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1 Introduction

Productivity differs across Canadian firms and these differences “...manifest themselves

in distinct geographical patterns...” (Baldwin, Beckstead, Brown, and Rigby 2007, p.

8). One explanation for geographical differences in the measured productivity is that

firms benefit - i.e., from knowledge spillovers, better access to upstream suppliers and/or

downstream users - from being locating close to one another (Krugman 1991). The

enhanced productivity sustained by the clustering of firms (i.e., relatively higher density)

is referred to as the agglomeration effect.

Recent empirical literature finds strong evidence of an agglomeration effect in manu-

facturing. In sub-sectors of manufacturing, studies demonstrate that agglomeration can

reduce production costs (Cohen and Morrison-Paul 2005), increase total factor produc-

tivity (Greenstone, Hornbeck, and Moretti 2010), and reduce productivity dispersion

among producers (Syverson 2004). In the agricultural setting, a number of studies also

find support for an agglomeration effect. For example, Roe, Irwin and Sharp (2001) find

that county hog production is positively influenced by hog production in surrounding

counties. Their spatial econometric approach to examining the agglomeration effect is

similar to Cheng, Gomez, and Bills (2011) who find evidence that sales of greenhouse

and nursery products are positively influenced by the sales of greenhouse and nursery

products in surrounding areas1. Their approach was similar to Isik’s (2004) study of

agglomeration effects in the U.S. milk production.

With respect to studies of the agricultural sector, our study differs from the above

literature in two important ways. First, we measure the effect of agglomeration at the firm

level. The heteroscedastic stochastic frontier approach allows us to measure the effect of

agglomeration on firm production efficiency and production uncertainty. Second, we use

a producer density measure of agglomeration that is not defined by political boundaries

(e.g., county) but by densities within a spherical distance of each farm. With respect to

1. The authors find evidence of an agglomeration effect in most geographic regions but not all.
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the aforementioned points, our paper is more similar to Tveteras and Battese (2006) who

find evidence of agglomeration effects in the Norwegian salmon industry using a stochastic

frontier approach. However, unlike Tveteras and Battese (2006), but similar to Syverson

(2004), we also examine the agglomeration effect on the variance of production efficiency

(or production uncertainty)2 within a given area. This allows us to assess whether firms

in greater proximity to each other are similarly situated on the production frontier.

In the remainder of this paper we describe the model of production that underlies our

empirical method for estimating the stochastic frontier. We then review our empirical

results. Anticipating this section a bit, we find strong evidence of agglomeration effects in

Ontario’s dairy sector and some evidence (albeit sensitive to alternative specifications of

our density measure) that agglomeration reduces the variance of efficiency. We conclude

the paper by discussing the potential implications of our findings for ongoing issues in

the agricultural sector.

2. Bera and Sharma (1999: p187) note that the variance of efficiency “...could provide a measure of
production uncertainty or risk.”
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2 Empirical Model

The sharing of ideas by closely located farms is assumed to have a positive external ef-

fect on the production efficiency of neighboring farms (i.e., improvement in productive

efficiency). Consider a dairy farm uses a vector of inputs, x = (x1, x2, ..., xN) ∈ <N+ ,

to produce milk and other products, y = (y1, y2, ..., yM) ∈ <M+ . We represent the pro-

duction technology of the farm by input requirement set as L(y)={x: x can produce

y}. To measure the production efficiency a firm, one can use a variety of approaches:

i.e., production function, input and output distance functions, cost function, revenue

function or profit function (Kumbhakar and Lovell 2000). For example, the production

function defines the maximum possible output that can be produced from a vector of in-

puts. The cost function defines the minimum cost to produce a given level of output(s).

The input distance function describes how far an input vector is from the boundary of

the representative input requirement set, given a fixed output. In this paper, we use an

input distance function. The key advantage of the input distance function, in our case,

is that the Canadian dairy quota regulation restricts the maximum output, with fewer

restrictions on the input markets. Further, unlike the cost function, the input distance

function does not require input prices to vary among firms (Coelli, Singh and Fleming

2003). The estimation of input distance function assumes that a farm focuses mainly on

reducing input usage to produce a fixed amount of output. To operate on the boundary

of the production technology, the firm radially scales down the input vectors (Coelli, Rao

and Battese 1998; Coelli and Perelman 2000). Kumbhakar et al (2008) and Sipiläinen

(2007) used a similar approach to examine Norwegian dairy farms. The input distance

function, dI(y, x), is defined as:

dI(y, x) = Supθ{θ : (
x

θ
) ∈ L(y)} (1)
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where dI(y, x) is non-decreasing, linear homogeneous and concave in inputs, and non-

increasing and quasi-concave in output (Kumbhakar and Lovell 2000). The input distance

function, dI(y, x), is a measure of technical efficiency. If dI(y, x) = 1, then the input

vector lies on the boundary of the input requirement set, and the firm is technically

efficient. If dI(y, x) > 1, then the input distance function indicates that the observed

input-output vector is technically inefficient. For empirical estimation, θ is defined as

a function of farm agglomeration: θi = g(D) where D is the number of neighboring

farms (or density) within a given geographical location and distance. In the presence of

agglomeration effects we expected that, ∂θi
∂D

< 0.

