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Abstract 

Agricultural commercialization in Asia has led to an increased dependence on synthetic 

pesticides, especially for high-value fruit and vegetable crops. The present study uses the 

multi-agent modeling software MPMAS to ex-ante assess the impact of different pesticide 

use reduction strategies. The model is parameterized with data from an intensive and diverse 

production systems in the mountainous north of Thailand, where the adoption of cash crops 

has been accompanied by very high levels of pesticide use. The objective of this study is to 

compare different policy interventions in terms of their impact on pesticide use, farm incomes 

and land use. The adoption of integrated pest management (IPM) is assessed in combination 

with tax instruments and with adoption incentives, such as bio-pesticide subsidies and price 

premiums. The results show that a smart policy package can reduce pesticide use by up to 

34% over five years without income trade-offs for farm households. 

Keywords: Agent-based modeling, ex-ante assessment, innovation diffusion, pesticide policy, 

integrated pest management
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1. Introduction 

The intensification of crop production in many low and middle income countries is often 

accompanied by pesticide overuse and misuse (Ecobichon, 2001; Schreinemachers and 

Tipraqsa, 2012). Hazardous pesticides are regularly applied in large quantities, thereby not 

only harming human health, but also killing beneficial animals and contaminating soils and 

water bodies. Indirectly, pesticides threaten the resilience and long-term productivity of 

ecosystems by disrupting natural pest control processes. As natural predators disappear and 

pests become resistant, the application of pesticides needs to increase and expenditures rise. 

Despite high externalities and increasing input costs, farmers continue to use pesticides due to 

the perceived high withdrawal costs if giving up their present chemical pest control (Wilson 

and Tisdell, 2001). Scientific studies of pesticide use reduction strategies have remained 

relatively few and kept a focus on industrialized countries. Falconer and Hodge (2000) 

developed a case-study farm model for the UK to evaluate low-input farming in combination 

with pesticide taxation. The same topic is addressed by Jacquet et al. (2011) by means of a 

mathematical programming model at the national level for the French agricultural sector. 

Skevas et al. (2012) point out the lack of empirical research on the impact of different 

economic instruments on farm income, pesticide use and the environment in their 

econometric study of the effects of pesticide use reduction policies on Dutch cash crop 

producers. This lack of evidence is even more apparent in the context of tropical agriculture, 

where little attention has so far been given to investigating the options and implications for 

smallholders of reducing pesticide use. 

This paper addresses the above research gaps and the lack of sound evidence on which to base 

advice by assessing strategies for pesticide use reduction for horticulture in a tropical country 

in transition, Thailand. Falconer and Hodge (2000) point out that simple economic models of 

pest management decisions could be unrepresentative or even misleading if used as a basis for 

policy recommendations due to a lack of adjustments options and the inability to simulate 

systems change. To assess the impact of different pesticide use reduction policies, this study 

uses the multi-agent modelling software MPMAS (Mathematical Programming-based Multi-

Agent System), a tool developed and widely tested for ex-ante assessments (Schreinemachers 

and Berger, 2011). The present MPMAS application is parameterized with farm and plot level 

data and from intensive and diverse production systems in the mountainous north of Thailand, 

the Mae Sa Watershed, where the adoption of cash crops has been accompanied by very high 

levels of pesticide use. The model allows exploring the diffusion of policy-driven innovations 
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in the farm population as well as the effect of policy interventions on heterogeneous farm 

households and the landscape over time. It is based on empirically estimated damage control 

functions to capture different levels of pesticide productivity and estimated adoption 

probabilities to assign innovativeness scores to agents. The adoption of IPM is assessed in 

combination with tax instruments and with various adoption incentives. The objective of this 

study is to compare these interventions in terms of their impact on pesticide use, farm 

incomes and land use and meet the demand for reliable advice on what would work best.  

2. Materials 

2.1 Study area selection and data collection 

The Mae Sa watershed area in northern Thailand was selected as the primary data collection 

area for the study. It covers an area of 140 km
2
, with altitudes ranging from 400 m to 1,600 m 

above sea level (masl). The study area is a good example of the benefits and problems that 

agricultural commercialization involves. Mountainous areas across the region have 

experienced a rapid intensification of agricultural productions in recent years. Farmers in the 

study area have been able to increase their incomes from agriculture substantially by growing 

a wide variety of horticultural cash crops. However, the increase in production of high value 

crops has been accompanied by heightened pest pressure and heavy pesticide use 

(Schreinemachers et al., 2011), and the build-up of pest resistance has led farmers to increase 

the frequency and intensity of pesticide applications over time. 

