,907 max (0,1.454−man)
−35,494 max (0, prw fb−0.96)

 (Eq. 5)

Table  7  shows  the  model  efficiencies  for  the  different  models  for  both  samples.  With  the

exception of the mars3 and mars10 models in scenario C2, all estimated models transfer well

from  the  LHS600  to  the  LHS100  sample.  When  we  censored  model  predictions,  i.  e.  we

corrected predictions of negative quantities to zero (shown in the fifth and eighth column), as one

would certainly do when using the model to predict supply response, the deficiency in the fit of

mars3 and mars10 is reduced. Notably, the model with preselected factors performs equally well

as the automatic selection from the complete pool of factors. Generalization from the LHS100 to

the LHS600 is considerably poorer, highlighting the danger of over-fitting incurred when using

highly adaptive non-parametric methods.

Kriging originated as an interpolation method in geostatistics (Kleijnen 2009). Kriging predicts

the value for an unobserved combination of independent variables – that means in our case a

combination of input factors that has not been simulated – as a weighted combination of the

observed (i. e. simulated) factor combinations. The weight for each observed factor combination

is  a  function  of  the  assumed  correlation  of  its  corresponding  output  with  the  output  to  be

predicted as well as the assumed correlation of  all other available factor combinations with the

output  to  be  predicted.  This  correlation  is  calculated  based on the  distance Δ between the

observed and the new factor combination using a user-specified correlation function (here, we

use a standard Gaussian correlation function  ρ=∏ j=0

k
exp(−θΔ j

2
) ). The weights (θ) reflect

the  importance  of  each  input  factor  j in  determining  the  distance  and  are  estimated  using

maximum likelihood estimation (Kleijnen 2009).

Again,  we  estimated  the  model  for  the  LHS600  sample  and  validated  against  the  LHS100

sample,  and  vice  versa.  Table  8  shows  the  θ  parameters  estimated  for  each  input  factor.

Generally, the higher θ, the lower the importance of the distance along this dimension of the

input  factor  vector  in  determining  the  output.  However,  as  our  input  factors  are  differently



scaled, we normalized each θ by the range of the associated input factor to translate them into a

measure  of  importance  of  the  input  factor  itself.  Again,  the  three  price  coefficients  (

prwmb , prw fb , pcw ) stand out as clearly the most important determinants.

Model  efficiencies  for  the  Kriging  models  are  listed  in  Table  8.  The  goodness-of-fit  to  the

calibration sample is perfect by definition: The model simply reproduces the simulated output for

an observed factor combination with a weight of 1,  the weight for all  other observed factor

combinations is zero. As we can see from the table, the estimated Kriging model achieves the

best  fit  when  transferred  from  the  LHS600  to  the  LHS100  sample.  Performance  for  the

generalization from LHS100 to LHS600 is again poorer, though still better than in the case of the

MARS models. 

5. Discussion 

5.1  Simulated changes in supply response

Our simulation results  suggest  non-negligible  changes to  the regional  malting barley, fodder

barley  and wheat  supply under  climate  change.  As anticipated,  changes  differ  depending on

assumed crop prices and as a consequence the supply functions do not merely experience a shift,

but sensitivity to changes in price levels and price relations increases in some and decreases in

other cases. Since we can expect prices to vary more often and rapidly than climate, this entails

steeper, respectively flatter supply curves. The malting barley supply function is certainly the

clearest example, for such a case. The two implemented adaptation scenarios show considerably

different effects on supply functions, confirming the finding of Troost  and Berger (2015) that it

is  important  to  take changes in  crop rotation options  and available  days  for  field work into

account when analyzing climate change adaptation in the area under study. In some cases, such

as winter wheat supply, these non-yield effects exacerbate the effect of changes in crop yields, in

others,  such as summer fodder barley supply they reverse the simulated effect,  and again in

others, they exacerbate or reverse depending on the prevailing price environment. Which supply

levels would finally be realized can, however, not be answered based on our agent-based model

alone,  since  the  simulated  changes  in  supply  and  demand,  together  with  developments  in

neighboring regions, would certainly trigger a price reaction of crop markets that is not captured



by our model. Here, we can only report on the simulated supply levels under all expected future

price relations.