To measure production efficiency both stochastic frontier analysis (SFA) and the

non-parametric data envelopment analysis (DEA) are commonly used.3 The SFA is

preferred to DEA for a number of reasons. For example, SFA is less sensitive to out-

liers (Besstremyannaya 2011), allows modeling firm-specific variables, takes into account

stochastic variation due to random noises (Aigner, Lovell and Schmidt 1977), and al-

lows for a statistical hypothesis testing (Hjalmrsson et al 1996). Since it is proposed by

Aigner, Lovell and Schmidt (1977) and and Meeusen and van den Broeck (1977), the

SFA approach has been extended to examine the determinants of efficiency among firms

assuming that inefficiency effects are a function of some firm-specific factors (e.g., Battese

and Coelli 1995). For the distance function in equation (1), we can parameterize θ = eu,

where u ≥ 0 (Das and Kumbhakar 2012). Using the homogeneity property of dI(y,x),

we can normalize the n−1 inputs by the N− th input and describe the distance function

as dI(y,x)/xN = dI(y, x̄), where x̄ = x1/xN , ..., xn−1/xN). Re-parametrization of θ, i.e.,

dI(y,x) = θ = eu, leads to:

− ln(xN) = ln dI(y, x̄)− u. (2)

3. A priori the choice between SFA and DEA entails certain trade-offs (see Hjalmrsson et al 1996 for
detailed discussion).
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Adding a random error term, ν, to equation (2), a Cobb-Douglas stochastic input

distance function with one output is:

− ln(xNi) = β0 +
N−1∑
n=1

βn ln(
xni
xNi

) + α ln(yi) + νi − ui (3)

where i represents firms, − ln(dIi ) ≡ εi = νi − ui can be interpreted as a traditional

stochastic frontier disturbance term4. The distances in a distance function are the radial

distances between the observed data points and the frontier that could be due to either a

noise (νi) or technical inefficiency (ui). yi denotes milk output (i = 1, ....I); xi is a (1×n)

vector of inputs; α and β are unknown parameters to be estimated; νi is a two-sided

error term with E[νi] = 0, E[νiνj] = 0 for all i , i 6= j; var[νi] = σ2
ν ; ui is a one-sided

non-negative error term with E[ui] = µi, E[uiuj] = 0 for all i, i 6= j; var[ui] = σ2
υi

. ui

and νi are distributed independently of each other, and the regressors.

One unique contribution to the agglomeration economies literature is that we explic-

itly model the impact of density on the mean and variance of the inefficiency distribution.

If firms located in close proximity to each other are more likely to share knowledge re-

garding best production practices, then density will be associated with an increase in

mean technical efficiency. Moreover, if the sharing of ideas and knowledge leads to a

more homogenous production practice, the variance of the efficiency measure is expected

to decline. Simply put, the testable hypotheses of the study are that in a more dense

areas, the distribution of production efficiency exhibits higher mean and lower variance.

To test for the effect of density on the mean and the variance of production ineffi-

ciency effect, we use the heteroscedastic stochastic frontier model (e.g., Caudill, Ford and

Gropper 1995). Recent efforts in modeling heteroscedasticity in inefficiency effects (σui)

consider a more flexible specification in two ways: 1) Claudill and Ford (1993), Caudill,

Ford and Gropper (1995), Hadri (1999) assume µi to be constant, but allow the variance

4. Where ui = − ln(TEi)
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of the inefficiency effect, σ2
u, to be firm-specific; and 2) Bera and Sharma (1999) and

Wang (2002) extend the original conditional variance model to allow for non-monotonic

relationship between both µi = δ0 +ziδ and σ2
ui

and firm-specific factors, z, and specified

σui = exp{γ0 + ziγ}, where δ and γ are vectors of parameters to be estimated5. To

estimate equation (3) we regress the negative of the log of feed on the log of milk output,

the log of capital input, the log of labor input, the log of other input, year fixed effect,

region fixed effect, soil type dummies, breed type dummy, milking technology dummy,

feeding technology dummy for the distance function. The mean and variance of the inef-

ficiency effect are expressed as a function of producer density, distance from the nearest

urban area, producer’s education, producer’s age, and herd size. All the parameters of

the stochastic distance function are estimated using maximum likelihood approach.