To collect socio-economic and agricultural production data, a structured questionnaire survey 

was carried out in the Mae Sa watershed, which is comprised of twelve villages that practice 

agriculture. 20% of the farm households in each of these villages were randomly selected, 

which resulted in a total of 295 farm households being interviewed. A one-year recall period, 

from April 2009 to March 2010, was used for the face-to-face interviews, with detailed 

information being gathered about the farm households, the land-use and cultivation practices, 

such as quantities of active ingredients applied. For each plot and each crop, respondents were 

asked about inputs, outputs, their pest problems and how they have tried to control them. If 

using pesticides, respondents were asked to give the common names of each, the number of 

times they sprayed them, the quantity of undiluted chemicals used, and the price and volume 

per container. For each pesticide mentioned, data were collected on the active ingredients they 

contained from traders, shops and producers. 
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2.2 Land use and pesticide use  

Cropping patterns in the Mae Sa watershed vary according to the land suitability, changing 

with elevation and slope, accessibility of the villages and the relationships of farmers with 

traders and extension services, here mainly the Royal Project. This results in a spatially 

diverse agricultural land-use mix. In total, 58 crops were recorded in the survey. However, the 

majority of these are minor crops, which are not significant in terms of harvested area, 

pesticide applications and sales revenues. For the purpose of assessing pesticide use reduction 

strategies, this study focuses on the economically most important crops, which tend to be 

those sprayed most intensively, as well as on those crops which cover large areas of the 

watershed. This includes the following land-use groups: leafy vegetables (Chinese cabbage, 

white cabbage, Chinese kale and lettuce, greenhouse vegetables (bell peppers and tomatoes), 

other vegetables (chayote, green beans and onions), flowers (chrysanthemums and roses), 

cereals (upland rice and maize) and fruit trees (litchis).  

Figure 1 illustrates the relationship between profitability and input intensity, showing the 

gross margins generated per hectare and per month together with pesticide use in kg per ha 

and per month. The need to protect valuable crops from pests results in preventive as well as 

curative pesticide applications, which are extremely high for greenhouse vegetables, flowers 

and onions in particular. The risk of losing valuable crops, such as bell-peppers and tomatoes, 

during pest attacks is considerable, and so farmers spray excessively. As witnessed during 

many field visits, farmers frequently complain that the virulence of pest attacks has increased 

in recent years and that certain pesticides are no longer as effective or require large 

applications to produce the desired effect.  

Figure 1 

 

For most land uses, the majority of pesticide applications involve insecticides and fungicides, 

apart from cereals and fruit trees, where high quantities of herbicides are applied. The main 

insecticides used are abamectin and cypermethrin, while mancozeb is the most commonly 

used fungicide. Farmers also resort to toxic substances such as mevinphos on a regular basis. 

The WHO toxicity classification sheds light on the hazardousness of different pesticides 

(WHO, 2009), giving an indication of the risks they pose to human health, which also reflects 

the risks posed to other living organisms. It is the most widely used classification of pesticide 

toxicity, and enables researchers and policy makers to quickly differentiate the more harmful 

from the less harmful substances. Pesticides ranked as WHO 1a and 1b are extremely 
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hazardous, those ranked as WHO 2 are considered moderately toxic, while the WHO 3 

toxicity class refers to slightly toxic pesticides. WHO U pesticides are described as unlikely to 

cause any harm. As Figure 2 shows, the proportion of applied pesticides belonging to 

different toxicity classes varies among the land-use groups. Large quantities of pesticides and 

most hazardous substances are applied on greenhouse vegetables and flowers, while the 

proportion of moderately hazardous pesticides used is largest for leafy vegetables.  

Figure 2 

2.3 Farm characteristics in the study area 

Table 1 illustrates that land holdings in the study area are on average quite small, ranging 

from 0.7 ha in the villages of the central watershed, where most northern Thai farmers live, to 

2 ha and above in the other parts of watershed, where the villages are inhabited by farmers of 

the Hmong ethnicity. The higher population densities in the central watershed lead to smaller 

farm sizes and more intensive production, with a greater use of greenhouses and cultivation of 

flowers. In the Hmong villages, many farmers are members of the Royal Project and the use 

of the GAP certification scheme is more widespread. The majority of Hmong farmers need to 

grow their crops on steep slopes, as they lack alternative locations among the higher 

elevations. In several Hmong villages the litchi orchards are an important land-use, which was 

promoted to prevent soil degradation and replace opium cultivation.  