Our  analysis  also  shows  that  the  uncertain  model  parameters  play  only  a  minor  role  in

determining  the  simulated  malting  barley  supply  response.  Three  to  four  price  coefficients

clearly dominate the estimated supply function. This is different, e. g in the case of wheat supply,

which  we did  not  analyze  in  more  detail  in  this  contribution.  Here,  three  to  five  uncertain

parameters play a non-negligible role in determining input supply. Though they do not affect the

general direction of climate effects (Troost and Berger 2015), this needs to be taken into account

when estimated functions are communicated. If such functions are then used to predict supply

response, users will have to decide whether they choose uncertain parameter values consistent

with their  own assumptions or whether  they treat  the uncertainty as  noise and average over

function  results  of  all  parameter  combinations  (which  would  correspond to  the  multi-model

average of an model ensemble).

5.2  Methods

Compared to the analysis of secondary data, simulation analysis has the advantage of being able

to fully control for the influence of input factors on outcomes of interest. However, in reality, the

computational burden and available time and resources limit the extent to which this potential for

control can be realized. Full factorial designs for 22 input factors can hardly be realized with

model run times of at least 20 minutes per run –  especially, since a meaningful analysis of

demand and supply functions usually requires assessing more than two levels, at least for the

price coefficients. 

Latin hypercube sampling is the experimental design of choice when it comes to obtaining the

best global coverage of a factor space for a given, limited number of model runs. Since the value

for a specific (continuous) input factor is unique to every design point of the LHS, however,

result and sensitivity analysis must be restricted to methods that assume outcomes to be a locally

smooth function of the input factors. A discrete methodology such as ANOVA, for example,

would detect the common variation of all factors and would attribute all variance to a single

factor or would require the analyst to classify the design points into meaningful groups.



The previous  section illustrated  how several  such methods can  be combined to  explore and

summarize the shifts in supply response predicted by an agent-based model. Each of the methods

used has its strengths and weaknesses. Calculating a global mean and variance of the scenario

differences over all design points provides a first overview and helps identifying those outcomes

that show the most interesting developments. Analyzing correlations with input factors provides

a starting point for disentangling the interrelationship between outcomes, price coefficients and

uncertain model  parameters.  Scatter  plots,  scatter  plot  smoothers  and regression analysis  are

certainly the methods that foster an understanding and communication of the mechanisms and

interactions manifesting themselves in the simulation results. 

By contrast, the output of the non-parametric methods can be more cryptic and much harder to

communicate. For Kriging, for example, it is not enough to provide the estimated correlation

functions,  respectively  θ,  but  also the design points and outcomes of the original model  are

required for prediction. Their strength is that they are able to automatically summarize the model

behavior over the design space and predict model behavior at input factor combinations that have

not been simulated. In this way, they can serve as surrogate models (or meta-models) for the

actual simulation model that could e. g. be used for iterating with a national or global market

model or estimated residual demand functions for the region in order to find a new equilibrium

under climate change. Additionally, they may also help in the initial exploration and sensitivity

analysis of the model results, highlighting which input factors might be worth considering in a

regression model.

Our results for the MARS model remind us that flexible non-parametric methods always bear the

danger of over-fitting, especially if the sample size is small. On the other hand, they may also

help to design a simulation strategy to keep the number of evaluations of the original model low.

For example, Kleijnen (2009) suggests to start by simulating the original model for a small initial

sample, use Kriging to estimate a surrogate model, then generate a larger space-filling design and

apply the surrogate model to it. Using a jackknife over the initial sample (or some other form of

cross-validation), the uncertainty in the prediction of the surrogate model for each design point

of the second sample can be estimated. One can then decide to simulate only the design points of

the second sample that  show the greatest  uncertainty in  order  to improve the quality  of the

surrogate model with as few model runs as possible (Kleijnen 2009). Apart from MARS and



Kriging  there  are,  of  course,  other  nonparametric  alternatives  not  tested  in  this  analysis.

Generalized Additive Models, for instance, provide a way to combine a parametric regression

approach with nonparametric elements to capture nonlinearities.

6. Conclusions

The need to grow summer barley for rotational reasons is a good example for constraints to

agricultural production that can be easily incorporated into a farm-level model, but are typically

neglected in aggregate regional models or statistically estimated supply functions. Our results

show that a potential change in the rotational compatibilities of crops under climate change may

trigger non-negligible changes in aggregate supply functions for several crops.  An agent-based

model such as ours that explains aggregate regional supply bottom-up by disaggregating it to

theoretically  known  (or  empirically  observable)  processes  (the  agronomic  and  technical

relationships determining the production conditions faced by farmers in the region) is able to

derive  conclusions  about  unobserved  situations,  such  as  climate  change,  that  may  entail

structural breaks in the underlying interdependencies.

