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Sustainable intensification and climate-smart agriculture initiatives promote complex systems-based 

innovations to simultaneously improve yields and conserve natural resources. These innovations are 

usually tested under near-perfect experimental conditions with purposively selected farmers. Using a 

quasi-experimental approach and geographic information system, we evaluate a systems-based 

sustainable intensification project in Malawi aiming at improving whole-farm productivity and 

nutrition through integrated agricultural innovations. We find adopters of these innovations to 

systematically differ from non-adopters and suggestive evidence of potential systematic targeting of 

project locations and households. Econometric results using efficient influence function and 

propensity score matching methods show consistently higher maize yield and value of harvest, on 

average and across quantiles, for project beneficiaries, compared to that of randomly selected non-

beneficiary households in non-target villages. Our findings highlight the need to rethink selection 

criteria for systems-based innovations, something that could potentially bear severe implications upon 

scaling up. 
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1. Introduction  

The livelihoods of rural households in many countries in sub-Saharan Africa (SSA) are based 

mainly on small-scale crop and livestock production systems. These systems are diverse, 

ranging from single-season, single cereal crop production to highly integrated tropical systems 

involving multiple cereal crops, roots and tubers, horticulture crops, and livestock. Common 

characteristics across these systems include low productivity, limited access to modern inputs 

and technologies, and vulnerability to weather shocks (Khan et al., 2014; Asfaw et al., 2012; 

Kamanula et al., 2011; Jayne et al., 2010; Shiferaw et al., 2008). Increases in short-term climate 

variability and long-term climate change are expected to exacerbate the challenges facing these 

systems and the people who manage and rely on them.  

The adoption of locally appropriate technologies is often viewed as a primary means of 

improving agricultural productivity and strengthening the resilience of rural households in SSA 

(NEPAD, 2013; Asfaw et al., 2012; Minde et al., 2008). Innovations can increase the returns 

to farming, allow vulnerable households to accumulate income and assets, and enhance their 

ability to cope with weather and price shocks. Public spending on agricultural science is thus a 

high-return investment (Renkow and Byerlee, 2010; Raitzer and Kelly, 2008; Alston et al., 

2000) with strong productivity and poverty impacts, especially when compared to alternative 

uses of scarce public resources (Fan and Pardey, 1997; Fan, 2000; Fan et al., 2000). 

Agricultural technologies may also complement other solutions designed to protect vulnerable 

rural households from shocks. Interventions such as microcredit services, conditional cash 

transfers, and weather index insurance can contribute to productivity growth or poverty 

reduction when coupled with the introduction of new technologies (Gilligan et al., 2009; 

Devereux, 2008; Devereux et al., 2008). 

During the second half of the twentieth century, investments have been largely allocated to 

improving the uptake of improved cultivars and synthetic fertilizers, both of which are inputs 

which embody modern technology and are used in production in a fairly straightforward 

manner. More recently, with increased recognition of the threats posed by climate change to 

agriculture in SSA, emphasis has shifted to the uptake of complex, systems-based agricultural 

technologies and management practices.1 This technology class is commonly characterized by 

                                                 

1
 The terms “systems-based technologies” and “systems approaches” are used here as shorthand for a broad class of complex 

and integrated technologies and practices. Scholars and practitioners familiar with many of the systems-based technologies 
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its simultaneous contributions to increasing on-farm productivity without comprising either 

future production capacity, the natural resource base, or the wider environment. While there 

are several ways to describe this approach, “sustainable intensification” (SI) is its most 

common labels (Garnett et al., 2013). SI may be viewed as an umbrella that covers the “climate-

smart agriculture” (CSA) and/or “new agronomy” suite of solutions designed to increase 

productivity, conserve natural resources, and build resilience to frequent, complex, or 

unpredictable climatic shocks (The Montpellier Panel, 2013; Sumberg et al., 2012; Sumberg 

and Thompson, 2012; Beddington et al., 2012; Pretty et al., 2011). SI draws extensively on 

systems-based research, or the inter-disciplinary study of how plants, livestock, soil, water, and 

climate interact at plot, farm, and landscape levels, and how these interactions influence (and 

are influenced by) social and economic factors such as commodity prices, normative behaviors, 

institutions, and government interventions. SI technologies that result from this research are 

generally knowledge-intensive farm management approaches that balance modern inputs and 

improved cultivars with practices designed to conserve soil fertility, water, and biodiversity at 

both the farm and landscape levels. 

In this paper, we examine the testing of several systems-based technologies in a research-for-

development program, the Africa Research in Sustainable Intensification for the Next 

Generation - Africa RISING (hereafter AR). The main aim of AR is to understand whether 

systems-based technologies that are tailored to smallholder farmers’ local conditions and 

introduced in a sequential and participatory manner are more likely to be adopted by targeted 

beneficiaries and be scalable to similar populations and environmental settings. In Malawi, AR 

is testing these hypotheses with smallholders using a participatory action research approach 

described in detail later.  

Our aim is to illustrate how the approaches being taken by the project, while possibly useful in 

strengthening the innovative capabilities of participating farmers and ensuring wide project 

coverage, cannot be used to say much about the efficacy or cost-effectiveness of SI, systems-

based technologies, or participatory approaches to encouraging adoption. Using a quasi-

experimental design, we examine the socio-economic characteristics of households targeted by 

the project to evidence strong sample selection biases. We then use efficient-influence function 

and propensity score matching methods to provide preliminary evidence of the predicted 

effects of the project on maize yields and the value of harvest, noting how these predicted 

                                                 
discussed in this paper will recognize the shortcomings of this terminology, thus we encourage its interpretation in the broadest 

terms only. 
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effects will likely fall short of the project’s SI goals. Finally, we explore the implications of 

these findings for the project’s scalability and demonstrate how household characterization is 

essential to improving targeting criteria and technology selection and to replicating the project 

across a broader population of farmers in Malawi and other countries and SI projects.  

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature 

to illustrate the complexity of systems-based technologies, the difficulties in evaluating their 

impact, and the resulting risks of investing in SI programs based on potentially biased evidence. 

Section 3 outlines the research context, evaluation design, and data used in the analysis. Section 

4 discusses our identification strategies and Section 5 presents regression results. Section 6 

concludes the paper.   

2. Literature review  

2.1 System-based technologies  

Evidence on the productivity and poverty effects of technological change in developing-

country agriculture has been built largely around a single class of innovations that we describe 

here as discrete, embodied technologies. These are products for which the underlying 

technological advantage resides in a tangible agricultural input and is directly realized by use 

of the input, typically within a single season. The most common examples are high-yielding 

cultivars and synthetic fertilizers. These technologies are often promoted as land scale-neutral 

packages that governments and markets can deliver with relative ease and farmers can readily 

integrate into their existing crop management practices. Furthermore, the impacts of these 

technologies on yields, returns, household food security, or national food staple production are 

relatively easy to measure, as demonstrated by many (Tilman et al., 2011; Pretty et al., 2011;  

Fan et al., 2011; Evenson and Gollin, 2003; Fan, 2000; Fan et al., 2000; Fan and Pardey, 1997). 

Systems-based technologies, on the other hand, are complex sets of tangible and intangible 

elements that are combined with scientific guidance to bring about desired outcomes. Some 

elements may be discrete, and easy to identify, for example, a specific crop variety or synthetic 

fertilizer, a technique for removing weeds or pruning trees, a recommendation for the spacing 

of plants, or a timetable for the rotation of crops. But what characterizes the systems-based 

approach is the way these elements interact in a system to create synergistic effects, 

productivity and sustainability outcomes that are greater than the sum of their discrete parts. 