Table 1 

2.4 Integrated Pest Management 

This study uses the concept of IPM in an agro-ecological sense , incorporating factors such as 

the preservation of healthy soils, use of a diversity of cropping patterns and the conservation 

of beneficial insects. Farmers are need to develop knowledge of the agro-ecosystem and 

regularly observe their fields. Cultural, biological, genetic, mechanical and, as a last resort, 

chemical methods can be combined in a way that guarantees the long term environmental and 

economic viability of the farm.  

While generally the practice of IPM among vegetable growers in the uplands of northern 

Thailand has remained rather insignificant, a pilot project of the national IPM program 

managed by the Royal Project station in Doi Angkhang is a good example of agro-ecological 

intensification of vegetable production. The lack of data available on alternatives to chemical 

pest management from the main survey, necessitated that observations from a similar 
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environment be used. The climate and terrain of the Royal Project station at Doi Angkhang, 

which is located at 1400 m above sea level, is similar to that of the Mae Sa watershed. The 

land-use mix is also comparable, as leafy vegetables are an important crop in both places, and 

with the pest complex being very much alike. Average yields across the three crops are 25% 

lower for farmers at Doi Angkhang, but prices are higher and more uniform, and lie within the 

upper tercile range for leafy vegetable prices in the Mae Sa watershed. It should also be noted 

that variable input costs for IPM are lower, while labor requirements are higher.  

Table 2  

 

Growers of leafy vegetables in Doi Angkhang have, with the support of extension workers, 

successfully practiced IPM for several years now by combining different management 

practices to minimize the use of pesticides and grow healthy vegetables. Farmers combine 

cultural (rotations to break the pest cycle and soil conservation), biological (upkeep of high 

agro-biodiversity levels with many natural predators) and mechanical methods (traps) with 

well-monitored bio-pesticide applications. Table 2 shows data for three typical rotations of 

the three of the main leafy vegetables grown by the farmers in Doi Angkhang: cabbages, 

lettuce and spinach. Data was collected following these rotations in 2012, representing one-

third of all IPM farmers in Doi Angkhang. Since production is very homogenous among 

farmers and strictly controlled by the Royal Project, a relatively low number of representative 

cropping observations was sufficient.  Each crop is managed according to a recommended 

cultivation plan developed by the Royal Project station. For cabbages, this involves the 

application of 3 to 5 kg of manure after planting, the spraying of a diluted organic fertilizer 

which has been produced from vegetable scraps, molasses and microorganisms every three 

days, and the application of bio-pesticides such as Bacillus thuringensis for use against 

worms, and Bacillus subtilis for use against parasites. Trichoderma, azadirachtin and 

metazoan are other bio-pesticides at the disposal of the IPM farmers, for which pre-specified 

quantities are applied at regular intervals, depending on the season. Specific substances or 

higher amounts are used when pest pressure crosses a particular threshold. Farmers closely 

observe their plots, and also resort to traps and hand-picking to protect them. For each 

cropping cycle and plot, the Royal Project obliges farmers to keep detailed records, and 

subsequently monitors applications, to make sure the recommended amounts are not 

exceeded. To guarantee the safety of its produce, staff from the Royal Project continuously 

test vegetable samples for residues. 
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3. Methods 

3.1 The methodological context of MPMAS 

ABMs in agricultural economics are useful in situations where model complexity leads to 

analytical intractability, that is, equilibrium conditions either cannot be identified or 

analytically solved (Nolan et al., 2009). MPMAS belongs to a category of models referred to 

as agent-based models of land-use and land-cover change (ABM/LUCC). These models are 

characterized by the combination of a cellular component representing the physical landscape 

with an agent-based component representing human decision-making (Parker, 2003). The 

interactions of autonomous individuals with each other, as well as with the landscape, are 

important features of ABM/LUCC, which are effective at analyzing a variety of resource 

management problems and which add to the capabilities of standard bio-economic models 

(Berger et al., 2006). MPMAS mainly distinguishes itself from alternative models in the 

