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Abstract  

With the use of first hand field survey data from 193 yak grazing households combined 

with remote sensing Net Primary Productivity data on the Qinghai-Tibetan Plateau, a 

directional output-orientation distance function is developed with four inputs, grassland area, 

labor, capital and initial livestock stocking, and two outputs, good output of livestock grazing 

revenue and undesirable output of grazing pressure. The average technical efficiency is 

estimated to be 0.82, and shadow price of grazing pressure to livestock revenue is estimated 

to be -1.8. According to Morishima elasticity of substitution between inputs, there is 

significant complementary relationship between grassland area, labor and capital. Elasticity 

of substitution between grassland and initial livestock stocking is estimated to be 0.50. 

Treating grazing pressure as an undesirable output of livestock grazing in the directional 

distance function is a new step in the general direction of better accounting for natural 

resource depletion in efficiency and production analysis. 

Keywords: directional distance function, grazing pressure, technical efficiency, shadow 

price, Morishima elasticity of substitution 
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1. Introduction 

The concerns about environmental problems caused by economic development in developing 

countries have received a lot of attention in recent years. Grassland is one of the main land 

use types on earth and is essential for livestock grazing and grassland ecosystem service 

supply; the method of finding a balance between environment and livestock grazing has been 

a major focus in research (De Haan et al., 1997; White, et al., 2000; McDowell, 2008). 

However, demand for livestock products is being accelerated by population growth, economic 

growth and expanding urbanization, especially in developing countries or regions. High 

demand for livestock products has resulted in increasing grazing pressure, which is associated 

with overgrazing. 

Overgrazing appears when the stocking rate exceeds the proper grassland carrying capacity, 

and is accompanied with increasing grazing pressure, which threatening both economically 

and ecologically the sustainable use of grassland, e.g. to result in grassland degradation. Three 

quarters of the world’s grazing lands are so degraded that they have lost more than 25% of 

their capacity to support animals (White, et al., 2000; UNEP, 2005), as well as that on The 

Qinghai-Tibetan Plateau  is a perfect example of a region heavily affected by advancing 

grassland degradation over wide areas and overgrazing is assumed to be one of the main 

courses (Akiyama, et al., 2006; Zhou, et al., 2006; Zhang, 2008; Harris, 2010).  

Grassland in the Qinghai Province of China, one of the largest grasslands in China, was found 

to have a high overgrazing status by comparing actual and proper livestock carrying capacity 

(Fan et al., 2011; Zhang et al., 2014). Fan et al. (2011) studied the temporal-spatial dynamics 

of grazing pressure during the period from 1988 to 2005. Over grazing was considered as one 

of the main factors resulting in grassland ecosystem degradation, although the grazing 

pressure was steadily reduced. In recent research on the overgrazing status in the 

Sanjiangyuan region, overgrazing still remained a problem in 2010 (Zhang, Zhang and Liu et 

al., 2014). Combining the data from the field survey, the overgrazing ratio is more than 300% 

in sample counties (Table 1), overgrazing remains a serious problem and the overgrazing 

status is highly correlated with grazing pressure. The strong effect of the overgrazing status 

on grassland degradation makes us interested in researching the performance of livestock 

grazing under the control of grazing pressure, by adopting the grazing pressure as an 

undesirable output from livestock grazing using the directional distance function.  
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The directional distance function was probably first proposed by Chung et al. (1997) and 

Chambers et al. (1998) with a similar introduction previously from the Luenberger index. It 

has surged in popularity over the last 10 years (Färe, et al., 2013; Feng and Serletis, 2014). 

Rather advantageously, the directional distance function loses the assumption that radial 

changes of inputs or outputs take place simultaneously. In reality, the pursuit of more 

undesirable outputs (“bad outputs”) is not encouraged proportional in producing good outputs. 

It prevails to use directional distance analysis for polluting technology, which produces 

pollution as a byproduct, such as electric utilities producing electricity and air pollution 

(Atkinson and Dorfman, 2005; Färe et al., 2005; Cuesta et al., 2009; Coelli et al., 2013; Wang 

et al., 2013; Yao et al., 2015) and dairy farming (Reinhard 1999; Reinhard et al. 2000; 

Fernández et al., 2002; Reinhard 2002; Sauer and Latacz-Lohmann, 2014; Njuki and Bravo-

Ureta, 2015).  

Before the development of the directional distance function, the productivity of the decision 

making unit when some outputs are undesirable has been studied. Pittman was perhaps the 

first to develop an index of productivity change which takes environmental effects into 

account. He modeled pollution as an input in the production function because of the relation 

between an environmentally detrimental variable and output (Pittman 1981; Pittman 1983). 

Undesirable outputs in pulp mills industry sector have been heavily researched; such topics 

have included the environmental effects of undesirable outputs in the Finnish pulp and paper 

industry (Hetemäki, 1996), Swedish pulp and paper industry (Brannlund et al. 1998) and the 

paper recycling industry in Vietnam (Van Ha et al., 2008). Färe et al. (1986; 1989; 1993) 

modeled environmental effects as undesirable outputs with U.S. electricity generation data by 

using econometric models. The directional distance function was then applied later by other 

researchers (Cropper and Oates,1992; Yaisawarng and Klein, 1994). 

To evaluate the environmental goods - sometimes called nonmarket goods - such as air 

pollution emissions, soil pollution or ecological diversity loss from human economic activity, 

relative shadow prices of nonmarket goods are derived based on the distance function as well 

as elasticities of complementary or substitutionary relationships among inputs or outputs 

(Blackorby and Russel, 1989; Färe et al.,1993; 2005; Morrison Paul et al., 2000; 2005; Hailu, 

2000; Cuesta, 2009; Rahman, 2010; Serra et al., 2011). In this paper, we incorporate grazing 

pressure as an undesirable output from livestock grazing to determine the environmental-

grazing relationship.   
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We extend the contribution of the directional distance function by incorporating the grazing 

pressure as an undesirable output and deriving the shadow prices of grazing pressure to 

grazing revenue, elasticity of directional distance with respective to inputs and outputs, and 

elasticity of complementary or substitutionary relationships among inputs. The directional 

distance function with MLE estimation procedure is developed by using 193 households’ 

level data on livestock grazing. We would like to stress a deeper understanding of the 

performance of extensive livestock grazing on the Qinghai-Tibetan Plateau by taking into 

account the grazing pressure.   