Once the parameters of the model are estimated, the marginal effects of the z -variables

on the expected value of the production inefficiency effects, E(ui|zi), and the the variance

of the inefficiency effect, V ar(ui|zi), are obtained as follows : ∂E(ui)
∂z(ik)

and ∂V ar(ui)
∂z(ik)

(see Wang

2002; Wang 2003; and Bera and Sharma 1999 for details), where k indexes the exogenous

z -variables. The marginal effects on E(ui|zi) and V ar(ui|zi) measure how an increase

or decrease in the exogenous z-variables changes the expected inefficiency (or the log

of output) and the production uncertainty, respectively (Bera and Sharma 1999). To

obtain the semi-elasticity of the dummy variables, we take the anti-log of the dummy

coefficient, subtract 1 from it, and multiply the difference by 100%. Wang (2002, 2003)

shows that that two effects of an increase in the exogenous z-variables on mean efficiency

are at work: the direct effect that occurs through the increase in mean efficiency and the

indirect effect through the the variance. If the variance of inefficiency is homoscedastic,

then γk = 0 for all k, and the marginal effect collapses to the direct effect and has the

same sign as δk for the kth inefficiency effect variable.

5. Jondrow et al. (1982) proposed the conditional mean, E[ui|εi], as an indicator for technical in-
efficiency, and Bera and Sharma (1999) proposed the conditional variance, V ar[ui|εi], as a measure of
production uncertainty.
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The technical efficiency (TE) scores are estimated using the conditional expectation

predictor proposed by (Battese and Coelli 1988):

ˆTEi = E[(exp(−ûi)|ε̂i)]. (4)

3 Data description and variable definitions

We use four main data sources Data on inputs, output and farm characteristics are ob-

tained from the Ontario Dairy Farm Accounting Project (ODFAP) over the period 2007

and 2008. Data on geographical location of individual farms is obtained from Dairy Farm-

ers of Ontario. Soil class generated using the ESRI software “ArcGIS”. Farm distance,

from the farm to the nearest urban center, is generated using Geographic Information

System (GIS).

The ODFAP sample farms used in this analysis consists of a sample of 104 fluid milk

producers in 2007 (84) and 2008 (73) (a total of 157 observations), where 53 of the pro-

ducers are observed in both years. The data consist of key variables such as capital,

labor, feed (concentrate and forage), output, cost, and location. Data for interest rates,

inflation rates, corporate income tax rates, tax credit rates, wage rates and producer

price indices of some of the inputs are obtained from Statistics Canada (CANSIM). Ad-

ditional geographic variables - e.g., distance to urbanizing areas - are developed based on

geographic information system to account for variation in other location characteristics.

3.1 Production function variables

The input distance function in equation (3) is specified with one output - fluid milk out-

put (hectoliters of 3.6 percent fat content milk)- and four inputs (x-variables): 1) labor :

labor hours used on the farm, measured as total number of hours worked, including fam-

ily and hired labor; 2) feed : the feed input is an aggregate input expenses (deflated by an
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appropriate price index provided by Statistics Canada) on feed groups such as commer-

cial dairy ration, by-products, brewer grains, protein supplement, salt and minerals, milk

replacer, calf ration, hay, silage and other forages; 3) other : intermediate inputs include

fuel, lubricants, electricity, veterinary services, gasoline and other inputs expenses by the

dairy farms, deflated by the CPI to 2002 Canadian dollar prices; and 4) capital : the

capital input group aggregates services for land and buildings, machinery, and livestock

herd capital, deflated by the CPI. In order to isolate differences in production efficiency

from heterogeneity in farm technologies and farm environmental characteristics, the dis-

tance function includes: 1) dairy regions; 2) milking system; 3) feeding system; 3) animal

breed; 4) housing system; 5) yearly dummies; 6) and soil quality.

3.2 Inefficiency effect variables

The inefficiency effect variables, the z-variables, consist of the following: 1) dairy farm

density, measured as the number of neighboring farms within a certain spherical distance

(e.g., 10 kilometers); 2) distance to the nearest urban center, measured in kilometers; 3)

farmer’s ages, measured in years; 4) farmers’ education level, a dummy variable if the

farmer has agricultural diploma and higher; and 5) farm size, measured by the number of

beginning inventory of cows; 6) natural endowment, measured by soil class for individual

farms. The farm density measure, our mesure of agglomeration, requires a more detailed

discussion.

One common challenge in examining agglomeration effects is the choice of ideal mea-

sure. Some of the measures that are used in the literature include the Hirschman-

Herfindahl index of concentration (e.g., Wheaton and Shishido 1981), and the share of

population (e.g., Ades and Glaeser 1995). These measures of concentration depend heav-

ily on how a region, a municipal, or a county is defined. Satterthwaite (2007) presents

examples of how a metropolitan area can be assigned markedly different population sizes

depending on how the political boundary of an area is defined. For the purpose of this
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study our agglomeration variable is based on the economic significance of a location.

Our measure of agglomeration or density variable uses the spacial coordinates for the

entire dairy farms in the province of Ontario. This measure basically counts the number

of farms within a certain spherical distance between farms along great circle of the sphere.

The spatial coordinates of each dairy farm in the province is collected by Dairy Farmers of

Ontario (DFO), which contains longitude and latitude information about all dairy farms

in Ontario. We first use the haversine formula 6 to compute bilateral distances between

all pairs of dairy farms in the province, and then compute the number of neighboring

locations within a great circle of 10 kilometers spherical distance.