ABM/LUCC category, such as Cormas (Becu et al., 2008) for example, through its use of 

whole farm mathematical programming (MP) to simulate the land-use decision-making of 

farm households, as the driver of land-use change in agriculture and forestry. The decision-

making component is firmly grounded in the micro-economic theory of agricultural 

economics. The assumption of full economic foresight in MPMAS is relaxed by incorporating 

adaptive expectation formation and incomplete knowledge through a network model of 

innovation diffusion. On top of that, the software can be combined with a range of 

biophysical models to simulate crop yield responses to changes in the crop water supply or 

changes in soil nutrients. Altogether, MPMAS allows for the spatially-explicit modeling of 

human-environment interactions across a wide range of agro-ecosystems and for a variety of 

purposes (for examples of its applications, see Schreinemachers et al. (2011)). The model can 

be applied to help understand how the adoption of agricultural technologies or sustainable 

practices, how policy intervention and/or how global change processes affect a heterogeneous 

population of farm households and the resources on which they rely. 

3.2 The model set-up, dynamics and initialization 

The application of MPMAS to assess pesticide use reduction strategies for Thai upland 

agriculture is configured to suit the research topic and requires the following subset of the 

range of input files available in MPMAS: The agent population, which is subdivided into 15 

clusters and which includes information on assets and resource endowments, and agent 

characteristics; Maps, including the spatial representation of agent plots and cluster 
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memberships; The MP decision-making component, which is adjusted for each agent during 

each period; The network dynamics component, which defines investment objects and 

innovation diffusion; The perennial crops component, which defines yields and input 

requirements over the lifespan of a crop, for litchi, roses and IPM vegetables; The crop 

growth component (CropWat model), which specifies crop water requirements; Data on the 

prices of all inputs (pesticides, labor, etc.) and outputs; Water rights, a hydrological 

component regulating water supply (including local weather data), a demographic component 

defining the labor supply for different age categories, and basic data and a scenario manager, 

which include general model parameters and switches. The most important features for this 

application are explained in more detail in the following sections. Figure 3 illustrates how the 

economic, social network and bio-phyisical components of the MPMAS application 

developed for the Mae Sa watershed are connected. The model is recursive, meaning that 

most factors are updated after each simulation period.   

Figure 3 

 

Investment and production decisions in MPMAS are separated into two MP matrices (Berger, 

2001), and the acquisition of assets and the adoption of innovations are carried out before 

cropping choices are made. (Schreinemachers et al., 2010). The allocation of cash, labor, 

pesticides, etc. to a monthly cropping plan occurs after the right-hand side values in the MP 

matrix are updated for assets and cash, while the annuity values are replaced by actual costs 

and benefits (Schreinemachers, 2006). The theory of adaptive expectations was incorporated 

into MPMAS by Berger (2001), so that agents can form expectations on what would happen 

in the future based on what happened in the past, the development of foresight is in this 

context not possible. Agents revise their expectations after each simulation period 

proportional to the difference between actual Xt-1 and expected vales X
*

t-1.As long as λ takes 

values greater than 0 and smaller or equal to 1, agent expectations are adjusted as follows: 

  
      

              
         (1) 

The simulation period in the study model is set to five years, reflecting the character of the 

pest management problem. The model is based on a cross-sectional dataset, which represents 

a great variety of cropping activities, meaning it is possible to predict how farmers change 

their behaviors in response to the incentives and disincentives that affect them in the short-

term. Without some level of knowledge about pest pressure, yields and prices in the medium- 

and long-term, using an extended simulation period would involve a lot of uncertainty.  
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A lottery based on Monte-Carlo techniques was used to extrapolate data from the sample of 

295 farm households to the population of 1491 farm agents, allocating characteristics and 

assets to agents. This methodology, the integration of which into MPMAS is described by 

Berger and Schreinemachers (2006), requires cumulative distribution functions to be used. A 

stochastic element of the Monte-Carlo simulation method is the seed values that are chosen to 

generate the random populations and check for the robustness of results. To take correlations 

into account, such as between the number of greenhouses and owned land, the sample was 

subdivided into clusters. Villages, where cropping habits and suitability due to altitude are 

similar, were grouped together (see Table 1) and each of these groups was then split into three 

clusters according to the tercile of the farm size (ha). Overall, this resulted in the creation of 

15 clusters within the model, which display a higher degree of homogeneity than the agent 

population as a whole. The lottery was consequently carried out for each cluster separately.  