Consequently, descriptions of these technologies often consist of a series of steps to be taken 
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or practices to follow. Any one of these practices might be advisable on its own, but to view 

the system as a complete technological innovation entails adopting all or most of its various 

components. Examples include integrated pest management, zero tillage wheat cultivation, and 

systems of rice intensification (Bennett and Franzel, 2013; Thierfelder et al., 2012; Giller et 

al., 2011&2009; Uphoff et al., 2010&2008; Senthilkumar et al., 2008; McDonald et al., 

2008&2006; Van den Berg and Jiggins, 2007; Feder et al., 2004; Orr and Ritchie, 2004). 

A second commonality of systems-based technologies is their high degree of context 

specificity. Because the innovation exists at the level of a system and not at the level of a 

particular piece of equipment, cultivar, or chemical product, systems-based technologies 

require considerable adaptation to accommodate variation in the site at which they are adopted. 

Indeed, such adaptation is essential, as the optimal way to manage a system in one location at 

one point in time is unlikely to be the same for a different set of agroecological and 

socioeconomic conditions. The exact specifications under which a system will function best on 

a given parcel of land, or the variant of the system that will best satisfy an individual farmer’s 

preferences, are impossible to know a priori. Flexibility, though often not made explicit, is as 

crucial an aspect of any systems-based technology as any more clearly articulated rule or 

principle. Successful systems-based technologies provide a balance between clear, replicable, 

and transferable principles, and sufficient room for experimentation and adaptation. They offer 

precepts without prescriptions. 

A third feature of systems-based technologies is that they place greater demands on farmers to 

learn new skills, revisit longstanding beliefs about agricultural practices, and adopt an 

experimental and empirically minded approach to farm management. In other words, they 

require the accumulation of capacity for learning, management, and adaptation. This notion of 

adaptive capacity is a central element in the study of complex adaptive systems (Hall and Clark, 

2010; Nelson et al., 2007). While the changes in cognition and behaviour associated with 

increases in adaptive capacity are sometimes considered as complementary to or supportive of 

the technology itself, they are more properly understood as essential components of the 

technology. A systems-based technology can no more function without a capable farm manager 

than it can without water or sunlight. 

A fourth feature of systems-based technologies is their groundings in the concept of resilience. 

The term “resilience” denotes the capacity of an ecological system to absorb perturbations, 

adapt to changes, and continue to function in a stable manner over time (Nelson et al., 2007; 
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Adger et al., 2011; Holling, 1973). The concept has been used to describe socio-economic 

systems in a similar manner (Levin et al., 1998; Folke, 2006), and expanded to combine agro-

ecological and socio-economic resilience into a single conceptual framework (for example, 

Van Ginkel, 2014; Tittonell, 2013). In effect, systems-based technologies are applications of 

this combined resilience framework, or efforts to create sustainable production systems that are 

sufficiently robust to ensure that households, communities, and landscapes can withstand 

shocks, adapt to change, and continue to produce efficiently over time in a manner that ensures 

both food security and sustainable use of scarce natural resources.  

All these features impose strict constraints on the probability and rate of adoption as identified 

by Rogers (2003), namely, difficulty in demonstrating relative advantage over other options; 

incompatibility with the user’s practices, behaviours, norms, or values; complexity in 

application and understanding by the user; trialability, or the capacity to accumulate experience 

before committing fully to adoption; and observability by farmer. Or, drawing on Cash et al. 

(2003), individuals deciding whether to adopt a new technology will respond to information 

they perceive as being credible (believable), salient (relevant to the decision being made), and 

legitimate (produced through a process that respects stakeholders divergent values and beliefs), 

all of which are difficult to ascertain when the technology is disembodied, intangible, or 

incompletely defined. These two descriptions help frame the issue of why farmers may be 

dubious about adopting systems-based technologies before they have had a sufficient 

opportunity to evaluate its performance, adapt it to their own needs, and fit it into their social, 

economic, and cultural context. 

These systems-based technologies are different propositions than many other technologies 

promoted during the past five decades. Some are even radical changes in how farmers cultivate 

their crops and manage livestock, water, land, soil, trees, residues, and waste. What to an 

outsider may seem like innocuous recommendations on planting dates, sowing methods, tillage 

practices, plant spacing, irrigation timings, or residue disposal are, for many farmers, counter-

intuitive to generations of collective experience. They are, in effect, controversial and 

contentious-a concern recognized by Sumberg et al. (2013). Examples that are already 

highlighted in the discourse include practices as varied as integrated soil fertility management, 

integrated pest management, system of rice intensification, organic agriculture, minimum 

tillage, agroforestry, and conservation agriculture. And while very few of these technologies 

dispense entirely with improved cultivars or synthetic fertilizers, they do illustrate how the 

future of agriculture will likely be characterized by elements that are more intangible and 
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disembodied from the technology, which in turn demands greater emphasis on farmer-led 

leaning and adaptation to their particular context. 

2.2 Evidence and evaluation issues  

Widespread adoption of systems-based technologies may rely on the accumulation of 

evaluative evidence on  performance at the household and farm levels, particularly with respect 

to the decisions made by farmers who experiment with, refine and adopt (or not adopt, or dis-

adopt) these technologies. While there are sound practical and theoretical reasons to believe 

that these systems-based innovations can be beneficial, there is still insufficient evidence on 

social and economic impacts. One reason for the lack of evidence is that systems-based 

technologies are simply difficult to measure. The technology must be readily identifiable and 

consistently applied by farmers for its impact to be measured and compared across individuals, 

farms and households.   

But many of these new practices are contingent on high levels of site- and context-specificity, 

meaning that their successful application relies heavily on farmers’ ability to adapt a complex 

set of cultivation and resource management techniques to the specific attributes of their own 

farm—its unique soil, water, and cropping conditions—and their own individual capabilities. 

Farmer adaptation, in turn, renders every technology slightly different when put into practice 

and leaves the evaluator without a consistent intervention to measure. Arguably, the design and 

implementation of impact evaluations needs to somehow account for the learning processes 

that make these complex practices work, particularly when learning is itself a reflection of 

farmers’ unobservable innovative capabilities—aspirations, inquisitiveness, or entrepreneurial 

tendencies, for example. Evaluation efforts become even more challenging when trying to 

examine determinants and effects of adoption of technologies by a group of progressive farmers 

who either self-select or are selected by program implementers using specific criteria that may 

not always be visible to the evaluator.  

Previous studies that attempted to quantify the impact of systems-based technologies find 

evidence of positive impacts and highlight the difficulties involved in accurately measuring the 

underlying agronomic and socioeconomic determinants of adoption of these technologies and 

subsequent effects. Some of the studies include Bennett and Franzel (2013) on conservation 

agriculture, Erenstein (2010) on minimum tillage systems, Kato et al. (2011) on integrated soil 

fertility management, Barrett et al. (2002) on system of rice intensification, and Franzel and 

Scherr (2002) on agroforestry. Most do a decent job in measuring the technology and parsing 



7 

 

out its marginal effects on productivity and welfare, although their results still attract criticism 

and controversy (for example, Sumberg and Thompson, 2012). But such studies are still 

relatively rare, indicating that empirical evidence remains in short supply on issues such as 

farm-level costs and benefits, determinants of adoption within heterogeneous populations, and 

adoption dynamics. There is also limited evidence on the role of wealth, education, market 

access, information asymmetries, and individual preferences on farmers’ willingness to adopt. 

In some instances, these complex questions relating to both embodied and systems-based 

technologies have been pursued in experimental settings that address issues of sample selection 

bias, confounding variables, and identification of causal relationships (Banerjee and Duflo 

2008; Duflo et al., 2008). Of course, the randomized controlled trials favored in these 

approaches have attracted criticism from economists (Deaton, 2009; Leamer, 2010; Barrett and 

Carter, 2010). The willingness to explore this approach with systems-based technologies has 

also attracted strong criticism from agronomists who develop and promote these technologies, 

and whose focus on farmer adaptation and innovation processes puts them at odds with the 

more structured designs of randomized controlled trials (RCTs).  