Our measure of distance “is unbiased with respect to spatial scale and aggregation”

(Duranton and Overman 2002; p.5) as it is not based on political boundary (such as

county, municipal), but it is based on economic relevance (see for detailed discussion

Duranton and Overma, 2002). As in Duranton and Overman (2002), working in a con-

tinuous space, our measure directly uses spherical distances between observations to

compute density rather than aggregating farms within a political boundary. The use of

a political boundary suggests that all farms within a given boundary benefit from other

farms in the same boundary - whether the farm is nearby or far away; and do not benefit

from nearby firms in the neighboring regions. Unlike Duranton and Overman (2002),

who uses Euclidean distance we use a non-Euclidean geometry (i.e., the haversine) to

compute bilateral spherical distance between farms to reduce systemic risk due to the

curvature of the earth (Duranton and Overman 2002).

One caveat of our density measure is that the choice of what spherical distance to

use is a matter of discretion. We do not know a priori what exact spherical distance to

be used. We must seek this information from the data as the theory does not offer the

6. Haversine( d
R ) = haversine(ϕ2 − ϕ1) + Cos(ϕ1)Cos(ϕ2) · haversine(4λ where haversine(θ) =

Sin2(θ/2) = (1−Cos(θ))/2, d is the distance between the two points along a great circle of the sphere,
R is the radius of the sphere, ϕ1 is thee latitude of point 1, ϕ2 is the longitude of point 2, 4λ is the
longitude separation, d = R · haversine−1(h) = 2R · arcsine(sqrt(h), h = haversine(d/R). This is
implemented using the distmatch command in STATA 12. Haversine assumes the earth to be a sphere.
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direction as to what spherical distance to use; theory only tells us the mechanism through

which producer density affects productive efficiency. For this reason, a robustness check

is done with a 5 kilometer spherical distance. Patterns in Figure 1 seems to suggest that

farms tend to be drawn to locations where activity in their industry is most concentrated.

Distance to the nearest urban center : We use the distance to the nearest urban loca-

tion as a measure of access to markets. Historically, because milk is a perishable product,

dairy farms locate close to end consumers giving rise to von Thünen-style production

rings encircling urban areas where the milk was consumed and priced by distance from

the market. In this case, distance may impede the realization of agglomeration benefits.

But with improvements in transportation and storage technologies and the increasing

urban development into locations traditionally inhibited by dairy farms, milk producers

gradually locate their barns in remote areas with lower production costs. Distance by

road from the geographical center of the municipality where the farm is located to the

boundary of the nearest urban area, as defined by Statistics Canada (2006). Of the 586

municipalities in Ontario, the geographic centroid for 552 municipalities is within 50 km

of the nearest road segment that was part of the connected road network (DMTI Spatial,

2005). If the centroid of a municipality is not located on a road segment, the closest road

segment to the centre is used. For each municipality there are two important attributes

to consider: Snapped distance and Rastervalue. Snapped distance is the distance the

centroid is moved (‘snapped’) to meet the closest road segment. Rastervalue is the dis-

tance from the snapped location to the closest urban area. Rastervalue is used as the

measure of distance. It is expected that, the distance to the nearest urban area has a

positive relationship with the production efficiency of sample dairy farms.

Soil quality : One of the econometric issues in estimating the influence of density on

technical efficiency is the possible presence of unobserved factors that raise efficiency

and attract more dairy farms to a given location. Agglomeration and its benefits may

arise when farms locate in areas with natural cost advantages (Ellison and Glaeser 1999).
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For example, locations within a county or a region may differ in terms of land quality.

It is possible that more efficient dairy farms are located in areas with a better natural

endowments for reasons independent of agglomeration externalities. To resolve this issue

and control for the effects of natural endowment on the stochastic distance frontier, we

use soil class classification based on the latitude and longitudes of each farm.

The Canada Land Inventory for agriculture capability provides seven classes of soils.

Soils descend in quality from Class 1, which is highest, to Class 7 soils which have

no agricultural capability for the common field crops. Class 1 soils have no significant

limitations in use for crops. Class 2 soils have moderate limitations that reduce the

choice of crops, or require moderate conservation practices. Class 3 soils have moderately

severe limitations that reduce the choice of crops or require special conservation practices.

Class 4 soils have severe limitations that restrict the choice of crops, or require special

conservation practices and very careful management, or both. Class 5 soils have very

severe limitations that restrict their capability to producing perennial forage crops, and

improvement practices are feasible. Class 6 soils are unsuited for cultivation, but are

capable of use for unimproved permanent pasture. Class 7 soils have no capability for

arable culture or permanent pasture. The soil data for each farm was generated using the

ESRI software “ArcGIS”. The process of generating this variable required a number of

steps. First, a soil map for all of Southeastern Ontario was acquired. This map identifies

polygons that represented different soil characteristics. A map layer containing longitude

and latitude data for each farm location was created. Soil data for each farm location

was then created by combining the two layers of data which connects the characteristics

of each relevant polygon with specific firms.