3.3 The decision-making component 

The decision-making relies on production functions and recursive mathematical programming 

(MP). As a first step, the cropping activities for the MPMAS model needed to be 

parameterized. For this purpose, empirical observations from the survey were directly 

included in the MP matrix. The parameterization approach produced 513 different cropping 

activities, for which a total of 82 active ingredients were needed.  

Table 3 

  

For crops with too few observations to estimate production functions, and which could not be 

easily grouped together with other crops, all data points between ± one standard deviation 

were selected (for maize, rice, chayote and chrysanthemums). For the perennial crop litchi, 

cluster analysis was used to generate three management options with different input levels, 

while the perennial rose, due to few observations, was inserted with just one average 

management option. For the remaining vegetable crops, it was possible to group similar 

vegetables together and to obtain sufficient observation numbers to estimate production 

functions. Estimations were carried out across three groups with similar pest management, 

input levels and growing lengths, these being leafy vegetables (open field system), 

greenhouse vegetables (closed system) and onions/beans (open field system). The production 

functions helped served as a means to identifying the empirical vegetable data for the model. 

All observations situated between the upper and lower confidence intervals of predicted 

output were selected as inputs into the MPMAS model. The Cobb-Douglas production 



 

 
10 

 

function with a exponential damage control specification for pesticides, which had already 

been tested for the quantification of pesticide overuse (Grovermann et al., 2013), was used to 

parameterize vegetable cropping activities. This specification allowed the model to take into 

account the abatement effect of pesticides and is preferable to using a standard Cobb-Douglas 

production function, which tends to overestimate pesticide productivity (Lichtenberg and 

Zilberman, 1986, Praneetvatakul et al., 2013). Within each group of crops, the management, 

growing period and pest problems are similar, but output levels (Y) vary. Indicator variables 

Ci were introduced alongside growth-stimulating inputs Zj and pesticides X to control for 

farm characteristics. These farm characteristics also included crop and location dummies that 

captured differences in crop management and agro-ecological conditions. Estimated 

coefficients include constant α, coefficients γi, βj and the damage control coefficient λ. 

lnY = α + ∑iγiCi + ∑jβjlnZj + ln[1–exp(–λX)] + ε (1) 

For each crop, the output as well as confidence intervals could thus be predicted from the 

estimated coefficients for the vegetable group, and then be adjusted by the crop coefficient. 

The values were predicted taking into account the different levels of the other variables used. 

Observations beyond the upper and lower bounds of the confidence intervals, as displayed in 

Figure 4 for white cabbage and lettuce, denote the ‘outliers’, which were excluded. 

Figure 4 

 

The MP optimization problem at the core of MPMAS defines the behavior of the agents, 

which maximize their farm incomes by selecting an optimal combination of crops based on 

expectations about prices and yields, and satisfying a large set of resource constraints. Yield 

expectations, resources, as well as the access to technologies, are updated for every agent at 

every time step in the model run. The optimization problem is then repeatedly solved. The 

complete MP decision-making matrix contains 1129 columns and 862 rows. Permanent 

greenhouses and perennial crops need to be fully used, but idle activities allow agents to keep 

the greenhouses and perennial crops unmanaged. Similarly, all land needs to be used, but 

monthly fallow activities allow for not managing the land. Agents can choose to perform off-

farm labor to some extend (remunerated with 70 Baht per manday) and have access to hired 

labor (paid with 96 Baht per manday). Individual activities and constraints are specified for 

all active ingredients classified according to the WHO toxicity classes. All other inputs 

(seeds, fertilizers, planting materials and hormones, among others) are aggregated to the 

balance row variable costs, and are expressed in 1000 Baht per hectare. Agents can also buy 
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their pesticides and pay the variable costs using credit with a credit limit per agent for each 

simulation period of 200,000 Baht. Labor, water and sprinkler constraints for the cropping 

activities are set as monthly, so that different crops can be grown on the same plot in a year. 