The structure of the paper is as follows. Section 2 presents the theoretical framework, 

methodology. Section 3 presents the empirical model specification and data description. The 

empirical analysis results are presented in section 4, followed by section 5 which concludes 

with discussion. 

2. Theoretical framework and methodology 

A multi-input multi-output directional distance function incorporating grazing pressure as the 

bad output is developed in order to measure the production performance of grassland grazing 

under the framework of environmental efficiency. As grassland grazing on the Tibetan 

Plateau still adopts the traditional half-nomadic pastoral system (Davies and Hatfield, 2007; 

Harris, 2010), this might be advantageous for the distance function, not considering the exact 

price of inputs and outputs. We adopt the distance function approach instead of the 

deterministic approach because of the advantage of the stochastic approach to separate the 

random noise from the technical inefficiency term.  

2.1 Conceptual framework 

The directional distance function is applied to all properties of the distance function 

introduced by Shephard (1970) with defining inputs 𝑥 = (𝑥1, ⋯ , 𝑥𝐾) ∈ ℜ𝐾+ , outputs 𝑦 =

(𝑦1,⋯ , 𝑦𝑀) ∈ ℜ𝑀+ , and the output possibility set 𝑃(𝑥) = {𝑦: 𝑥 can produce 𝑦}, which is 

assumed to satisfy the set of axioms depicted in Färe et al. (2000). The directional distance 

function measures the distance from the production unit to the efficiency boundary along with 

a directional vector, given the directional vector 𝑔 = (−𝑔𝑥, 𝑔𝑦) with 𝑔𝑥 ∈ 𝑅+
𝑁 and 𝑔𝑦 ∈ 𝑅+

𝑀, 

determined by which of the inputs would be contracted and which outputs would be expanded, 

as described in Figure 1, when firms adjust the production behavior along the vector from 

producing point A. Then, the directional distance function is given by 
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𝐷⃗⃗ (𝑥, 𝑦; 𝑔𝑥 , 𝑔𝑦) = 𝑠𝑢𝑝{𝜗: (𝑥 − 𝜗𝑔𝑥, 𝑦 + 𝜗𝑔𝑦) ∈ 𝑃} (1) 

where 𝐷⃗⃗ (𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦)  ≥ 0, 𝜗 ∈ 𝑅 , which inherits all properties of the directional distance 

function described in Chambers et al. (1998) and Färe et al. (2005). The directional distance 

function can take the quadratic form as: 

𝐷⃗⃗ (𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦)

= ∑ 𝛼𝑘𝑥𝑘

𝑁

𝑘=1

+ ∑𝛽𝑗𝑦𝑗

𝑀

𝑗=1

+ ∑ ∑𝛼𝑘𝑙

𝑁

𝑙=1

𝑁

𝑘=1

𝑥𝑘𝑥𝑙 + ∑∑ 𝛽𝑗ℎ

𝑀

ℎ=1

𝑦𝑗𝑦ℎ

𝑀

𝑗=1

+ ∑ ∑𝛾𝑘𝑗

𝑀

𝑗=1

𝑥𝑘𝑦𝑗

𝑁

𝑘=1

 

(2) 

The translation property of the directional distance function allows for an empirical use:  

𝐷⃗⃗ (𝑥 − 𝜗𝑔𝑥, 𝑦 + 𝜗𝑔𝑦; 𝑔𝑥, 𝑔𝑦) = 𝐷⃗⃗ (𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) − 𝜗 (3) 

This property indicates the producer decreases the distance to efficiency boundary by scalar 𝜗, 

while output is improved by 𝜗𝑔𝑦  and input is reduced by 𝜗𝑔𝑥  simultaneously, given the 

technology is available. It is a radial input distance function if 𝑔𝑦 = 0, as the firm close to the 

efficient frontier from point A to point B; and it is a radial output distance function if 𝑔𝑥 = 0, 

when the firm is moving the producing point from point A to point C, therefore, the radial 

distance function is – in special cases - the directional distance function (Färe and Grosskopf, 

2000). Based on the directional distance function framework, the output oriented directional 

distance function and the input oriented directional distance function can be derived. We use 

the output oriented directional distance function for grassland grazing in this paper. 

[Figure 1. Directional distance function] 

Specifically, the producer is efficient in the director (−𝑔𝑥, 𝑔𝑦) if 

0 = 𝐷⃗⃗ (𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) + 𝜀𝑖 (4) 

where 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖, 𝑣𝑖 ~ i.i.d. 𝑁(0, 𝜎𝑣
2) and 𝑢𝑖 ~𝑁(𝜇𝑖, 𝜎𝑢

2)+
, 𝑖 = 1,2,⋯ ,𝑁. 

Hence, by substituting (4-4) into (4-3), we get 

−𝜗𝑖 = 𝐷⃗⃗ (𝑥 − 𝜗𝑔𝑥, 𝑦 + 𝜗𝑔𝑦; 𝑔𝑥, 𝑔𝑦) + 𝑣𝑖 − 𝑢𝑖 (5) 
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The translation property given above requires the restrictions as discussed in Färe et al. 

(2005), which will be explained in more detail in next section. The mean 𝜇𝑖 is defined for 

technical inefficiency 𝑢𝑖, where the technical inefficiency model is written in equation (6).  

𝜇𝑖 = ∑𝜏𝑐 ∗ 𝑍𝑐𝑖

𝐶

𝑐=1

 (6) 

where 𝑍𝑐𝑖  is a vector of household characteristic variables associated with the technical 

inefficiency effects and 𝜏𝑖 is a vector of unknown parameters to be estimated (Battese and 

Coelli, 1988, 1995, 1997; Coelli and Battese, 1996). Maximum Likelihood Estimation (MLE) 

could be used to estimate the parameters (Aigner, Lovell and Schmidt, 1977). 