Table 1 shows summary statistics of key variables. It is apparent that there are

nontrivial differences in farm output and density. All the estimations in this study are

conducted using STATA 12. Note that since the stochastic distance frontier is extremely

non-linear and are numerically difficult to converge, some of the variables are scaled
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before estimation. TABLE 1 HERE
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4 Results

Table 2 provides the maximum likelihood parameter estimates of the Cobb-Douglas

stochastic input distance frontier, and the mean and variance of inefficiency effects7.

As discussed earlier, for identification purposes, homogeneity of degree one in inputs is

imposed on the the input distance function before estimation.

TABLE 2 HERE

We estimate two alternative models: one with both mean and variance effects (Model

1), which incorporates the z-variables into both mean and variance of production inef-

ficiency distribution; and one with mean production inefficiency effect only (Model 2).

Model 2 excludes the z-variables from the efficiency variance effect. In Table 2, column

[2] shows parameter estimates and t-values of the parameters for Model 1, whereas col-

umn [3] provides the parameter estimates and t-values for Model 2. A likelihood ratio

is used to test the hypothesis that the model with mean efficiency effect is not different

from the model with mean and variance of inefficiency effects. The test statistic for the

likelihood ratio (LR) test is 25.45. The 5 percent chi-square critical value with 5 degrees

of freedom is 11.07, thus we reject the null hypothesis, and hence, the unrestricted model

with mean and variance inefficiency effect is preferred. Hence, we discuss our results in

reference to the unrestricted model, Model 1.

The findings in Table 2 identify the effect of milk output and the inputs on distance

function. A negative sign for output is associated with lower distance whereas a positive

sign for inputs is associated with greater distance. In terms of individual coefficients,

the coefficient for milk output is negative and statistically significant at the 5 percent

significance level, meaning that as the level of output increases the input “distance”

7. One concern with the Cobb-Douglas functional form is that it may impose unwarranted restrictions
upon the production technology. To address this concern a translog input distance function is estimated.
Based on Likelihood ratio (LR) test we fail to accept the translog model (Log-likelihood function = 82.18)
in favour of the Cobb-Douglas model (Log-likelihood function=77.67) (LR=9.02; chi-square(5 percent),
for 10 degrees of freedom is 18.31). The Cobb-Douglas form is appropriate for the sample data used in
the paper, but it is unlikely to be the case for all data sets, and we conclude that the extra complexity
of the translog is not warranted in this study
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decreases. The coefficient of milk output is less than one in absolute value, indicating that

the industry exhibits increasing returns to scale. The standard returns to scale elasticity,

which is regularly reported in production function studies, is equal to the inverse of the

negative of the coefficient of output for input distance function (i.e., RTS = −1/α =

1/0.69=1.4) (Coelli, Singh and Fleming 2003). Based on LR test the constant returns to

scale hypothesis is rejected at the one percent significance level. This finding is consistent

with Moschini’s (1988) finding of increasing returns to scale for Ontario dairy farms with

larger levels of milk production but decreasing returns to scale for very largest ones.

For the U.S. dairy farms, Tauer and Mishra (2006) also find increasing returns to scale.

The increasing returns to scale finding may explain why the average herd size has been

increasing over time in Ontario, for example, from approximately 54 cows per farm in 2000

to 74 cows per farm in 2010. The coefficients for inputs are positive and have statistically

significant influence on the “stochastic distance frontier”. In examining agglomeration

effects we believe it is important to control for differences in natural endowments. Natural

endowment advantages may explain variation in technology (i.e., distance function). We

include two measures of natural endowments in our estimation of the distance function -

i.e., soil quality and regional variables. Soil quality and regional differences may explain

underlying differences in the chosen technology.

We included three dummy variables for prime agricultural areas- i.e., Class 1, Class

2 and Class 3 soils (Class 4-7 are reference group). The coefficients for soil classes

are statistically insignificant. While this result would seem counterintuitive for some

farm types - i.e., row crops - land quality may be less significant for dairy production8.

Moreover, a closer examination of Table 1 shows that ninety percent of the sample dairy

farmers operate on prime agricultural lands. The regional coefficient for the categorical

variable that identifies firms in southern-eastern Ontario region is statistically significant

suggesting that producers in this region are on a higher frontier relative to producers in

8. Herath, Weersink and Carpetier (2004) indicate that advances in facilities technology, irrigation,
and management practices have minimized constraints and dependence on locally grown feedstuffs.
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southern-western Ontario (the reference group). None of the technology variables did not

have effect on the distance function; i.e., the coefficients on milking system, cow breed,

and feeding system are statistically insignificant.

Table 2 also describes the effect of producer density and other variables on the mean

and variance of the distribution of the production inefficiency effect. For both models 1

and 2, producer density has a negative effect on the mean inefficiency effect, indicating

that a farm in a more dense area has a higher mean production efficiency. For the

model with mean and variance effects, farm density has a negative and statistically

significant effect on the variance of production inefficiency, suggesting that the variance

of production inefficiency are likely lower in locations with a higher producer density.

In the results presented in the inefficiency effects portion of Table 2, most of the other

z-variables are statistically significant.