Arguably, the resistance to RCTs in the evaluation of systems-based technologies also stems 

from constraints imposed by the project funding cycle and the wider aid effectiveness debate. 

When RCTs are used to evaluate the effectiveness of a large-scale rollout, they tend to slow 

down the capacity of project implementers from reaching large-scale outcome targets which, 

implicitly, frustrate the project donors who release funding against those targets. This is a likely 

outgrowth of the global discourse over development aid effectiveness which has boosted 

demand for tangible, numeric results from development programs. Achieving such results 

requires rapid rollouts of projects and technologies to (self-selecting) high-probability 

adopters, short project time horizons, rapid feedback to donor constituencies, and a growing 

culture of project management that puts numeric accomplishments over deeper understanding 

of complex development processes. The unintended consequences of this approach include the 

promotion of solutions—including systems-based technologies—without strong evidence of 

impact or cost-effectiveness. We explore these issues in the evaluation of a specific systems-

based innovations in Malawi described in greater detail below. 

Impact evaluation of agricultural projects has been shown to pose several challenges (Lucas 

and Longhurst, 2010; IEG, 2011). Ideally, an RCT could have been designed to evaluate how 

AR’s approach in Malawi improves whole-farm productivity and other development outcomes. 
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Unfortunately, project expectations were such that the initial rollout was conducted by targeting 

non-representative groups of farmers: farmers who the implementers identified as early 

adopters, positive deviants, and model farmers who, through demonstration activities and peer 

effects, were expected to encourage wider adoption. Under such circumstances, any attempt to 

evaluate the project will run into several problems. 

First, trying to evaluate impact by comparing participants with non-participants may reflect not 

only the impact of the innovations but also any innate difference between participants and non-

participants (see Banerjee and Duflo, 2009 for general discussion). Self-selected beneficiaries 

are likely to have a wide range of characteristics, expectations, and perceptions that could 

determine whether and which type of innovations they adopt, as well as their realization of the 

potential benefits associated with those innovations. This in turn could overestimate impact on, 

say, crop yield since beneficiaries could have had a higher yield (than that of non-participants) 

even without the innovations.  

Second, unless intervention sites and households are representative of the target rural 

population within which the menu of SI innovations are expected to be scaled up, external 

validity and extrapolation of impact will be compromised. In the case of AR Malawi, 

innovations are expected to be scaled up to reach a target rural population of approximately 6.6 

million. One may observe high adoption of innovations and/or stronger impact among non-

randomly selected group of progressive farmers in a high agricultural potential area but 

adoption and/or impact could be low when attempt is made to promote these innovations in 

low agricultural potential areas, for example. Third, when an intervention involves both a new 

technology and an advisory (training/learning) component, as does AR Malawi, an ideal 

evaluation design should be able to disentangle the technology effects from the learning effects. 

For the same reasons, an ideal evaluation design should be able to measure the potential 

spillovers on non-treated individuals who may come into contact with the treated (Angelucci 

and Di Maro, 2010).   

3. Research context, evaluation design, and data  

3.1 Research context   

Africa RISING is an agricultural research-for-development program that aims to promote 

sustainable intensification of smallholder farming. It was initiated in 2012 and is being 
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implemented in Malawi, Tanzania, Zambia, Ethiopia, Ghana, and Mali (ILRI, 2012). 2 

Smallholder farmers participating in the program are offered with menu of various innovations 

and management practices, with the mix of innovations and their delivery mechanism varying 

across time, space, local context, and household typology. The Malawi Africa RISING project 

operates in Ntcheu and Dedza districts using mainly an approach called “mother and baby 

trials” (MBTs).  

MBTs are adaptive research platforms created to identify and eventually disseminate successful 

innovations and practices with the active participation of farmers. Lead farmers selected from 

targeted villages actively participate in interactive, researcher-designed, scientifically 

replicable demonstration trials of the technologies being tested (the “mother” trials).  Then 

other farmers select from among the technologies being tested in the mother trials the ones that 

meet their respective needs and replicates them on their farms (the “baby trial”). These farmers 

are likely to be individuals who meet certain criteria (for example, willingness to devote plots 

of a certain size to the trails). MBTs have been shown to encourage adoption among self-

selecting farmers but still raise questions regarding replicability and cost-effectiveness (Kerr 

et al., 2007; Joshnson et al., 2003). More importantly, the participatory and experimental design 

of MBTs make socioeconomic evaluation difficult, both in terms of measuring its impact on 

participating households and on assessing its scalability to a wider population of farmers.  

Figure 1 summarizes innovations applied by AR households at the farm level. The number of 

innovations ranges from seven (maize, NPK compund, Urea, and 4 types of legumes (from 

among ground nut, pigeon pea, cow pea, beans, and soya bean) by about 24% of the households 

to just two (puleses) by about 3% of the households. It is this heterogeneity in the type of 

innovations and the number of adopters that poses a challenge in identifying and attributing 

effects to a specific (mix of) innovation. Given the focus on integrated SI innovations, we also 

present a summary of technologies applied by AR households in at least one single plot in 

Figure 2.  

Ground nut, maize fertilized with NPK and urea, soya bean, and pigeon pea are the four most 

common (mix of) innovations applied at a plot level. Common are also maize fertilized with 

NPK and Urea (and compost) and intercropped with a legume (pigeon pea, cow pea, or beans) 

and a system of “doubled-up” legume, where pigeon pea is intercropped with either soya bean 

                                                 

2
 More information about the program can be found here.  

http://www.feedthefuture.gov/approach/Inclusive--Agriculture--Sector--Growth
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or groundnut or ground nut is intercropped with either soya bean, cow pea, or beans (sometimes 

fertilized with NPK). Previous studies have shown these integrated innovations to improve soil 

fertility, yield and nutrition while at the same time reducing fertilizer requirements (Bioversity, 

2014; Mhango, 2011; Friesen and Palmer, 2004). The specific varieties of maize and legumes 

adopted by AR households are summarized in Table A1 in the Appendix. 

3.2 Evaluation design   

To examine project targeting criteria and address the evaluation challenges discussed in Section 

2 to the extent possible, we employed a quasi-experimental evaluation design involving several 

steps.3 First, to better understand the spatial pattern and homogeneity of the determinants of 

agricultural potential and stratify the target area by agro-ecologies, we use high-resolution 

geographic information system (GIS).  After reviewing various biophysical and socio-

economic data layers summarized in Table A2 in the Appendix, we find elevation and 

temperature-adjusted rainfall to adequately capture the variability in the biophysical 

characteristics of the study area. Using these two variables, the study districts were stratified 

as shown in Figure A1 in the Appendix.  

Second, and after identification of program target villages by project implementers, we 

sampled four sections that are not the focus of the project (control sections). Control sections 

were chosen such that they would lie within each homogeneous agricultural potential area as 

AR target sections, while distant enough from action sections to avoid potential contamination. 

We then sampled 26 control villages using probability proportional to size.  Third, we randomly 

sampled households both from control villages (hereafter “control” households) and AR target 

villages who were not directly targeted by the project (hereafter “non-beneficiary” households). 

While the number of AR beneficiary households was determined by project implementers, the 

sample size for non-beneficiary and control households was informed by our power calculation 

based on data from the Third Malawi Integrated Household Survey.4 During August – October 

2013, we collected detailed socioeconomic data as part of the Malawi Africa RISING Baseline 

Evaluation Survey (hereafter MARBES). Figure 3 summarizes our evaluation design. 

                                                 

3
 “Quasi” because the selection of AR target villages and households was non-random and not affected by our ideal evaluation 

design.  