Given the production frontier specified as  

Y𝑖 = 𝑓(𝑋𝑖, 𝛽). exp (𝑣𝑖 − 𝑢𝑖) (7) 

Technical efficiency (TE) is defined as the ratio of the observed output to the corresponding 

potential output, which is written as   

𝑇𝐸𝑖 =
𝑓(𝑋𝑖, 𝛽). exp (𝑣𝑖 − 𝑢𝑖)

𝑓(𝑋𝑖, 𝛽). exp (𝑣𝑖)
= exp(−𝑢𝑖) (8) 

2.2 Relative shadow prices and Morishima elasticity of substitution 

Thanks to the duality theory between the distance function and cost function or revenue 

function (input distance function for cost minimization function, output distance function for 

revenue maximization function), shadow prices for non-market goods can be derived 

(Shephard, 1970; Färe and Primont, 1996). Assuming that the directional input (output) 

distance function and the cost (revenue) functions are differentiable, application of Shepherd's 

dual lemma would lead to the shadow price formulas: 

∇𝑥𝐷⃗⃗ (𝑥, 𝑦) = 𝑟∗(𝑥, 𝑦) (9) 

where 𝑟∗(𝑥, 𝑦)is the cost minimizing inputs prices vector.  

Because the input prices are not available and optimal cost of production cannot be accurately 

estimated in this paper, then relative shadow prices can be derived from the following formula: 

𝑅𝑘𝑙 =
𝑟𝑘

∗

𝑟𝑙
∗ =

𝜕𝐷⃗⃗ (𝑥, 𝑦)/𝜕𝑥𝑘

𝜕𝐷⃗⃗ (𝑥, 𝑦)/𝜕𝑥𝑙

 (10) 
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where 𝑟𝑘
∗ and 𝑟𝑙

∗ are the shadow prices of the inputs 𝑥𝑘 and 𝑥𝑙, respectively. This ratio is the 

relative shadow price of input 𝑥𝑘 with respect to input 𝑥𝑙 . These shadow prices reflect the 

trade-off between different inputs (Färe et al., 1993; Hailu and Veeman, 2000). 

Because of the duality between the input distance function and the cost function, the degree of 

substitutability along the surface frontier, such as frontier curvature, can be calculated. The 

indirect Morishima elasticity of substitution (MES) from a directional input distance function 

can be computed as formula (11) (Blackorby and Russell, 1989). 

𝑀𝐸𝑆𝑘𝑙 = −

𝜕 (
𝐷⃗⃗ 𝑘

𝐷⃗⃗ 𝑙
⁄ )

𝜕 (
𝑋𝑘

𝑋𝑙
⁄ )

 
(11) 

where the subscripts on the distance functions refer to partial derivatives with respect to 

inputs. This represents the change in relative marginal products and input prices required to 

affect substitution under cost minimization. High values reflect low substitutability and low 

values reflect relative ease of substitution between the inputs (Morrison-Paul et al., 2000). 

The MES can be simplified as follows: 

𝑀𝐸𝑆𝑘𝑙 = 𝜀𝑘𝑙 − 𝜀𝑘𝑘 (12) 

where 𝜀𝑘𝑙  and 𝜀𝑘𝑘  are the constant output cross and own elasticity of shadow prices with 

respect to input quantities. The first term provides information on whether pairs of inputs are 

net substitutes or net complements, and the second term is the own price elasticity of demand 

for the inputs. It should be noted that these elasticities are indirectelasticities. Therefore, for 

𝜀𝑘𝑙 > 0 net complements are indicated, and for 𝜀𝑘𝑙 < 0 net substitutes are indicated. 

The shadow price elasticities with respect to input quantities are given by: 

𝜀𝑘𝑙 = (𝛼𝑘𝑙 + 𝑆𝑘𝑆𝑙)/𝑆𝑘  if  𝑘 ≠ 𝑙 (13) 

𝜀𝑘𝑘 = [𝛼𝑘𝑘 + 𝑆𝑘(𝑆𝑘 − 1)]/𝑆𝑘  if  𝑘 = 𝑙 (14) 

where 𝑆𝑘 is the first order derivatives of the distance function with respect to input 𝑥𝑘, that is  

𝑆𝑘 = 𝜕𝐷⃗⃗ 𝜕𝑥𝑘⁄  (15) 
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3. Empirical model specification and data descriptive statistics 

3.1 Empirical model specification and estimation measurement 

Following Chambers et al. (1998, 2002) and Färe et al. (2005), we first build the output 

oriented directional distance function in equation (16). The advantage of the output oriented 

directional distance function is thhat it allows us to expand the good output while contracting 

the bad output while leaving inputs unchanged, as showed in Figure 2. Assuming point A is 

the production point of a household, then the household improves the production along the 

directional vector  𝑔 = (𝑔𝑦 , −𝑔𝑏), that is to add 𝜗𝑔𝑦 to good output y while subtracting 𝜗𝑔𝑏 

from the bad output b.  

[Figure 2. Output orientation directional distance function] 

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) = 𝑠𝑢𝑝{𝜗: (𝑦 + 𝜗𝑔𝑦 , 𝑏 − 𝜗𝑔𝑏) ∈ 𝑃} (16) 

While satisfying the translation property, equation (16) can be denoted as equation (17),  

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝜗𝑔𝑦, 𝑏 − 𝜗𝑔𝑏; 𝑔𝑦, −𝑔𝑏) = 𝐷𝑜

⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 𝑔𝑦, −𝑔𝑏) − 𝜗 (17) 

We parametrically estimate the directional distance using stochastic estimation methods 

following Kumbhakar and Lovell (2000), then the empirical stochastic specification form is 

written in equation (18). 

−𝜗𝑖 = 𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝜗𝑔𝑦, 𝑏 − 𝜗𝑔𝑏; 𝑔𝑦, −𝑔𝑏) + 𝑣𝑖 − 𝑢𝑖 (18) 

Assuming 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1, −1), the quadratic form for our case, 4 inputs and 2 outputs 

(1 good output y and 1 bad output b), is denoted by equation (19). 

𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)

= 𝛼0 + ∑ 𝛼𝑘𝑥𝑘

4

𝑘=1

+ 𝛽1𝑦 + 𝛽2𝑏 +
1

2
∑ ∑𝛼𝑘𝑙𝑥𝑘𝑥𝑙

4

𝑙=1

4

𝑘=1

+
1

2
𝛽11(𝑦)2

+
1

2
𝛽22(𝑏)

2 + ∑ 𝛾𝑘1

4

𝑘=1

𝑥𝑘𝑦 + ∑ 𝛾𝑘2

4

𝑘=1

𝑥𝑘𝑏 + 𝛿𝑦𝑏 

(19) 

To hold the translation property, the required restrictions are 

𝛽1 − 𝛽2 = −1, 𝛽11 = 𝛽22 = 𝛿, 𝛾𝑘1=𝛾𝑘2, k=1,2,3,4. 