Table 3 reports the marginal effects of the z-variables on the mean and variance

of inefficiency effects. The marginal effects display a monotonic non-linear relationship

between producer density and the mean inefficiency effects. The absolute magnitude

of the negative effect at a lower quartile is higher than for those at a higher density-

quartile. The average marginal effect in the first density-quartile is -0.00636. Since

∂E(− ln(dIij))/∂density = −∂E(u)/∂density, for a unit increase in producer density, the

marginal effect translates into a decrease in the inputs vector by 0.636 percent to produce

the current level of output, holding the current mix of inputs constant. The effect for

the fourth density-quartile is -0.0024, suggesting a decrease in the input vector by 0.24

percent. To illustrate the economic significance of the marginal effects, take for example,

the average labor hours for the first density-quartile is approximately 7,164 hours per year

in 2008 and the 0.636 percent reduction translates to about 45.56 labor-hour savings per

year per farm (a saving in a range of C$455- C$774), all other things being constant.

But if we do not allow density to influence the variance, the marginal effect for the first

density-quartile is -0.00119, meaning a decrease in the inputs vector by 0.119% which

17



translates to about 8.5 labor-hour savings per year per farm (a saving in a range of C$85-

C$145).

TABLE 3 HERE

Panel B of Table 3 presents the marginal effects of the z-variables on the variance

(i.e., production uncertainty) of the inefficiency effect, ∂V (u)/∂z. Producer density has

a statistically significant negative effect for the first three quartiles, meaning that density

reduces production uncertainty. But the magnitude of the marginal effect is larger for

farmer in the first density-quartile, suggesting a non-linear effect of density on production

uncertainty and that farmers in less dense areas may benefit more from an increase

in density. Notice that the sign of the marginal effect of the mean and variance of

the inefficiency effect are the same. This may suggest that as farms attempt to move

towards their frontier they not only reduces the level of inefficiency, but they also reduce

their production uncertainty. Batra and Ullah (1974) noted that a marginal decrease

in uncertainty stimulates an increase in the firm’s output, provided the absolute risk

aversion is decreasing.

The estimated potential agglomeration externalities effects on the distribution of pro-

ductivity may vary with the spatial scale. We conduct a sensitivity analysis with regards

to the spherical distance chosen. As we mentioned earlier in the data section, the choice of

what spherical distance to use is a matter of discretion. Recent works on agglomeration in

cities provide evidence that agglomeration economies take place over a remarkable short

distances suggesting that face-to-face contact and interaction with nearby colleagues is

an important element in the overall advantages of cities (Rosenthal and Strange 2003; Fu

2007; Arzaghi and Henderson 2008). Some studies find strong agglomeration benefits of

knowledge spillovers (e.g., Baldwin et al. 2008; Graham 2009; Aharonson et al. 2007);

Hoogstra and van Dijk 2004) within within 5-10 km. To explore these issues, we cre-

ated a measure of agglomeration at 5 kilometers spherical distance, and re-estimated the

stochastic distance function. Again, we estimated two separate models: the inefficiency
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effect model (Model 1), and the inefficiency and variance effects model (Model 2). Table

4 shows the results of 5-km spherical distance model; and Table 5 shows the marginal

effects of the 5-kilometer model. Comparison of Tables 2 and 3 suggests that density at

10 kilometers has a much greater influence on the mean inefficiency effects than density

at 5 kilometers; the marginal effect of mean inefficiency effect with respect to density

is -0.003111 for 10 kilometers and -0.001911 for 5 kilometers (Table 5). It is important

to note that the average marginal effects with respect 5 kilometers density is lower than

the 10 kilometers density. This is mainly because the coefficient for the variance effect

is lower (in absolute value) and statistically insignificant for 5 kilometers than the 10

kilometers model.

TABLE 4 HERE

TABLE 5 HERE
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5 Concluding remarks

We find that Ontario dairy farms situated in areas characterized by high dairy farm

density are more efficient than a similar dairy farm located in areas of low dairy farm

density. Moreover, we find some evidence that Ontario dairy farms located in high density

areas are more similar, with respect to efficiency measures, than dairy farms located in

areas that are less concentrated with respect to dairy production. Over simplifying the

matter a bit, being near more farmers appears to make a farmer more productive and

more like his or her neighbors. This finding supports the agglomeration hypothesis; the

exchange of productivity-enhancing information appears to be enhanced by proximity

and density to similar firms that become more similar as a result of this information

exchange.

Our findings may support an enhanced understanding of a number of potentially

related phenomena in the agricultural sector. For example, the supply of agricultural

land is relatively inelastic, hence increases in demand for land in areas of high firm

concentration (because of the agglomeration effect) may result in relatively higher land

values. Future hedonic studies may want to control for farm density in assessing farmland

values. Given our findings we expect this effect in the dairy sector but it remains an

important area of future research to assess the agglomeration effect for other farm types:

e.g., dairy, cattle, grains.