We estimated the supply functions based on a space-filling experimental design that allows to

globally  cover  all  combinations  of  anticipated  price  relations  as  well  as  considering  the

uncertainty in the simulation model. The mutual interactions between variables observed in our

results underline that a simple, one-factor-at-a-time (ceteris paribus) variation of input factors

would only provide a very incomplete picture of the simulated supply response behavior, in

comparison.4 

We employed a range of different statistical methods to explore and describe the supply response

curves  entailed  by  the  results  of  our  simulation  experiments.  Besides,  standard  regression

analysis, we use Multivariate Adaptive Regression Splines and Kriging to summarize the model

response and interpolate outcomes for input factor combinations that had not been simulated.

Kriging showed a better performance in our example, but is also computationally more costly in

estimation and prediction. 

4 On the inadequacy of one-at-a-time sensitivity analysis, cf. also Saltelli and Annoni (2010). 



Both,  regression  models  and  non-parametric  models  may  serve  as  surrogate  models  for  the

agent-based model  in  order  to  interpolate  model  outcomes  that  have  not  been  simulated  in

situations where many different model solutions are required and solving the original model is

too  costly.  This  could  for  example  be  used  to  iterate  a  farm-level  model,  respectively  its

surrogate, with a global or partial equilibrium model (or alternatively estimated residual demand

functions). In this way, feedbacks from agricultural markets could be considered in the agent-

based model and the equilibrium model could profit from the updated regional supply functions.

Certainly important questions remain to be discussed in this context, but we think that such an

endeavor could be worthwhile to pursue and would allow the different classes of models to better

complement each other in the context of climate change adaptation and policy analysis (Troost

and Berger 2015).

Here,  we  advanced  a  step  into  this  direction  by  demonstrating  the  feasibility  of  using  a

regionalized farm-level models for a process-based simulation of regional agricultural supply

functions.  Although  we  used  a  non-connected  agent-based  model  without  interactions  and

abstracted from the time dimension by simulating only one period under different scenarios, the

approach is directly applicable to fully connected agent-based models that take interactions (e. g.

land markets, innovation diffusion, inter-farm cooperation, farm succession) into account and are

run  over  multiple  periods  allowing  a  recursive-dynamic  simulation  of  structural  change  in

agriculture.
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Tables and Figures

Table 1. Compatibility of Crops in Rotation (Troost & Berger, ibid.)

Following crop

Preceding crop FA FG SM SB WB WR WW 

Fallow 1 1 1 1 1 1 1

Field grass 1/2 2/3 1/2 1/2 1/2 0 1/2

Silage maize 1 1 X 1 0 0 1

Summer barley 1 1 1 1/2 1 1 0

Winter barley 1 1 1 1 0 1 0

Winter rapeseed 1 1 1 1 1 0 1

Winter wheat 1 1 1 1 0 CC 1/2
Note:
 0: incompatible
 1: compatible, full area can be considered for following crop
 1/2: maximum half of the area can be considered, e. g. wheat can directly follow wheat only once, then another crop
has to be grown before wheat can be grown again
 2/3: Field grass is a semi-permanent culture that is usually kept 2-3 years on the same field. So at maximum half the
area can be considered preceding crop for other crops and at maximum 2/3 can be considered preceding crop for 
next year's fields grass.
 X: uncertain, subject to calibration 
 CC: 0 in the baseline, 1 if climate change shifts crop management dates

Table 2. Price coefficients used for price variation in the experimental design

Item Symbol Range Avg. ratio

Beef & young cattle pcbf [0.7, 1.3]

Fertilizer pc ft [0.5, 2]

Fuel & energy pc fu [0.7, 1.5]

Milk pcmi [0.7, 1.2]

Pork & pigs pcpk [0.7, 1.3]

Wheat pcw [0.5, 2]

Animal feed (rel. to wheat price development) prwaf [0.7, 1.5]  var.