4
 Data and documentations on the Third Malawi Integrated Household Survey can be found here and additional details about 

the sample size calculation is available upon request.   

http://econ.worldbank.org/WBSITE/EXTERNAL/EXTDEC/EXTRESEARCH/EXTLSMS/0,,contentMDK:23152072~menuPK:4196952~pagePK:64168445~piPK:64168309~theSitePK:3358997,00.html
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While control households allow us construct the missing counterfactual to estimate project 

effects, non-beneficiary households allow us measure potential project spillovers. To the extent 

the project improves adoption of SI innovations and productivity also among non-beneficiary 

households, ignoring spillovers would lead to underestimation of project effect and its policy 

implications. Given the non-random selection of AR villages, comparison of outcomes for non-

beneficiary households (in AR villages) and control households (in non-AR villages) captures 

not only spillovers but also potential effects of project targeting. Given that our survey was 

conducted right after AR beneficiaries collected their first harvest as project beneficiaries (year 

zero), the time lapse might have been relatively short to allow strong spillovers. In which case, 

non-beneficiary households could serve us within-village control group and comparison of AR 

beneficiaries with this group could provide evidence on project effects. 

3.3 Data  

Table 1 shows a summary of the study sample by group and geographic area. A total of 1,149 

households were surveys of which 398 were AR beneficiary (all beneficiaries as of June 2013), 

207 were non-beneficiary, and 544 were control. This sample came from 26 AR target and 28 

control villages. A summary of village-level data shows that AR villages were slightly more 

remote and had lower (higher) population density (historical average rainfall), relative to 

control villages (Table 2). Also, AR target villages also have better access to agricultural 

extension services and farmers’ cooperative groups.  

A summary of selected household-level socioeconomic variables in Table 3 suggests the 

existance of systematic difference between the non-randomly selected AR households and the 

other two (randomly selected) groups. For example, AR beneficiaries exhibit larger household 

size, higher average adult years of education, and are more likely to have a married and male 

household head than non-beneficiary and control households. AR households are also better 

off in terms of different indicators of wealth we considered, including land ownership—total 

area of parcels operated by the household— and an asset-based wealth index we computed 

through factorial analysis (principal-component factor method) capturing ownership of 

household and agricultural durable assets, livestock, and housing characteristics. Ar 

households are also more likely to have parcels near their residence. There is insignificant 

differences between the three groups with respect to average travel time to the nearest seed 
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supplier as well as access to basic services.5 In terms of agricultural input use during October 

2012 to May 2013, AR households report using more fertilizer (both chemical and manure) 

and agricultural labor (person-days per hectare) than the other two groups. They are also more 

likely to have used improved maize, irrigation, hired labor, and practice intercropping. Value 

of harvest is higher for AR households, as is yield of maize (Malawi’s main staple crop).  

A summary of the farming systems of households in Figure 4 shows that AR households are 

more likely to combine maize with many legumes  while control households are more likely to 

practice mono cropping (of maize) or combine maize with fewer legumes. A plot-level 

summary of adopted technologies in Figure 5 shows maize-beans intercropping to be the most 

common technology mix, followed by intercropping of maize with one or more of the other 

pulses (ground nut, soya bean, cow pea, or pigeon pea). Common is also a system of “doubled-

up” legumes where ground nut is intercropped with either soya bean or pigeon pea, especially 

among AR households. 

These summary statistics demonstrate how AR households are systematically different from 

the wider population of farmers, on average, along the various dimensions we considered. The 

observed difference between AR households (and villages) and those randomly chosen from 

the population may also suggest other observed (but not measured) and unobserved differences 

that could affect technology adoption decisions and subsequent outcomes. This means that 

estimation of internally valid project effects requires controlling for pre-existing differences by 

building a valid counterfactual (Duflo et al., 2008; Burtless, 1995). Given that project 

beneficiaries are not representative of the broader population of farmers, project scale up efforts 

and strategies will also need to be examined carefully.  In the next section, we discuss the 

identification strategy we employed to quantity early effects using one wave of cross-section 

data collected about three months after AR households collected their first harvest as a project 

beneficiary.  

4. Identification strategy   

To examine differences in expected outcomes between AR beneficiary and control households 

as well as between the other possible pairs, we employ Cattaneo’s (2010) multivalued treatment 

                                                 

5 Factorial analysis (principal-component method) is used to compute an access to services index covering access to the 

following services (measured by travel time, using the usual mode of transport) — motorable road, all-season road, asphalt 

road, weekly market place, daily market place, district capital, nearest place with daily bus stop, nearest health care facility, 

primary school, and secondary school. 
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effects approach. By allowing multiple pair-wise comparisons, this approach allows us to 

examine predicted project effects as well as potential spillovers and targeting. For example, we 

expect a significant difference between non-beneficiary and control households if there are 

spillovers within AR villages. Also, if AR systematically targeted relatively better-off villages, 

as the descriptive statistics seem to suggest, significant differences between non-beneficiary 

(in AR target villages) and control households (in non-AR villages) would be expected, over 

and above what can be explained by spillovers.  

Following Cattaneo et al. (2013), we formally specify a potential-outcome model with three 

treatment types as shown in Equation 1. 

 

𝑦𝑖 = ∑ 𝑑𝑖(𝜏)𝑦𝑖(𝜏)

2

𝜏=0

       
1 

where τ is an index for treatment type (τ = 0 if treatment type is control, 1 if non-beneficiary, 

and 2 if AR beneficiary) and  𝑖 is an index for household (𝑖=1, 2, …, N); 𝑦 is the observed 

outcome of interest; 𝑑(τ) is an indicator that equals 1 if treatment type is τ and 0 otherwise; 

and 𝑦(τ) is the outcome when treatment type is τ. Assuming a linear functional form, the 

outcome equation can be specified as follows (omitting subscript 𝑖). 

                                        𝑦(𝜏) = 𝜷 𝜏
′ 𝑿 + 𝜖 𝜏                                                        2 

where 𝑿 is a vector of covariates expected to affect 𝑦 and ϵ is the error term. For each 𝑖 , 

observed vectors 𝑾𝑖 {= ( 𝜏, 𝑦(τ), 𝑿)′} and 𝒚𝒊 {= (𝑦𝑖(0), 𝑦𝑖(1), 𝑦𝑖(2))′} are assumed to be 

an independently and identically distributed (iid) draw from 𝐖 and 𝒚′ . While our random 

sampling of non-beneficiary and control households removes some of the systematic 

correlation between treatment assignment and observed and unobserved characteristics, 

purposive selection of AR villages and households illustrated above necessitates adjustment 

for possible pre-treatment differences between the three groups. Formally, the treatment 

probability can be modelled as follows.  

d(𝜏) = {
   1 𝑖𝑓 𝚪𝜏

′𝒁 + 𝜀𝜏 > 0 
0  otherwise 

, 𝜏 = 0, 1, 2                                         3 

where 𝒁 is a vector of covariates that could affect treatment type and whose elements may 

overlap with those of X and ε is the error term. Assuming selection on observables and 

common support condition, Cattaneo (2010) proposes two estimators of conditional means and 
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quantiles of the potential outcome distributions based on a two-step generalized method of 

moments – inverse probability weighting (IPW) and efficient-influence function (EIF). The 

IPW estimator models only the selection probability in Equation 3 while the EIF estimator 

models both the selection probability and outcome equations by including an augmentation 

term in the latter to correct for potential misspecifications in the former (Cattaneo, 2010). Both 

estimators involve estimation of the generalized propensity scores (GPS) in the first stage and 

inverse probability weighting of observed outcomes in the second stage when recovering 

parameters of the potential outcomes distributions. 6 The “doubly robust” EIF estimator is 

shown to produce consistent parameter estimates when either model is correctly specified while 

IPW estimates will be inconsistent if there is misspecification in the selection equation and the 

propensity scores thereof are biased (Cattaneo, 2010; Tan, 2010; Zhao, 2004).7 In this paper, 

we present EIF estimates and compute standard errors using bootstrapping (Cattaneo et al., 

2013).8    

Assuming the errors in Equation 3 to be iid with logistic distribution, we estimate the following 

multinomial logit model using maximum likelihood. 