More generally, our findings may be useful in understanding Henneberry and Barrows

(1990) observation that exclusive agricultural zoning was observed in some regions of

Wisconsin that were politically dominated by farmers. Farmers may implicitly recognize

agglomeration effects - i.e., the efficiency benefits of being around other farmers - and

actively seek to ensure the permanence of farming in their areas. If agglomeration effects

differ amongst farm types then future studies might expect farmer led zoning efforts to

be more pronounced in these areas.

From an outreach perspective, our results confirm a longstanding justification for
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agricultural extension efforts throughout the United States, information matters. But

the agglomeration effect suggests that the information content is enhanced (from a pro-

ductivity standpoint) when passed by greater numbers of similar situated farmers in close

proximity. Understanding the reasons for this enhancing and seeking ways to emulate

the agglomeration effect (perhaps through new innovative forms of social media) is an

area for future research and extension collaboration.
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Figure 1: Distribution of Southern and Eastern Ontario Dairy Producers
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Figure 2: Technical Efficiency density estimates, farms in areas below and above median
farm density
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Table 1: Summary Statistics: Means and Standard Deviations

2007 2008

Variables Unit Mean Std. Dev. Mean Std. Dev.

Milk Hectoliter 7116 5703 6773 (5299
Feed C$ 106925 83552 113014 83256
Labor Hours 6776 2755 6781 2527
Capital C$ 74300 64367 74678 53808
Other C$ 45012 35361 42175 27803
Milking system-parlour 0/1 0.357 0.482 0.342 0.478
Feeding system-fully automated 0/1 0.262 0.442 0.247 0.434
Breed-Holstein 0/1 0.952 0.214 0.918 0.277
Class 1 Soil 0/1 0.381 0.489 0.356 0.482
Class 2 Soil 0/1 0.345 0.478 0.315 0.468
Class 3 Soil 0/1 0.155 0.364 0.164 0.373
Class 4 Soil 0/1 0.048 0.214 0.055 0.229
Class 5 Soil 0/1 0.012 0.109 0.055 0.229
Class 6 Soil 0/1 0.024 0.153 0.027 0.164
Class 7 Soil 0/1 0.036 0.187 0.027 0.164
South-western 0/1 0.381 0.489 0.370 0.486
South-central 0/1 0.298 0.460 0.370 0.486
South-eastern 0/1 0.321 0.470 0.260 0.442
Density 10-km Number 48.143 42.818 45.164 44.060
Density 5-km Number 13.726 12.773 13.014 12.807
Distance from Urban kilometers 6.726 6.929 6.753 7.120
Education 0/1 0.595 0.494 0.603 0.493
Farmer’s Age Years 46.976 8.916 47.425 9.246
Herd Size Cows 75.202 53.392 74.356 49.907
Number of producers 84 73
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Table 2: Maximum Likelihood Parameter Estimates for the Distance Frontier and the
Determinants of Inefficiency for 10K Density Models

(Model 1) (Model 2)
Inefficiency & Uncertainty Inefficiency only
Stochastic Distance Function

Log of Milk -0.696*** (-14.42) -0.691*** (-12.93)
Log of Others 0.301*** (6.17) 0.328*** (6.60)
Log of Capital 0.0364 (1.63) 0.0281 (1.25)
Log of Labour 0.187*** (4.75) 0.204*** (5.27)
Year:2008 -0.0610** (-2.57) -0.0537** (-2.10)
South-central Ontario -0.0275 (-0.88) -0.0539* (-1.72)
South-Eastern Ontario -0.102*** (-2.95) -0.114*** (-2.93)
Parlour Milking System 0.0189 (0.49) 0.0207 (0.51)
Automated Feeding -0.00166 (-0.04) 0.00656 (0.16)
Holstein Breed 0.0820 (1.49) 0.0461 (0.89)
Class 1 Soil 0.0102 (0.25) 0.0258 (0.63)
Class 2 Soil -0.00145 (-0.03) 0.00669 (0.13)
Class 3 Soil 0.0441 (0.89) 0.0587 (1.23)
Constant -4.413*** (-11.06) -4.362*** (-10.30)

Mean inefficiency Effects, E(ui|zi))
Density:10KM -0.000639* (-1.90) -0.00119*** (-3.67)
Distance from Urban -0.00482*** (-2.70) -0.00620*** (-3.13)
Education -0.0130 (-0.45) -0.0338 (-0.97)
Farmers’ Age 0.00756*** (4.80) 0.00437*** (2.78)
Herd Size 0.00112** (2.03) 0.000950* (1.81)
Constant -0.170 (-1.32) 0.0582 (0.60)

Variance inefficiency Effects, V ar(ui|zi))
Density:10KM -0.182** (-2.16)
Distance from Urban -0.520* (-1.75)
Education -6.412** (-2.23)
Farmers’ Age -0.526*** (-2.77)
Herd Size 0.00909 (0.87)
Constant 25.79** (2.32) -10.16*** (-5.77)
ln(σv) -3.964*** (-32.92) -3.667*** (-30.06)
N 157 157
Log-likelihood function 77.676 64.953
Mean technical efficiency(%) 81 [78, 84] 81 [80, 82]

t statistics in parentheses; Asterisks denote statistical significance:* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3: The average marginal effects of the z-variables on production inefficiency E(ui)
and production uncertainty V ar(ui) for the 10km model