Additional, symmetry conditions require: 𝛼𝑘𝑙=𝛼𝑙𝑘, k = l = 1,2,3,4. 
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In our case, we choose 𝜗 = 𝑏, then the quadratic form of the empirical specification for 

grassland grazing is 

−𝜗𝑖 = 𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦 + 𝑏, 0) + 𝑣𝑖 − 𝑢𝑖

= ∑ 𝛼𝑘𝑥𝑘

4

𝑘=1

+ 𝛽1𝑦
∗ +

1

2
∑ 𝛼𝑘𝑘(𝑥𝑘)

2 +

4

𝑘=1

1

2
𝛽11(𝑦

∗)2

+ ∑ ∑ 𝛼𝑘𝑙𝑥𝑘𝑥𝑙

4

𝑙=1,𝑘≠𝑙

4

𝑘=1

+ ∑ 𝛾𝑘1

4

𝑘=1

𝑥𝑘𝑦
∗ + 𝑣𝑖 − 𝑢𝑖 

(20) 

where 𝑦∗ = 𝑦 + 𝑏. y describes the good output of grassland grazing, denoted by the revenue 

of livestock meat and milk produced in the year; b denotes the bad output, grazing pressure, 

defined as ratio of livestock live weight divided by grassland forage biomass. 𝑋 is the vector 

of inputs with x1 = grassland area size, x2 = labor, x3 = household productive capital and x4 = 

initial yak stock. 𝑣𝑖 is a random error term, intended to capture events beyond the control of 

the herdsman and 𝑢𝑖  is a non-negative random error term, intended to capture technical 

inefficiency in production. In order to compare different effects of the directional vector, we 

use 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,−1) 𝑎𝑛𝑑 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,0) in empirical analysis, the setting 

with 𝑔 = (1,0) means ignoring the bad output in the production process. 

The technical inefficiency model referred to equation (6) in this chapter is written as 

𝜇𝑖 = 𝜏0 + ∑𝜏𝑐 ∗ 𝑍𝑐𝑖

8

𝑐=1

 (21) 

where 𝑍 is a vector of explanatory variables associated with the technical inefficiency effects 

including total NPP change of each household (z1), household size (z2), distance from fixed 

home to summer pasture (z3), grazing experience (z4), summer pasture area (z5) and winter 

pasture area size (z6), dummy variable of pasture plot (z7) and dummy variable of whether 

there is leased-in grassland from other households (z8). 

3.2 Data and descriptive statistics 

The social-economic data used in this paper was drawn from field survey data in the 

Sanjiangyuan region in Qinghai province conducted by the Center for Chinese Agricultural 

Policy (CCAP) of the Chinese Academy of Sciences in August and October, 2012. The Net 

Primary Production data is from the MODIS GPP/NPP Project. The Sanjiangyuan region in 
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China, known as the Three-River Headwaters in English, is located in the northeast of the 

Qinghai-Tibetan Plateau, where more than 90% of the local people are of Tibetan Ethnic 

Minority. The average elevation of the Sanjiangyuan region is between 3500 and 4800 m. 

Like other parts of the Tibetan plateau, a cold season from approximately November to the 

following May and a warm season from June to October can be identified. The annual mean 

temperature is about 1 to 2 degrees Celsius, and the annual precipitation ranges from 600 mm 

to 800 mm. The stratified random sampling method was used to select observations and 144 

of them are available for this paper. 

Classic inputs are aggregated into four categories (grassland area, labor, capital and initial yak) 

and outputs are aggregated into two categories (y as good output of revenue from grassland 

grazing and bad output b, grazing pressure). There are two kinds of pastures on the Qinghai-

Tibetan Plateau: Summer/autumn pasture and winter/spring pasture, where grassland area (x1) 

is the sum of summer pasture area and winter pasture area for each household. Labor (x2) 

consists of family labor, measured by person. Capital (x3) consists of productive machinery 

(irrigation machine, transportation machine and so on). It is calculated by sum aggregation of 

each item obtained from the questionnaires. Initial yak stock (x4) means the initial yak input at 

the beginning of the year and is calculated by multiplying the average weight of a yak by the 

yak number per household. Good output y denotes the revenue of yak meat produced in the 

year and revenue of the other outputs, including the revenue from Tibetan sheep meat, output 

of milk, yak hide, Tibetan sheep wool and so on. Bad output b denotes the grazing pressure of 

livestock grazing on the Qinghai-Tibetan Plateau; detailed information of bad output b, 

grazing pressure, is given in the next paragraph.  

The important variable that we are focusing on is the bad output, grazing pressure. Grazing 

pressure is international terminology which forms the relationship between animal live weight 

and forage mass per unit of grassland on the grazed land given a specific time (Allen et al., 

2011). Grazing pressure is highly positively correlated to the over grazing ratio: The more the 

livestock stocking rate surpasses the proper carrying capacity, the higher the grazing pressure. 

As grazing pressure is the relationship of animal-to-forage ratio, we calculate grazing pressure 

as the ratio between livestock live weight and total grassland Net Primary Productivity (NPP), 

where total grassland NPP is used as representative of grassland biomass. Grassland total NPP 

is computed with unit NPP multiplying the total grassland area, while unit NPP is computed 

with daily MODIS land cover, FPAR/LAI and global GMAO surface meteorology at 1km for 

the global vegetated land surface (Zhao and Running, 2010). These variables provide the 
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initial calculation for growing season and carbon cycle analysis, and are used for agriculture, 

range and forest production estimates. After matching the rough boundary of summer pasture 

and winter pasture to the 1km NPP raster data file, and getting samples of NPP for each 

pasture according to the pasture area, we summarize the NPP of pastures for each grazing 

household.  