𝑃𝑟𝑜𝑏(𝑇𝑖 = 𝜏|𝒁𝒊) = 𝑃𝑖𝜏 =
𝑒𝑥𝑝 (𝚪𝝉

′𝒁𝒊)

1+∑ 𝑒𝑥𝑝 (𝚪𝑘
′𝒁𝒊)2

𝑘=1

 , 𝜏 = 1, 2  4 

 

where T measures the treatment status and the probability for the reference category, control 

group, is given by 
1

1+∑ 𝑒𝑥𝑝 (𝚪𝑘
′𝒁𝒊)2

𝑘=1

. The vector 𝐙  includes variables that affect treatment 

probability including household size, sex and age of the household head, average adult 

education in the household, travel time to the nearest seed supplier, elevation, and asset-based 

wealth index, along with squared terms of the continuous controls. Since AR focuses on a 

variety of cultivars and different fertilizer application rates and almost all the study households 

grew maize during the reference period, we examine project effects on two main variables - 

the value of harvest and maize yield during October 2012 – May 2013. For the value of harvest, 

we specify the following fixed effects model.  

                                                 

6 See Cattaneo (2010) for large sample properties of these estimators and Cattaneo et al. (2013) for implementation details in 

Stata software. 
7 It is not clear which estimator (IPW or EFI) is more robust when both the outcome and the selection probability models are 

misspecified (Tan, 2010). 
8 We estimated conditional means and quantiles using IPW estimator and found IPW estimates to be consistently higher than 

the EIF estimates.  
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𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝑖 = 𝛽 +  𝚺′ 
𝑰𝒏𝒑𝒖𝒕𝑖

𝑇𝑜𝑡𝑎𝑙 + 𝚷′𝑿𝑖 + ϵ i                      5 

where 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒  is the value of harvest (in thousands of Malawi Kwacha - MWK); 

𝑰𝒏𝒑𝒖𝒕𝑇𝑜𝑡𝑎𝑙 is a vector of total agricultural inputs used during the reference period including 

operated land area (hectare), agricultural labor (person-days per hectare), and fertilizers 

(kilograms per hectare); 𝑿 is a vector of other household-level covariates including household 

size, age and sex of household head, average adult education, travel time to seed supplier, 

distance to basic services index, an index for agriculture-related wealth (excluding land), and 

elevation of the household’s residence.9 For maize yield, we specify the following fixed effects 

model.  

𝑀𝑎𝑖𝑧𝑒𝑌𝑖𝑒𝑙𝑑𝑖 = 𝛼 +  𝚪′𝑰𝒏𝒑𝒖𝒕𝑖
𝑀𝑎𝑖𝑧𝑒 + 𝚷′𝑿𝑖  +  𝜖𝑖                     6 

where 𝑀𝑎𝑖𝑧𝑒𝑌𝑖𝑒𝑙𝑑 is maize yield (ton per hectare), 𝑰𝒏𝒑𝒖𝒕𝑀𝑎𝑖𝑧𝑒 is a vector of agricultural 

inputs applied on maize plots including labor (person-days per hectare) and fertilizers 

(kilograms per hectare) and use of improved maize seed, and other variables are as defined 

before.  After estimating conditional means and quantiles using the EIF estimator, we recover 

expected average and quantile treatment effects through pair-wise comparison of estimated 

parameter (Cattaneo et al., 2013). We estimate quartiles to examine potential heterogeneity 

along the distribution of the two variables. As a robustness check, we also present average 

treatment effects using propensity score matching using kernel and nearest neighbour matching 

(Rubin, 1974 &1978; Rosenbaum and Rubin, 1983; Abadie and Imbens, 2012).  

5. Results    

Before presenting conditional means and quartile estimates, we first check whether each 

household has a positive probability of being in each treatment (the overlap assumption) and 

that there is no mass of observations with predicted probabilities too close to zero or one (Khan 

and Tamer, 2010). Figure 6 shows the estimated densities of the predicted probabilities that 

each type of household (beneficiary, non-beneficiary, and control) is a control (Panel A), non-

beneficiary (Panel B), and AR beneficiary (Panel C). Parameter estimates of the best fit 

multinomial logit model are reported in Table A3 in the Appendix. The overlap plots (Busso 

et al. 2013) show that the estimated conditional densities for each treatment type have most of 

their respective masses in the regions where they overlap. While there is no mass of 

                                                 
9  Agricultural wealth index is computed using factorial analysis (principal-component method) and includes livestock 

ownership (in value and tropical livestock units) and ownership of various durable agricultural assets (such as cutlass, ox-

plough, shovel, tractor, and ox-ridger).  
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observations at the extreme tails of these distributions, it is worth noting that for AR 

beneficiaries, there is a relatively high mass of predicted probability of being in the control 

towards the left tail of the distribution.  

On the other hand, and as would be expected, for control households there is a relatively high 

mass of predicted probability of being a beneficiary towards the left tail of the distribution. 

Estimated densities for non-beneficiaries are generally between those of beneficiary and 

control households. It is worth noting that while the results from our site stratification exercise 

resulted in delineation of broad geographic areas to choose AR sites from, selection of AR 

target villages and households was also guided by other considerations by project 

implementers, such as synergies with other (similar) projects run by the same. 

A graphic summary of EIF estimates of conditional means and quartiles for the value of harvest 

and maize yield are shown in Figures 7 and 8, respectively, along with the corresponding 95 

percent confidence intervals. For both variables, means and quartiles differ by treatment type, 

with control and beneficiary households having the smallest and the highest values, 

respectively, and estimates for non-beneficiaries being in between. Especially for the value of 

harvest, means and quartiles are estimated imprecisely for non-beneficiary households, given 

the relatively small sample size. Expected average and quantile effects (of the project and 

targeting) is then computed through pair-wise comparison of the respective parameters.10  

In addition to the traditional comparison between project beneficiaries and control households, 

comparing means and quartiles for beneficiaries and non-beneficiaries, while intricate, could 

provide some useful insights, given that former group is selected non-randomly and the latter 

is selected randomly both from within the same villages. If spillovers is expected to be 

negligible in year zero, given the relatively few months that lapsed between exposure of 

beneficiary households to AR and date of data collection, non-beneficiary households could 

potentially serve as a with-in village control, since it is highly likely for this group to not have 

been contaminated. In this case, observed differences between AR and “non-beneficiary 

control” households can be explained by either project effect or within village targeting of 

better-off households (or both) and not of village targeting. If both spillovers and targeting are 

at play, on the other hand, using non-beneficiary households to build the missing counterfactual 

                                                 

10 Note that pairwise differences in estimated quantiles will not correspond with the quantiles of the estimated differences 

unless the rank-preservation assumption holds (Cattaneo et al., 2013). This condition will hold if the value of the outcome 

variable for unit i that corresponds with the 𝑞𝑡ℎ percentile when all units receive treatment 𝜏 also correspond with the 𝑞𝑡ℎ 

percentile when all units receive a different treatment 𝜏′. 
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for beneficiaries would bias our estimates (upwards due to targeting of better-off households 

and downwards due to the use of households who indirectly benefited from the project as 

controls).  

A statistically significant differences in, say, means of a variable for beneficiary and control 

households captures both the predicted effect of the project and targeting of better-off villages 

and/or households. Similarly, a statistically significant difference in means for non-beneficiary 

and control households captures potential effects of project targeting (of better-off villages, 

from which non-beneficiaries are randomly sampled) and potential spillovers. A statistically 

significant differences in, say, medians for beneficiary and control households tells us the 

difference between the median of the population potential outcome distribution of the variable 

if all households become a beneficiary and the median of the population potential outcome 

distribution if all households are in the control group.  