Grain maize (rel. to wheat price development) prwmg [0.8, 1.2] 1.02

Malting barley (rel. to wheat price development) prwmb [0.7, 1.3] 1.175

Fodder barley (rel. to wheat price development) prwfb [0.9, 1.2] 0.908

Rapeseed (rel. to wheat price development) prwr [0.7, 1.4] 2.032



Table 3. Unfixed parameters representing uncertainty in the MPMAS Central Swabian 
Jura model (own compilation based on Troost & Berger, ibid.)

fgl Scaling parameter for the amount of labor required for fresh grass 
harvest

chp Demand for excess heat of biogas electricity production (yes/no)

man Scales the maximum manure application

bbp Supply of brewery byproducts for feeding (yes/no)

bfp Birth factor in the past (affects current household size)

clr KTBL climatic region for time slots of field work.

scm Probability that a male child is interested in taking over the farm

pth Probability to be able to hire a machinery service provider per day 
with suitable weather.

ywh Scaling parameter for the maximum wheat yield

wfh Scaling parameter for the price for hiring machinery services

pop Chosen starting population

Table 4.  Overview of average climate effects on supply and demand of selected crops and 
its variation over the experimental design.  

B C1 C2

Simulated outcome RSDb Md1/Mb RSDd1 Md2/Mb RSDd2

Malting barley sales [t] 0.94 0.18 1.17 -0.02 20.19

Fodder barley sales [t] 0.62 -0.25 0.65 -0.53 0.49

Fodder barley purchases [t] 1.04 0.04 2.06 0.07 3.08

Wheat sales [t] 0.27 0.22 0.30 0.49 0.29

Wheat purchases [t] 2.02 -0.18 2.09 -0.36 2.07



Table 5. Distance correlations between supply of/demand for selected crops with selected 
price coefficients and uncertain model parameters. 

Malting
barley
 sales

Fodder 
barley 
sales

Fodder 
barley

purchases
Wheat
 sales

Wheat
purchases

Scenario B prwaf 0.05 0.06 0.16 0.13 0.09

prwmg 0.09 0.08 0.35 0.22 0.33

prwmb 0.87 0.53 0.14 0.25 0.04

prwfb 0.21 0.65 0.68 0.57 0.41

prwr 0.08 0.07 0.07 0.10 0.06

pcw 0.18 0.21 0.15 0.30 0.11

pcpk 0.06 0.09 0.14 0.05 0.06

bbp 0.05 0.05 0.18 0.21 0.43

clr 0.02 0.09 0.03 0.14 0.03

pth 0.07 0.17 0.06 0.31 0.09

ywh 0.05 0.06 0.06 0.18 0.04

wfh 0.05 0.07 0.06 0.10 0.11

Scenario C1 prwaf 0.05 0.07 0.16 0.14 0.09

prwmg 0.08 0.09 0.34 0.20 0.33

prwmb 0.88 0.60 0.15 0.31 0.04

prwfb 0.20 0.53 0.68 0.45 0.40

prwr 0.09 0.09 0.08 0.12 0.06

pcw 0.19 0.22 0.16 0.24 0.10

pcpk 0.06 0.09 0.14 0.05 0.06

bbp 0.06 0.06 0.17 0.23 0.43

clr 0.03 0.10 0.03 0.17 0.04

pth 0.08 0.24 0.06 0.41 0.11

ywh 0.06 0.06 0.05 0.18 0.04

wfh 0.05 0.07 0.06 0.08 0.12

Scenario C2 prwaf 0.04 0.06 0.13 0.09 0.07

prwmg 0.08 0.06 0.37 0.18 0.34

prwmb 0.92 0.54 0.09 0.49 0.05

prwfb 0.16 0.57 0.68 0.42 0.39

prwr 0.11 0.05 0.07 0.07 0.06

pcw 0.14 0.35 0.20 0.34 0.13

pcpk 0.06 0.08 0.13 0.05 0.06

bbp 0.05 0.05 0.18 0.18 0.42

clr 0.02 0.04 0.04 0.04 0.03

pth 0.06 0.14 0.04 0.21 0.09

ywh 0.08 0.08 0.06 0.20 0.04



wfh 0.05 0.06 0.06 0.09 0.11



Table 6. OLS regression of malting barley supply on selected price relations. 

B C1 C2

Sample var coeff se coeff se coeff se

LHS600 Constant 29 296 135 332 49 288

D -67,943 2,008 *** -69,991 2,252 *** -89,599 1,951 ***

D * P_m/w 38,370 2,260 *** 45,817 2,535 *** 63,564 2,196 ***

D * P_m/f 22,120 1,887 *** 18,282 2,117 *** 16,377 1,833 ***

D * P_w 8,053 486 *** 9,273 545 *** 5,483 472 ***

R² 0.906 0.908 0.923

ME LHS100 0.904 0.885 0.922

LHS100 Constant 140 758 599 938 379 824

D -69,606 5,013 *** -69,519 6,201 *** -91,863 5,449 ***

D * P_m/w 39,267 5,820 *** 40,210 7,198 *** 66,611 6,326 ***

D * P_m/f 21,663 5,098 *** 23,011 6,305 *** 16,862 5,541 ***

D * P_w 9,244 1,251 *** 9,593 1,547 *** 3,691 1,359 ***

R² 0.905 0.886 0.905

ME LHS600 0.904 0.906 0.919

Table 7. Goodness-of-fit of Estimated MARS and Kriging Models for Malting Barley 
Supply.