For the technical inefficiency model, operational and farm-specific variables were considered 

including the total NPP change of each household’s pasture (z1), household size (z2), distance 

from fixed home to summer pasture (z3), grazing experience (z4), summer pasture area (z5) 

and winter pasture area size (z6), dummy variable of pasture plot (z7) and dummy variable of 

whether there is leased-in grassland from other households (z8). Total NPP change of each 

household (z1) is calculated by total NPP in the year 2012 subtracted by total NPP in the year 

2011. Household size (z2) is the population in one family. Distance from fixed home to 

summer pasture (z3) measures the geographic distance from the fixed home to the summer 

pasture. Grazing experience (z4) denotes how many years of grazing experience each 

household head has. Summer pasture area (z5) and winter pasture area (z6) are pasture area 

size in summer and winter respectively, while dummy variable of pasture plot (z7) means 

whether the summer pasture and winter pasture are located in the same plot or adjacent plots. 

Dummy variable of lease-in grassland (z8) measures whether there is leased-in grassland from 

other households, which equals 1 if the household grazes on leased-in grassland, and 0 for 

otherwise. A statistic description of variables in the directional distance function and technical 

inefficiency model is shown in Table 2. 

[Table 2. Statistic descriptive of variables] 

4. Results 

Before presenting the performance of inputs and outputs in the directional distance function, 

we compared the directional distance functions with different assumptions of directional 

vectors 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,−1) and 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,0) (Table 3). We assigned model 

1 with directional vector 𝑔 = (1,−1), which means to expand good output while subtracting 

bad output of the grazing pressure. In model 2, 𝑔 = (1,0) is assumed, denoting the expansion 

of good output without subtracting the bad output grazing pressure. A Hausman test is used to 

compare the two models with a null hypothesis that there are no systematic differences 

between the two. From the Hausman test below Table 3, we can see the null hypothesis is 

strongly rejected, indicating that there are systematic differences between the estimates of the 
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two models. Taking into account the distributional signals and monotonicity conditions, 

model 1 with directional vector 𝑔 = (1,−1) is preferred. Hereafter, all analysis and estimates 

will be based on the directional vector of 𝑔 = (𝑔𝑦, −𝑔𝑏) = (1,−1)  in model 1. The  

𝛿𝑢 is estimated to be 0.586, which means relatively unignorably inefficiency term 𝑢𝑖, which 

supports us in setting the directional distance function combined with technical inefficiency 

model, as showed Table 3, where the likelihood value is -3.554 with degree of freedom 31. 

The likelihood value of model 1 is -36.824 with degree of freedom of 23. According to the 

likelihood ratio test, LR Chi
2
(8) = 66.54, which is significantly larger than the criteria value of 

𝑥0.005
8 (8) = 21.955; this implies that the setting of the technical inefficiency model would 

definitely improve the model specification. We took likelihood ratio tests for the technical 

inefficiency model setting (Appendix Table 1). According to all the likelihood ratio tests and 

one-sided inefficiency random components, we choose the final model setting in Table 4, and 

consequently calculate the first order conditions, shadow price and Morishima elasticity of 

substitutions between inputs. 

[Table 3. Directional distance function with different directional vector] 

[Table 4. Estimates of directional distance function and technical inefficiency model] 

 

4.1 Parameter estimates of directional distance functions 

The one-step approach for both the directional distance function and technical inefficiency 

model using maximum likelihood is presented in Table 4, with all variables divided by mean. 

Most coefficients are estimated to be significant; especially the first order coefficient and 

second order coefficient of good output y, and cross interacting terms between input and good 

output y. The output distance function is concave in outputs, thus, 

𝜕2(𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑦𝜕𝑦 = 𝛽11 ≤ 0⁄ , and according to the translation property, 

𝜕2(𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑏𝜕𝑏 = 𝜕2(𝐷𝑜

⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑦𝜕𝑏 =⁄ 𝛽11⁄ , 𝛽11 is estimated to be -

0.263, significant at the 1% statistical level.  

Based on the estimates from the directional distance function, the elasticities of the directional 

distance function with respect to inputs and outputs are calculated to get a full understanding 

of the performance of inputs and outputs in the grassland grazing process, elasticities of the 

sample mean are presented (Table 5). A T Test is used to test whether the elasticities are 

different from zero at the 10% statistical level. The monotonicity conditions of the directional 

distance function require 𝜕2(𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑥 ≥ 0⁄ . With the exception of input x4, the 
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initial yak at the beginning of the year, elasticity of distance with respect to inputs grassland 

area size, labor and capital have expected positive signs, implying that increasing the input of 

any of these inputs will increase production potential substantially. The largest elasticity of 

the directional distance with respect to inputs comes from the grassland area, which is 

estimated to be 0.64, implying a 1% increase of grassland area would enhance production 

potential by 0.64%.  The monotonicity conditions of the directional distance function for 

outputs require 𝜕(𝐷𝑜
⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑦 ≤ 0⁄  and 𝜕2(𝐷𝑜

⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑏; 1, −1)) 𝜕𝑏 ≥ 0⁄ . The 

elasticity of distance with respect to good output  

εy is -0.36 and elasticity of bad output grazing pressure εb is estimated to be 0.64; both are 

significant at the 1% statistical level. A 1%  increase in good output would reduce the 

distance by 0.35%, while a 1%  increase in bad output, grazing pressure, would expand the 

distance by 0.64%. 

[Table 5. Elasticity of distance with respective to inputs and outputs] 

4.2 Shadow price of grazing pressure 

As grazing pressure cannot be traded in the market directly, the relative shadow prices of 

grazing pressure to revenue of livestock grazing are calculated for a better understanding of 

their relationship with each other. The relative shadow price of grazing pressure is estimated 

to be -1.8 at the sample mean, which means the “price” coming from grazing pressure is 

higher than production of one unit of good output. As there is no reason to interpret shadow 

price for the observations that violate the monotonicity conditions (Färe et al., 2005), we 

summarize the relative shadow price for a partial sample which meets the monotonicity 

conditions in the third column of Table 6. Thus, we can see that the relative shadow price of 

grazing pressure is -3.99, which means that the higher cost household should pay for one unit 

production of good output, again confirming that grazing pressure is a bad output from 

livestock grazing. In previous literature on environmental efficiency analysis, most of the 

studies on shadow prices of environmental outputs were assumed to be negative (Reinhard, 

1999; Färe et al., 1993, 2005; Hailu and Veeman, 2000), which mean that these 

environmental outputs are “bad outputs”. The value of Mby is estimated to be -0.55 for all 

samples, and -0.73 for partial samples which meet the monotonicity condition. A more 

negative Mby indicates a greater change of relative shadow price of grazing pressure to good 

output livestock revenue, thus resulting in a greater cost to reduce the grazing pressure.  