Given the one wave of cross-section data used in this study, we caution the reader to interpret 

our “treatment effects” as a combined predicted effects of the innovations and project targeting. 

Pair-wise differences of means and quartiles are reported in Table 4. Differences of estimated 

means of value of harvest are significant only when we compare beneficiary and control 

households, worth about 43, 000 MWK. The difference in harvest value between beneficiary 

and control households is also found to be significant across all quartiles, with the highest 

difference observed for the median and third quartile. This implies potentially weaker effect of 

the project for households at the left tail of distribution.  

For maize yield, we also find a statistically significant expected average and quantile effects 

when comparing beneficiary and control households. We find an expected average treatment 

effect of about 0.8 tonnes per hectare and quintile effects ranging from about 0.3 (first quartile) 

to 1.1 (third quartile), once again suggesting a relatively smaller effect on households at the 

left tail of the distribution. We also find a significant difference when comparing non-

beneficiary households (in project target villages) with control households, which maybe 

capturing systematic targeting of areas with higher maize yield potential.   

Comparison of outcomes for AR and control households using propensity score matching 

(PSM) shows expected average treatment effects on value of harvested and maize yield that 

ranges between 42, 000 and 49, 000 MWK (Table 5, Columns 1-2) and 0.83 and 0.88 tonnes 
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per hectare (Table 5, Columns 7-8), respectively, depending on the estimator.11 These average 

treatment effects are reasonably comparable with those from EIF. Comparison of harvest value 

for AR beneficiary and non-beneficiary households also show a statistically significant (at the 

5% level) ATE. PSM estimates of ATE effects on maize yield for the other two pair-wise 

comparisons (Table 5, Columns 9-12) are all significant, especially when comparing non-

beneficiary household (in AR target villages) with control households.   

6. Conclusion   

Given the projected increase in the world’s population and the corresponding increase in the 

demand for food, feed, and biofuel sources, efforts to ensure food security may need to expand 

beyond discrete, embodied technologies and their package approaches to delivery. This entails 

focusing on a more integrated—and arguably more complex—approaches to simultaneously 

improve yields and manage natural resources more sustainably. With such complexity come 

challenges in accurately measuring and learning about the adoption and effects of these 

approaches to help inform scaling up efforts as well as designing and targeting of subsequent 

interventions.   

In this paper, we examine the targeting and expected effects of a systems-based sustainable 

intensification (SI) project in Malawi. This project aims to identify SI best-bet options that fit 

the needs of resource-poor farmers and hypothesizes that households will be in a better position 

to innovate, adapt, and adopt when empirical knowledge about SI is translated into action 

through participatory action research. To provide evidence on the causal effects of the project 

and potential spillovers, we have employed a quasi-experimental design involving non-

randomly selected AR beneficiary households, randomly selected non-beneficiary households 

(in project target villages), and randomly selected control households (in non-AR villages). We 

have complemented our evaluation design with detailed and fine-grained geographic 

information system to better characterize the study area. 

Results suggest that AR beneficiary households show significantly different socioeconomic 

characteristics than randomly selected households, suggesting that systematic targeting plays 

an important role. Regression results that control for pre-treatment characteristics show higher 

value of harvest and maize yield both on average and across all quantiles of the potential 

outcome distributions for project beneficiaries, relative to control households. Results also 

                                                 
11

 Propensity score histogram in Figure 9 generally confirm balanced propensity scores for each pair-wise comparison. 
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suggest a higher maize yield for non-beneficiary households (in project target villages) 

compared with control households. This finding could suggest potential systematic targeting 

of villages with high maize yield potential, especially considering the relatively short time lapse 

between exposure of AR households to SI innovations and the time of data collection that 

potentially renders spillovers (from AR households to non-beneficiary households in the same 

village) negligible.  Our findings highlight the need to rethink the criteria for selection of 

farmers into systems-based innovations, something that could potentially bear severe 

implications upon scaling up. 

While we are unable to disentangle the different effects that are at play and provide robust 

evidence based on a wave of cross-sectional data, the analyses presented here provided crucial 

insights about the project and highlighted the need for inventive identification techniques to 

discern direct project effects from that of targeting and spillovers. We hope to be able to address 

some of the limitations of this paper using end-line data to be collected from the same 

households at the end of the first phase of the project.  
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Tables   

Table 1. Sample size (by treatment status) 

     Number of households by treatment status 

District  EPA Section Type  No. of 

villages  

Beneficiary Non-

Beneficiary 

Control All 

Dedza  Golomoti Golomoti Centre AR target 4 100 24 0 124 

Dedza  Linthipe Mposa AR target 5 71 81 0 152 

Dedza  Lobi Thete Non-target 7 0 0 141 141 

Dedza  Mtakataka Mtakataka Center Non-target 8 0 0 161 161 

Ntcheu  Kandeu Kampanje AR target 8 135 60 0 195 

Ntcheu  Nsipe Mpamadzi AR target 9 92 42 0 134 

Ntcheu  Nsipe Mwalaoyera Non-target 9 0 0 164 164 

Ntcheu  Kandeu  Sitolo Non-target 4 0 0 78 78 

       Total   54 398 207 544 1,149 

Source. MARBES (2013).  
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Table 2. Village-level summary of selected variables (by treatment status) (N=54)  

  Treatment status  

 Variable Beneficiary Control 

 Length of growing period (Days) 162 161 

 Slope (Degrees) 1.35 1 

 Travel time to the nearest town of 20 thousand people 

(Minutes)  

235** 182** 

 Population density (Number per square kilometre) 198*** 332*** 

 Historical annual average rainfall (Millimetres) 937*** 919*** 

 Historical annual average temperature (Celsius) 21 20 

 Elevation (Meters) 897 947 

 % of villages within tropic warm (semiarid) agro 

ecological zone 

0.85 0.75 

 % of villages in medium rainfall-medium elevation stratum  0.65 0.46 

 % of villages in high rainfall-high elevation stratum  0.19 0.25 

 Access to basic services index  0.08 -0.04 

 % of villages w/ extension services 1.0*** 0.7*** 

 % of villages w/ farmers cooperatives groups 0.85*** 0.46*** 

  % of villages w/ access to improved maize seed 0.46 0.43 

Note. * Significant at 10%; ** significant at 5%; *** significant at 1%.  

Source. MARBES (2013) and other sources summarized in Table A2 in the Appendix.  
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 Table 3.  Household-level summary of selected variables (by treatment status)  

 Variable Beneficiary 
Non-

beneficiary 
Control 1 vs 2 1 vs 3 2 vs 3 

  (1) (2) (3) (4) (5) (6) 

 Household size 4.97 4.55 4.59 ** ***  

 Average adult years of education 5.22 4.51 4.72 *** ***  

 Dependency ratio 1.23 1.28 1.29    

 Age of household head(years) 45.7 46.1 45.3    

 % with married head 0.75 0.60 0.65 *** ***  

 % with female head 0.27 0.36 0.34 ** **  

 % in the lowest agricultural wealth quintile 0.1 0.3 0.2 *** ***  

 % in the lowest non-agricultural wealth quintile 0.1 0.2 0.3 *** ***  

 Tropical livestock units 0.46 0.28 0.21 *** *** ** 

 Per capita land operated(ha) 0.28 0.23 0.23 ** ***  

 Distance to basic services index 0.0054 0.027 -0.013    

 % w/ closest parcel <15 minutes  0.74 0.57 0.54 *** ***  

 Travel time to seed supplier (Minute) 43.6 41.7 38.9    

 Chemical fertilizers used (kg) 119.2 83.8 80.2 *** ***  

 Agricultural labor used (person-days) 332.4 241.1 228.0 *** ***  

 % using improved maize variety 0.87 0.63 0.62 *** ***  

 % using hired labor 0.50 0.31 0.39 *** *** ** 

 % practicing intercropping 0.82 0.86 0.68  *** *** 

 % using irrigation during dry season 0.15 0.11 0.061  *** ** 

 % affected by soil erosion 0.70 0.60 0.60 ** ***  

 % with access to extension services 0.9 0.4 0.3 *** ***  

 % using manure 0.68 0.56 0.43 *** *** *** 

 Value of harvest ('000 MWK) 205 150 125 *** ***  

 Maize yield (ton/ha) 2.4 2.3 1.8  *** *** 

  Observations 405 199 538 604 943 737 

Note. Columns 4, 5, and 6 report significance levels from diffrences of means tests between 

AR beneficiary (Column 1) and non-beneficiary (Column 2) households; AR beneficiary and 

control (Column 3) households, and non-beneificary and control households, respectively. 