Goodness-of-fit

Estimated from LHS600 Estimated from LHS100

Scenario Model LHS600 LHS100
LHS100
(cens) LHS100 LHS600

LHS600
(cens)

B MARS (no int.) 0.889 0.865 0.881 0.878 0.872 0.882

MARS (3-way int.) 0.934 0.899 0.906 0.938 0.747 0.762

MARS (10-way int.) 0.933 0.914 0.921 0.950 0.836 0.849

MARS (preselected) 0.918 0.907 0.914 0.924 0.860 0.869

Kriging 1.000 0.955 0.956 1.000 0.851 0.854

C1 MARS (no int.) 0.895 0.869 0.883 0.964 0.852 0.872

MARS (3-way int.) 0.946 0.903 0.911 0.987 0.703 0.713

MARS (10-way int.) 0.946 0.903 0.911 0.948 0.783 0.811

MARS (preselected) 0.924 0.910 0.920 0.924 0.759 0.796

Kriging 1.000 0.976 0.976 1.000 0.921 0.924

C2 MARS (no int.) 0.942 0.936 0.943 0.920 0.766 0.783



MARS (3-way int.) 0.973 -0.356 0.910 0.952 0.754 0.784

MARS (10-way int.) 0.973 -0.453 0.771 0.987 0.703 0.713

MARS (preselected) 0.958 0.946 0.948 0.969 0.854 0.856

Kriging 1.000 0.959 0.959 1.000 0.906 0.914

Table 8. Estimated Thetas for Input Factors for the Kriging Model of Malting Barley 
Supply.

B C1 C2

Parameter Theta nTheta Theta nTheta Theta nTheta
pcbf 2.81 4.68 2.19 3.65 2.42 4.04
pc ft 8.71 5.82 11.21 7.49 6.01 4.02
pc fu 4.44 5.56 7.99 10.00 7.99 10.00
pcmk 3.10 6.20 4.03 8.07 4.99 10.00
pcpk 1.58 2.63 1.57 2.61 1.58 2.63
pcw 0.45 0.30 0.42 0.28 0.71 0.47
prwaf 1.59 1.99 5.43 6.79 3.40 4.26
prwmg 3.56 8.93 3.99 10.00 3.99 10.00
prwmb 0.06 0.10 0.06 0.10 0.07 0.12
prwfb 0.08 0.26 0.11 0.37 0.18 0.60
prwr 1.55 2.22 1.50 2.15 0.79 1.12
fgl 12.96 6.50 6.70 3.36 19.95 10.00
chp 10.00 10.00 10.00 10.00 2.75 2.75
man 1.73 3.46 1.89 3.79 0.48 0.96
bbp 8.14 8.14 7.16 7.16 10.00 10.00
bfp 0.50 10.00 0.42 8.50 0.14 2.81
clr 7.62 7.62 10.00 10.00 10.00 10.00
scm 4.54 9.08 5.00 10.00 5.00 10.00
pth 1.79 1.20 1.60 1.07 2.48 1.65
ywh 0.16 1.67 0.28 2.88 0.18 1.87
wfh 5.48 5.65 9.08 9.36 8.83 9.11
pop 11.36 5.68 8.77 4.38 13.92 6.96

trend 13,923 16,362 16,731

Note: 
nTheta: Theta normalized by the range of the input factor.



Figure 1: Scatterplots with overlaid LOWESS smoothers relating barley and wheat supply 
to selected price ratios for the three scenarios: (a) malting barley sales, (b) winter wheat 
production, (c) summer fodder barley production, and (d) summer barley area related  to 
the malting barley-to-wheat price ratio as well as malting barley sales related to (e) the 
malting-to-fodder barley price ratio and the (f) wheat price index



Figure 2. Scatter plots with overlaid LOWESS smoothers depicting the relationship of (a) 
fodder barley sales, (b) fodder barley use for feeding, (c) winter fodder barley production 
and (d) fodder barley purchases to the malting barley-to-wheat price ratio in the three 
scenarios. 