[Table 6. Relative shadow price of outputs and elasticity of transformation] 



 

14 

4.3 Morishima elasticity of substitution between inputs 

Morishima elasticity of substitution (MES) can be used to measure changes in relative output 

and input quantities as a consequence of changes in relative prices (Färe et al., 2005; Sauer et 

al., 2012). Using equations (11) to (15), we calculate MES for substitution or 

complementarity relations among inputs based on estimates of the directional output distance 

function (Table 7). A positive MES indicates a complementary relationship between two 

inputs and negative MES indicates a substitutionary relationship between inputs; in terms of 

absolute value of MES, high values reflect a low degree of complementarity or substitutability 

and low values reflect a high degree of complemtarity or substitution between the inputs 

(Blackorby and Russell 1989; Morrison-Paul et al., 2000; Rahman, 2010). Most of the 

elasticities are positive and are significantly different from zero by the T-test. An exception is 

the substitution elasticity between the grassland area size and the initial livestock stock which 

is equal to 0.50; there are further complementary relationships among other combinations.  

[Table 7. Morishima elasticity of substitution between inputs] 

 

4.4 Estimates for technical inefficiency model and technical efficiency 

The general-to-specific modeling method (Hendry, 2000) was used in variable selection for 

deciding on the technical inefficiency model specifications. We first estimate a model 

including all control variables (Appendix Table 2), and then we drop the least significant 

variables according to a likelihood ratio test and estimate the model again. This procedure is 

repeated until only variables that are significant enough to pass the likelihood ratio test at the 

10% level remain. The final determinants for the variation of a grazing households’ technical 

inefficiency are estimated in the technical inefficiency model (right part of Table 3). Because 

technical inefficiency is the dependent variable in the technical inefficiency model, a negative 

parameter coefficient for the variables indicates a negative effect on technical inefficiency and 

conversely, meaing a positive effect on technical efficiency.  

Total grassland NPP change (z1) is estimated to be negative in relation to the technical 

inefficiency, -0.265 significant at the 1% statistical level. This indicates that the more the total 

NPP on grassland changes, the greater the efficiency of the household will be. However, as 

the total NPP change might be assumed to be consumed by livestock,  which would let us be 

aware of the more the total NPP change, the higher trend to be overgrazed. Household size (z2) 

is estimated to be positively related to technical inefficiency, which can be explained as larger 

household sizes would distract the household head’s attention away from grazing, thus 
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resulting in higher inefficiency. There is no significant effect of distance from the fixed home 

to the summer pasture (z3) on inefficiency, but it is suggested that this variable be kept in the 

model by a general-to-specific process. More grazing experience would increase the technical 

efficiency, which was obtained from estimates of grazing experience (z4), -1.058. We treat 

summer pasture area (z5), winter pasture area size (z6) and the dummy variable of pasture plot 

(z7) as a variable block, and we can see winter pasture area size is positively related to 

technical inefficiency, with 1.033 significance at the 1% statistical level. The dummy variable 

of lease-in grassland (z8) has a highly positive affect on technical inefficiency, which means 

to lease in grassland from other households would increase the technical efficiency.  

We calculate each household’s technical efficiency after estimation of the stochastic distance 

function and technical inefficiency model. The average estimated technical efficiency is 0.82 

(Table 8), which indicates that on average, grazing households can improve technical 

efficiency by 18% in terms of expanding livestock revenue and reducing grazing pressure 

given unchanged inputs. The distribution of technical efficiencies seems satisfactory from the 

histogram graph (Figure 3), and we can see that about 13% of the households have a technical 

efficiency smaller than 0.70, whereas 12% of households have efficiency greater than or equal 

to 0.70 and less than 0.80; 39% of households have efficiency greater than or equal to 0.80 

and less than 0.90, and 35% households operate with a technical efficiency larger than 0.90 

(Table 8).  

[Figure 3. Histogram graph of technical efficiency] 

[Table 8. Summary of technical efficiency] 

5. Conclusion and discussion 

Incorporating grazing pressure as the undesirable output from livestock grazing using the 

directional distance function is a new step toward environmental efficiency analysis under the 

field of productivity and efficiency analysis. The environmental variable, grazing pressure, as 

the undesirable output from livestock grazing, plays a significant role in the directional 

distance function and technical inefficiency model. The average technical efficiency is 

estimated to be 0.82, implying that the grassland production potential can be increased by 18% 

with directional adjustment of reduction of the grazing pressure.  

With reference to Figure 4, there is a reverse U-shape relationship between cumulative 

grazing pressure and livestock production per unit area grassland. The livestock production 

per unit area increases according to cumulative grazing pressure until point A, and then 
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begins to decline at the critical cumulative grazing pressure. However, the ecological risk is 

monotonously positively increasing as cumulative grazing pressure increasing, which is 

strongly associated with the overgrazing status. The higher probability of ecological risk 

would result in a higher probability of grassland degradation (McDowell, 2008). As from the 

findings of our study, livestock grazing is probably operating on the line from point A to point 

B, according to estimates of the directional distance function, which means we would be 

better to leave constant or increase the production potential of livestock grazing in the 

Sanjiangyuan region without increasing the grazing pressure given the amount grassland size, 

labor, and capital.  

Livestock grazing can have negative impacts on the environment if it is not controlled within 

acceptable limits. An efficiency livestock grazing monitor approach is suggested to ensure a 

proper livestock stocking rate. The tradeoff between traditional livestock grazing production 

and ecological and environmental protection of grassland calls for more scientific research on 

how to improve production potential under the sustainable grassland use. Findings of how 

environmental variables and grazing pressure affect the production potential and technical 

inefficiency of livestock grazing in this study would be helpful for the development of 

scientific strategies and programs for local economic development and environmental 

protection, as well as for the effectiveness of ecological protection projects. 