* Significant at 10%; ** significant at 5%; *** significant at 1%.  

Source. MARBES (2013).  
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Table 4. Efficient-influence function (EIF) estimates of average and quantile treatment effects  

 

 

 

 

 

 

 Value of harvest ('000 MWK)  Maize yield (ton/ha) 

Pairwise comparison 
Pairwise 

contrast 

Unadjusted [95% 

Conf. Interval] 

 Pairwise 

 contrast 

Unadjusted [95% 

Conf. Interval] 

 

 Panel A. Average treatment effects  

Beneficiary versus Control  43.24 12.73 73.74  0.83 0.52 1.13 

Beneficiary versus Non-beneficiary  28.35 -13.54 70.25  0.39 0.03 0.74 

Non-beneficiary versus Control 14.88 -25.52 55.29  0.44 0.16 0.71 

 

 Panel B. Quantile treatment effects  (1st quartile) 

Beneficiary versus Control  37.78 25.64 49.91  0.33 0.22 0.44 

Beneficiary versus Non-beneficiary  10.61 -6.50 27.73  0.08 -0.08 0.25 

Non-beneficiary versus Control 27.16 12.23 42.10  0.24 0.09 0.40 

 

 Panel C. Quantile treatment effects  (Median)           

Beneficiary versus Control  45.92 29.08 62.76  0.53 0.35 0.72 

Beneficiary versus Non-beneficiary  20.53 -2.98 44.05  0.16 -0.12 0.43 

Non-beneficiary versus Control 25.39 1.77 49.01  0.38 0.12 0.63 

 

 Panel D. Quantile treatment effects  (3rd quartile)         

Beneficiary versus Control  45.60 19.33 71.87  1.14 0.76 1.53 

Beneficiary versus Non-beneficiary  42.80 6.33 79.26  0.40 -0.05 0.85 

Non-beneficiary versus Control 2.80 -37.42 43.02  0.75 0.34 1.15 
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Table 5. Propensity score matching estimates of average treatment effects (ATE) 

Note. * Significant at 10%; ** significant at 5%; *** significant at 1%. NN (K=5) stands for nearest neighbour matching with K=5. Kernel 

estimator is based on Epanechnikov kernel. Reported in parenthesis are bootstrapped standard errors (50 repetitions).  

 

 

 Value of harvest ('000 MWK)  Maize yield (ton/ha) 

 
Beneficiary  

versus 

 Control  

Beneficiary 

 versus  

Non-beneficiary  

Non-beneficiary 

 versus  

Control   

Beneficiary  

versus 

 Control  

Beneficiary 

 versus  

Non-beneficiary  

Non-beneficiary 

 versus  

Control  

 

Kernel  

NN 

(K=5) Kernel  

NN 

(K=5) Kernel  

NN 

(K=5)  Kernel  

NN 

(K=5) Kernel  

NN 

(K=5) Kernel  

NN 

(K=5) 

 (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) (12) 

              

ATE 49.25*** 42.36*** 35.22** 38.18** 14.62 13.03  0.836*** 0.882*** 0.256* 0.323** 0.639*** 0.696*** 

 (15.45) (15.66) (17.51) (16.56) (20.34) (20.52)  (0.144) (0.142) (0.146) (0.140) (0.187) (0.183) 

Constant 151.0*** 157.9*** 169.7*** 166.7*** 140.7*** 142.3***  1.431*** 1.384*** 2.028*** 1.960*** 1.562*** 1.505*** 

 (10.92) (11.07) (12.38) (11.71) (14.38) (14.51)  (0.102) (0.100) (0.103) (0.0989) (0.132) (0.129) 

              

Observations 741 742 770 770 409 409  732 731 764 764 410 409 

R-squared 0.014 0.010 0.005 0.007 0.001 0.001   0.044 0.050 0.004 0.007 0.028 0.034 
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 Figures  

 Figure 1. Technologies applied by AR households at the farm level (N=393) 
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Figure 2. Technologies applied by AR households in at least one single plot (N=393) 
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Figure 3. AR evaluation design † 

 

 

 

 

† Different colors denote homogeneous agricultural potential areas. 
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Figure 4. Household farming systems (by treatment status) 
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Figure 5. Incidence of Intercropping (by treatment status) 
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Figure 6. Conditional densities of generalized propensity score estimates12 

  

                                                 
12

 Note: The visibility of the density function in Figure 6 diminishes significantly when the document is transformed into a 

portable document format (PDF). Graphs of density functions in non-PDF formats are available upon request.  
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Figure 7. Efficient-influence function (EIF) estimates of means and quartiles of harvest value  

Note: Confidence intervals are based on bootstrapped standard errors (2000 repetitions).  

 

  

5
0

1
0
0

1
5
0

2
0
0

2
5
0

V
a

lu
e
 o

f 
h

a
rv

e
s
t 
('
0
0

0
 M

W
K

)

Control Non-beneficiary Beneficiary

Group

3rd quartile

Mean

Median

1st quartile

95% confidence interval



39 

 

Figure 8. Efficient-influence function (EIF) estimates of means and quartiles of maize yield  

Note: Confidence intervals are based on bootstrapped standard errors (2000 repetitions).  
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Figure 9. Conditional densities of propensity score estimates 
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APPENDIX 

Tables  

Table A1. AR Malawi innovations (2012/13 cropping season) 

District EPA 

Innovations 

Maize  Cowpea  Pigeon pea Groundnut Soybean 

Dedza 

Linthipe 

PAN 53 Sudan 1 Mwaiwathu alimi CG7 Makwacha 

DKC 9089 IT82E-16 Sauma Nsinjiro Nasoko 

           

Golomoti 

SC403 Nkanakaufiti  Sauma Nsinjiro Nasoko 

DKC 8053 Nkanakaufiti Mwaiwathu alimi CG7 Makwacha 

              

Ntcheu 

Kandeu 

SC627 Sudan 1 Mwaiwathu alimi Nsinjiro Makwacha 

DKC  8053 IT82E-16 Sauma CG7 Nasoko 

            

Nsipe 

SC627 Sudan 1 Mwaiwathu alimi CG7 Makwacha 

DKC  8053 IT82E-16 Mwaiwathu alimi Nsinjiro Nasoko 

Source: Africa RISING Malawi.     
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Table A2. Candidate data layers considered for site characterization 

Data layer  
Spatial 

resolution 
Year Source 

Population density 1 km^2 2000 CIESIN 

      

Agro-Ecological 

Zone 

~10km^2  IIASA 

        

Precipitation 

50 km^2 long term (> 50 years) average CRU 

1 km^2 long term (> 50 years) average WorldClim 

100 km^2 long term (> 50 years) average NASA POWER 

50km^2 long term (> 50 years) average GPCC 

1km^2 long term (1976-2008) average Interpolated from national 

weather station         

Elevation 1 km^2  USGS 

        