Panel A: Production Inefficiency Effects by Quartiles, ∂E(ui)
∂z(ik)

Mean 1st 2nd 3rd 4th
Density ×102 -0.3111*** -0.6355*** -0.3055*** -0.0639*** -0.2356

(-4.62) (-3.29) (-3.06) (-25000) (-2.46)
Urban ×102 -1.1661*** -1.8143*** -1.0202*** -0.5822*** -0.8942***

(-6.18) (-3.69) (-4.12) (-7.76) (-4.44)

Panel B: Production Uncertainty Effects by Quartiles, ∂V ar(ui)
∂z(ik)

Mean 1st 2nd 3rd 4th
Density ×102 -0.1115** -0.2982** -0.0907** -0.0008** -0.0529**

(-2.48) (-1.98) (-2.44) (-1.75) (-1.56)
Urban ×102 -0.3210** -0.7391** -0.1823** -0.0599* -0.1374

(-2.49) (-1.97) (-2.11) (-2.13) (-2.09)

t statistics in parentheses based on Bootstrap standard errors with 1000 replications.

Asterisks denote statistical significance:* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: Maximum Likelihood Parameter Estimates for the Distance Frontier and the
Determinants of Inefficiency for 5K Density Models

(Model 1) (Model 2)
Inefficiency & Uncertainty Inefficiency only
Stochastic Distance Function

Log of Milk -0.701*** (-13.91) -0.697*** (-12.07)
Log of Others 0.311*** (6.44) 0.331*** (6.56)
Log of Capital 0.0400* (1.85) 0.0294 (1.29)
Log of Labour 0.199*** (4.96) 0.201*** (5.06)
Year:2008 -0.0580** (-2.38) -0.0573** (-2.25)
South-central Ontario -0.0468 (-1.36) -0.0597* (-1.79)
South-Eastern Ontario -0.116*** (-3.14) -0.128*** (-2.92)
Parlour Milking System 0.00994 (0.26) 0.0153 (0.38)
Automated Feeding -0.00111 (-0.03) 0.00655 (0.15)
Holstein Breed 0.0764 (1.37) 0.0490 (0.88)
Class 1 Soil 0.00703 (0.17) 0.00597 (0.14)
Class 2 Soil 0.00347 (0.08) -0.0122 (-0.24)
Class 3 Soil 0.0360 (0.74) 0.0360 (0.74)
Constant -4.313*** (-10.52) -4.303*** (-9.13)

Mean inefficiency Effects, E(ui|zi))
Density:5KM -0.00221** (-2.24) -0.00373* (-1.82)
Distance from Urban -0.00427** (-2.49) -0.00659 (-1.56)
Education -0.00632 (-0.22) -0.0318 (-0.63)
Farmers’ Age 0.00664*** (4.03) 0.00452*** (2.62)
Herd Size 0.000953* (1.81) 0.000932* (1.68)
Constant -0.117 (-1.07) 0.0325 (0.20)

Variance inefficiency Effects, V ar(ui|zi))
Density:5KM 0.0112 (0.15)
Distance from Urban -2.001* (-1.67)
Education -3.641* (-1.70)
Farmers’ Age -0.466* (-1.69)
Herd Size -0.00364 (-0.27)
Constant 18.76 (1.55) -5.778** (-2.00)
ln(σv) -3.889*** (-37.45) -3.761*** (-11.01)
N 157 157
Log-likelihood function 73.329 63.013
Mean technical efficiency(%) 81 [78, 83] 82 [73, 90]

t statistics in parentheses; Asterisks denote statistical significance:* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5: The average marginal effects of the z-variables on production inefficiency E(ui)
and production uncertainty V ar(ui) for the 5km model

Panel A: Production Inefficiency Effects by Quartiles, ∂E(ui)
∂z(ik)

, Model 1

Mean 1st 2nd 3rd 4th
Density ×102 -0.1911*** -0.2048*** -0.1919*** -0.1651*** -0.2045***

(-16.96) (-17.34) (-14.97) (-4.45) (-34.88)
Urban ×102 -3.7884** -10.8181* -1.2141*** -0.4271 -0.4271

(-2.17) (-1.89) (-2.64)

Panel B: Production Uncertainty Effects by Quartiles, ∂V ar(ui)
∂z(ik)

, Model 1

Mean 1st 2nd 3rd 4th
Density ×102 0.0300 0.0062 0.0025* 0.1062 0.0002

(1.10) (1.09) (1.82) (1.08) (1.16)
Urban ×102 -5.8363 -19.3193 -0.1659 -2.12E-06*** -1.51E-06*

(-1.15) (-1.13) (-1.71) (-3.17) (-1.81)

t statistics in parentheses based on Bootstrap standard errors with 1000 replications.

Asterisks denote statistical significance:* p < 0.10, ** p < 0.05, *** p < 0.01.
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