There are a few limitations in this paper, for example, there is an assumption that the 

quality of livestock meat is homogenous for different livestock age groups. In terms of the 

approximate pasture boundary matching from a long time schedule and large scale level of 

remote sensing data to minor scale household level data, there is inevitable measurement error 

to some extent. For the grazing pressure measurement, we have not considered the grazing 

pressure from wild stock (Fisher, 2004). The consideration of the impact of both domestic 

stock and wild stock for analysis of sustainable livestock grazing could be considered in 

future work when wild stock data is available.  
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Figure 1. Directional distance function 
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Figure 2. Output orientation directional distance function 
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Figure 3. Histogram graph of technical efficiency 
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Figure 4. Relationship between cumulative grazing pressure, ecological risk and livestock production 
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Figure source: McDowell, 2008, P.136.  
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Table 1. Overgrazing status in the sample counties 

Grazing status relate variable 
County 

Tongde Zeku Maqin 

Proper carrying capacity (SU/km
2
) (Zhang, Zhang, Liu et al., 2014) 127.07 90.58 81.34 

Overgrazing ratio of 2010 (%) (Zhang, Zhang, Liu et al., 2014) 112.25 323.5 47.6 

Overgrazing ratio from 1988 to 2005 (%) (Fan et al., 2010) 600 500 300 

Overgrazing ratio from our field survey (%) 347 490 568 

Note: The proper carry capacity is referred to Zhang, Zhang, Liu et al., 2014 
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  Table 2. Statistic descriptive of variables  

Variable Description Symbol 
Measurement 

Unit 
Mean Std. Dev. 

Inputs variables  

Grassland area size x1 mu 937.38 1413.14 

Labor x2 person 2.31 1.27 

Productive capital x3 1000yuan 129.21 186.87 

Initial yak at the beginning of 2011 x4 1000kg 7.17 8.15 

 

Outputs variables 

Good output: revenue from livestock grazing y 1000yuan 105.26 112.02 

Bad output: grazing pressure b - 0.21 0.28 

 

Household characteristics variables 

Total NPP change in 2011  z1 1000kgC 4.94 13.57 

Household size  z2 head 4.72 1.67 

Distance from fixed home to summer pasture z3 km 15.24 19.68 

Grazing experience z4 year 29.87 11.97 

Summer pasture area z5 1000mu 542.98 911.04 

Winter pasture area z6 1000mu 395.65 649.29 

  
No. of dummy = 1 No. of dummy = 0 

Dummy variable pasture plot (1 = the winter pasture 

and summer pasture are different plots; 0 = other) 
z7 44 149 

Dummy variable of whether there is leased-in 

grassland (1=yes; 0 = no) 
z8 43 150 
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Table 3. Directional distance function with different directional vector 

Variables Coef. Std. Err. Coef. Std. Err. 

dep. var.: - 𝜗 Model1: Directional vector g = (1,-1) Model2: Directional vector g = (1,0) 

Constant 0.050 0.125 -0.165** 0.074 

x1 0.350** 0.143 0.251*** 0.044 

x2 -0.464*** 0.173 0.097 0.079 

x3 0.172*** 0.065 -0.048 0.032 

x4 -0.232 0.170 0.361*** 0.066 

y* -0.263*** 0.074 -0.678*** 0.034 

0.5∙x1
2
 -0.029** 0.014 -0.031*** 0.006 

0.5∙x2
2
 0.555*** 0.178 -0.027 0.065 

0.5∙x3
2
 0.027 0.031 0.014 0.012 

0.5∙x4
2
 0.087 0.067 -0.121*** 0.035 

0.5∙y*
2
 -0.125*** 0.023 0.011 0.02 

0.5∙b
2
 

a 

 
-0.11** 0.045 

x1∙y 0.310*** 0.029 0.056** 0.028 

x2∙y -0.166*** 0.056 0.271*** 0.035 

x3∙y -0.003 0.018 0.017 0.012 

x4∙y 0.057* 0.030 0.074*** 0.019 

x1∙b 
  

-0.129*** 0.031 

x2∙b 
  

-0.365*** 0.041 

x3∙b 
  

0.007 0.013 

x4∙b 
  

-0.077*** 0.022 

x1∙x2 -0.200** 0.085 -0.073** 0.032 

x1∙x3 0.067*** 0.013 -0.001 0.006 

x1∙x4 -0.393*** 0.038 -0.039 0.03 

x2∙x3 -0.112** 0.056 0.008 0.021 

x2∙x4 0.439*** 0.120 -0.202*** 0.042 

x3∙x4 -0.065 0.041 -0.014 0.013 

y∙b 
  

0.017 0.031 

lnsig2v 
    

Constant -20.355* 10.815 -4.360*** 0.102 

lnsig2u 
  

 
 

Constant -1.070*** 0.102 -12.967 92.348 

𝛿𝑣 0.000 0.000 0.113 0.006 

𝛿𝑢 0.586 0.030 0.002 0.071 

𝛿2 0.343 0.035 0.013 0.001 

Log likelihood -36.824 146.841 

 

Hausman test:  

Chi
2
(20)      = (b-B)'[(V_b-V_B)^(-1)](b-B) 

                                                                      =        698.38 

                                                   Prob>chi
2
 =0.0000    

Notes:1. a, according to restrictions, they can be calculated. 2. Coefficient of parameter b in Model1 can be calculated according to 

restrictions, and parameter b is transformed to left side variable in Model2. 3. *Significant at 10% level (P < 0.10), **Significant at 5% level 
(P < 0.05), ***Significant at 1% level (P < 0.01).  
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Table 4. Estimates of directional distance function and technical inefficiency model 

Variables Coef. Std. Err. Variables Coef. Std. Err. 