Slope 1 km^2  USGS 

        

Farming systems shape file  John Dixon (2012 version) 

        

Market access 1 km^2 2000 HarvestChoice 

        

Length of growth 

period 

~10km^2 long term (> 50 years) average IIASA 

        

Maize harvested 

area 

~10km^2 2000 HarvestChoice 
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Table A3. Maximum likelihood estimates from the best fit multinomial logit specification 

                                                  

                                
Non-

beneficiary    
Beneficiary     

                                   

 Household size (hhsize)                 0.488 0.089  

                                   [0.384]       [0.298]     

 Age of household head(years) (hh_age) 0.09      0.105*    

                                   [0.055]       [0.048]     

 Avg. adult yrs of education (educ_ave) 0.296 0.126  

                                   [0.288]       [0.229]     

 Elevation of HH's residence (meters) (alt)      0.019***      0.018***  

                                   [0.004]       [0.004]     

 Average travel time to seed supplier (time_2_supplier) 0.012 0.022  

                                   [0.021]       [0.016]     

 Distance to basic services index (distanceindex) 1.083 1.345  

                                   [0.906]       [0.746]     

 Total wealth index (wealth)             1.165      2.063**   

                                   [0.952]       [0.699]     

 c.hhsize#c.hhsize              -0.016 -0.016  

                                   [0.019]       [0.016]     

 c.hhsize#c.hh_age              0 -0.001  

                                   [0.003]       [0.003]     

 c.hhsize#c.educ_ave                -0.056**      -0.034*    

                                   [0.021]       [0.017]     

 c.hhsize#c.alt                 0 0  

                                   [0.000]       [0.000]     

 c.hhsize#c.time_2_supplier     -0.001 0  

                                   [0.001]       [0.001]     

 c.hhsize#c.distanceindex            0.114*   0  

                                   [0.055]       [0.048]     

 c.hhsize#c.wealth              -0.038 -0.048  

                                   [0.068]       [0.050]     

 c.hh_age#c.hh_age              0     -0.001*    

                                   [0.000]       [0.000]     

 c.hh_age#c.educ_ave            0 0.001  

                                   [0.003]       [0.002]     

 c.hh_age#c.alt                 0 0  

                                   [0.000]       [0.000]     

 c.hh_age#c.time_2_supplier         -0.000*   0  

                                   [0.000]       [0.000]     

 c.hh_age#c.distanceindex       0.01      0.019**   

                                   [0.007]       [0.006]     

 c.hh_age#c.wealth              0.005 0.004  

                                   [0.009]       [0.008]     

 c.educ_ave#c.educ_ave          -0.001 0.001  

                                   [0.012]       [0.010]     

Reported in brackets are standard errors and the control group is the reference category. 
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Table A3. Maximum likelihood estimates from the best fit multinomial logit specification 

(Cont’d) 

                                Non-beneficiary    Beneficiary     

                                   

                                   [0.000]       [0.000]     

 c.educ_ave#c.educ_ave          -0.001 0.001  

                                   [0.012]       [0.010]     

 c.educ_ave#c.alt               0 0  

                                   [0.000]       [0.000]     

 c.educ_ave#c.time_2_supplier   0 0  

                                   [0.001]       [0.001]     

 c.educ_ave#c.distanceindex     0.001 0.06  

                                   [0.047]       [0.040]     

 c.educ_ave#c.wealth            0.024 -0.073  

                                   [0.046]       [0.039]     

 c.alt#c.alt                        -0.000***     -0.000***  

                                   [0.000]       [0.000]     

 c.alt#c.time_2_supplier        0 0  

                                   [0.000]       [0.000]     

 c.alt#c.distanceindex              -0.002***     -0.003***  

                                   [0.001]       [0.001]     

 c.alt#c.wealth                     -0.001**      -0.001**   

                                   [0.001]       [0.000]     

 c.time_2_supplier#c.time_2_supplier 0 0  

                                   [0.000]       [0.000]     

 Constant                          -12.204***     -8.571**   

                                   [3.470]       [2.648]     

 Pseudo R-squared               0.15  

 Model chi-square               339  

  Observations                   1134   

Reported in brackets are standard errors and the control group is the reference category. 
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Table A4. Ordinary least squares estimates from the best fit specifications for the outcome 

equation 

 

Variable  

Value of 

harvest ('000 

MWK) 

 
Maize yield 

(ton/ha) 
 

      

 Household size (hhsize)                    35.720**        0.347**   

                                  [11.725]        [0.110]     

 Age of household head(years)   0.677  0  

                                   [0.391]        [0.004]     

 Avg. adult years of education         6.645**        0.055**   

                                   [2.177]        [0.021]     

 Area of parcels operated(ha)      105.577***      -0.502***  

                                   [9.630]        [0.090]     

 Agr. wealth (excluding land)     5.405  -0.007  

                                   [5.754]        [0.054]     

 Total agr. labor used (person-days/ha)     -0.040*         0.001***  

                                   [0.017]        [0.000]     

 Total fertilizer used(kg/ha)        0.200***       0.003***  

                                   [0.038]        [0.000]     

 c.hhsize#c.hhsize                  -3.119**       -0.035***  

                                   [1.120]        [0.011]     

 Constant                         -103.852**   0.507  

                                  [39.122]        [0.367]     

 R-squared                      0.16  0.24  

  Observations                   1133   1130   

Reported in brackets are standard errors 
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Table A5. Probit estimates of the selection equation (for propensity score matching) 

 

Variable  

Beneficiary 

versus  

Control    

Non-

beneficiary 

versus  

Control    

Beneficiary 

versus  

Non-

beneficiary 

     

 Household size                 0.177 0.122 0.031 

                                   [0.097]       [0.132]       [0.135]    

 Household size^2                   -0.020*   -0.012 -0.002 

                                   [0.009]       [0.012]       [0.012]    

 Age of household head(years)        0.055**  0.025 0.024 

                                   [0.017]       [0.019]       [0.023]    

 Age of household head(years)^2      -0.001*** 0 0 

                                   [0.000]       [0.000]       [0.000]    

 Avg. adult years of education    0.074 -0.058 0.171 

                                   [0.055]       [0.059]       [0.088]    

 Avg. adult years of education^2  -0.009 0.002 -0.013 

                                   [0.005]       [0.005]       [0.008]    

 % with female head      -0.151 -0.011 -0.095 

                                   [0.132]       [0.134]       [0.126]    

 Average travel time to seed supplier -0.001 0.002 0.001 

                                   [0.003]       [0.004]       [0.004]    

 Average travel time to seed supplier^2 0 0 0 

                                   [0.000]       [0.000]       [0.000]    

 Distance to basic services index -0.049 -0.115 0.055 

                                   [0.093]       [0.081]       [0.105]    

 Distance to basic services index^2 -0.062 -0.047 -0.026 

                                   [0.041]       [0.035]       [0.052]    

 Asset-based wealth index                  0.327*** 0.056      0.202*   

                                   [0.089]       [0.102]       [0.087]    

 Asset-based wealth index^2 -0.028 -0.007 -0.019 

                                   [0.030]       [0.040]       [0.030]    

 Elevation (meters)      0.016***      0.014*** -0.002 

                                   [0.002]       [0.002]       [0.002]    

 Elevation (meters)^2     -0.000***     -0.000*** 0 

                                   [0.000]       [0.000]       [0.000]    

 Constant                           -7.472***     -6.910*** 0.78 

                                   [0.816]       [1.032]       [1.116]    

 Pseudo R-squared               0.17 0.08 0.08 

 Model chi-square               213 115 94 

  Observations                   929 744 595 

Reported in brackets are standard errors 
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Figure A1. Site stratification 

 