Stoc. frontier normal/half-normal model  Technical inefficiency model 

Dependent variable: - 𝜗 
 

Dependent variable:  lnsig2u 
 

Constant 0.084 0.098 Constant -4.358*** 1.662 

x1 0.197** 0.096 z1 -0.265*** 0.081 

x2 -0.300** 0.135 z2 1.176** 0.548 

x3 0.097 0.059 z3 -0.348 0.212 

x4 -0.063 0.113 z4 -1.058* 0.595 

y* -0.639*** 0.059 z5 -0.016 0.174 

0.5∙x1
2
 -0.069*** 0.016 z6 1.033*** 0.208 

0.5∙x2
2
 0.263** 0.110 z7 1.781 1.258 

0.5∙x3
2
 -0.105*** 0.020 z8 -1.947*** 0.543 

0.5∙x4
2
 -0.152*** 0.049 

    
0.5∙y*

2
 -0.071*** 0.013 

    
x1∙y 0.485*** 0.031 

    
x2∙y -0.076** 0.036 

    
x3∙y -0.092*** 0.014 

    
x4∙y 0.105*** 0.020 

  
x1∙x2 -0.075 0.069 

    
x1∙x3 0.023 0.022 

    
x1∙x4 -0.409*** 0.058 Log likelihood=-3.554 

x2∙x3 0.134*** 0.041 Number of observation =193 

x2∙x4 0.214*** 0.071 Wald Chi
2
(20) = 5807.730 

x3∙x4 0.157*** 0.025 Prob.>Chi
2
=0.000  

lnsig2v 
      

Constant -3.681*** 0.231 
    

Notes: *Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01). 
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Table 5. Elasticity of distance with respective to inputs and outputs 

Elasticity Mean Std. Dev. Min Max 

Inputs elasticity 

εx1 0.64*** 0.68 -0.73 3.93 

εx2 0.08*** 0.33 -1.02 1.67 

εx3 0.12*** 0.18 -0.71 0.57 

εx4 -0.04 0.64 -6.08 1.64 

 

Outputs elasticity 

εy -0.36*** 0.73 -1.51 6.58 

εb 0.64*** 0.73 -0.51 7.58 

Notes: T-Test for elasticity different from 0, *Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% 
level (P < 0.01). 
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Table 6. Relative shadow price of outputs and elasticity of transformation 

Variable 
Full sample 

(Obs. = 193) 

Partial sample 

(Obs. = 173) 

Relative shadow price: 
𝜕𝐷⃗⃗ (𝑥,𝑦,𝑏)/𝜕𝑦

𝜕𝐷⃗⃗ (𝑥,𝑦,𝑏)/𝜕𝑏
 -1.80 -3.99 

Mby: Morishima elasticity substitution of b to y -0.55 -0.73 
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Table 7. Morishima elasticity of substitution between inputs 

MES(row, column) 
x1 x2 x3 x4 

grassland area labor capital initial yaks 

x1 grassland area - 0.43*** 0.71*** -0.50*** 

x2 labor 0.75 - 0.73*** 0.75*** 

x3 capital  2.07*** 1.99** - 1.96** 

x4 initial yaks 1.02 2.07 1.96 - 

Notes: T-Test for elasticity different from 0, *Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% 
level (P < 0.01). 

  



 

33 

 

Table 8. Summary of technical efficiency 

Variable Obs. Percentage Mean Std. Dev. Min. Max. 

TE < 0.70 25 13% 0.42 0.24 0.02 0.70 

0.70 ≤ TE < 0.80 24 12% 0.76 0.03 0.70 0.80 

0.80 ≤ TE < 0.90 76 39% 0.86 0.03 0.80 0.90 

TE ≥ 0.90 68 35% 0.93 0.02 0.90 0.97 

Technical efficiency (TE) 193 100% 0.82 0.19 0.02 0.97 
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Appendix   

Appendix Table 1. Hypothesis test for model selection 

Model Description Likelihood value Degree of freedom 

H0 Final model presented in paper -3.554 31 

H1 

directional distance function without setting 

technical inefficiency mode: 𝜏0 = 𝜏1 = 𝜏2 =
𝜏3 = 𝜏4 =  𝜏5 = 𝜏6 = 𝜏7 = 𝜏8 = 0  

-36.823 23 

H2 Full model seeting -1.985 35 

H3 𝜏1 = 0 -8.678 30 

H4 𝜏2 = 0 -6.888 30 

H5 𝜏3 = 0 -5.016 30 

H6 𝜏4 = 0 -5.964 30 

H7 𝜏5 = 𝜏6 = 𝜏7 = 0 -18.008 27 

H8 𝜏8 = 0 -11.782 30 
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Appendix Table 2. Model setting with all reasonable variables in technical inefficiency model 

Variables Coef. Std. Err. Variables Coef. Std. Err. 

Stoc. frontier normal/half-normal model  Technical inefficiency model 

Dependent variable: - 𝜗 Dependent variable: lnsig2u 
 

Constant 0.074 0.095 Constant -5.404*** 2.014 

x1 0.202** 0.094 z1 -0.246*** 0.079 

x2 -0.292** 0.133 z2 1.131** 0.54 

x3 0.097 0.059 z3 -0.234 
 

0.173 

x4 -0.053 0.112 z4 -1.031* 0.566 

y* -0.631*** 0.064 z5 -0.015 
 

0.18 

0.5∙x1
2
 -0.068*** 0.015 z6 0.959*** 0.202 

0.5∙x2
2
 0.267** 0.111 z7 1.764 1.295 

0.5∙x3
2
 -0.107*** 0.02 z8 -1.662*** 0.513 

0.5∙x4
2
 -0.139*** 0.049 z9 -0.049 

 
0.077 

0.5∙y*
2
 -0.071*** 0.013 z10 0.587 

 
0.663 

x1∙y 0.483*** 0.031 z11 0.559 
 

0.421 

x2∙y -0.080** 0.038 z12 -0.082 
 

0.398 

x3∙y -0.090*** 0.014     

x4∙y 0.100*** 0.02 
    

x1∙x2 -0.087 0.07 
    

x1∙x3 0.025 0.022 Log likelihood = -1.985 

x1∙x4 -0.411*** 0.057 Number of observation =193 

x2∙x3 0.140*** 0.042 Wald chi2(20) = 5530.070 

x2∙x4 0.214*** 0.073 Prob>chi2=0.000  

x3∙x4 0.154*** 0.026 
    

lnsig2v 
      

Constant -3.742*** 0.26 
    

Notes: *Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01). 

  



 

36 

 

Appdendix Table 3. Descriptive statistics for additional variables in appendix table 4.3 

Variable Description Symbol Unit Mean Std. Dev. 

Continuous variables 
  

Total direct subsidy from government  z9 1000yuan 9.52 21.40 

grazed month of summer pasture z10 month 5.52 1.38 

duration of getting the use right of pasture z11 year 19.56 7.59 

Dummy variables 
 

No. of dummy = 1 No. of dummy = 0 

Dummy variable of education (1=has been 

education; 0 = no education) 
z12 58 135 

 

 

 