3.4 The diffusion of innovations   

The decision-making of agents in the model is not only constrained by their resource 

endowments, but also by their access to investment objects. Parameters, such as acquisition 

costs and lifespan of each object as well as its availability and accessibility are defined in the 

network module. Investment objects required for this model included greenhouses for 

chrysanthemums, bell peppers and tomatoes, different perennials,  IPM cropping, short term 

credit, off-farm labor, hired labor, and drip and sprinkler irrigation. Rogers’ original model of 

technology diffusion (Rogers, 2003; Valente, 2005), yielding a classification of agents into 

adopter groups (innovators, early adopters, early majority, late majority, laggards) and 

corresponding network thresholds, was incorporated  into MPMAS (Schreinemachers and 

Berger, 2011) and has been applied frequently (Berger et al., 2007; Quang et al., 2014; 

Schreinemachers et al., 2007).  

The actual technology adoption process in MPMAS consists of two steps (Schreinemachers et 

al., 2009). As a first step, each agent assesses whether the level of overall exposure to the 

innovation and the related threshold level match its individual innovativeness, determined by 

adopter group affiliation. A completely new innovation such as IPM has an initial adoption of 

0%; then only agents in the innovator segment (2.5% of the agent population) get immediate 

access. If the threshold is reached, during a second step an agent gains access to the 

innovation and includes it in the decision-making process. As illustrated in Figure 5, exposure 

to an innovation increases, giving access to further adopter groups. This process progressively 

permits agents to select innovations and if profitable, use them on a specific farm. 

Figure 5 

 

3.5 The Specification of the adoption model and innovativeness ranking 

The decision to accept or reject is understood as a binary choice and can be used to predict 

adoption probabilities from a set of observable independent variables. Adoption here indicates 

whether a technology has ever been adopted, not whether it is used. Since knowledge of the 

innovation is limited to a part of the population only, a two-stage econometric procedure is 

suggested here. The first stage corresponds to the knowledge and persuasion parts of the 
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innovation diffusion process, in which the awareness of the innovation is determined and the 

pre- condition for farm households to then consider adoption. The first and second stage 

estimations are based on probit regression models. When the error terms of these two models 

are correlated (ρ≠ 0), standard probit techniques applied to the first equation yield biased 

results. A probit model with sample selection provides consistent, asymptotically efficient 

estimates for all parameters in such cases (Van de Ven and Van Praag, 1981). The actual 

dependent variable y
*
 constitutes the scale of adoption and is an unobservable magnitude. Xj 

includes a vector of strictly exogenous variables that determine adoption, while zj includes a 

vector of variables that determine knowledge of the innovation. βj and γj are the vectors of 

parameters to be estimated, and uij is the household specific error term. The model assumes 

that there exists an underlying relationship, as follows: 

  
                            (2) 

Such that only the binary outcome is observed: 

  
          

                      (3) 

The dependent variable is however not always observed. Rather, the dependent variable for 

observation j is observed if: 

  
                                        (4) 

And where: 

                                          (5) 

When ρ ≠ 0, a probit model of adoption is required that corrects for selection bias. The 

probability of observing a positive outcome for adoption is given by the following equation: 

                
            

            (6) 

Innovativeness is generally seen as a personal characteristic that distinguishes farm 

households, such that while the most innovative farmers eagerly test new technologies, other 

farmers might be more reluctant to do so. Innovativeness is difficult to measure directly and 

so is not usually recorded in surveys of farm households (Schreinemachers et al., 2009). As a 

result, econometrically estimated adoption probabilities can be used to predict the 

innovativeness levels of agents, given them a unique ranking. In the agent population, the 
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exact innovativeness of each agent could be determined using a set of allocated regression 

variables and the estimated regression coefficients. In a last step, the innovativeness ranking 

was transformed into an adopter categorization in line with the five adopter threshold groups.  

3.6 The econometric estimation of adoption probabilities 

As explained above, farmers in the study area rely almost exclusively on chemical pesticides 

for their pest control. Recent government efforts have aimed to reduce these high levels of 

pesticide use by means of the voluntary public GAP standard. In total, 20% of farmers in the 

Mae Sa watershed are GAP certified, at the national level certificates were issued to about 

212,000 farmers covering a crop area of 225,000 hectares in 2010 (Schreinemachers et al., 

2012). The GAP standard is as such the most widespread pesticide use reduction initiative, 

even though it has been found not to deliver profound pest management changes at the farm 

level. Nevertheless, it provides an entry point for analyzing the determinants of 

innovativeness in this sector. In accordance with the two-stage econometric estimation 

procedure of adoption probability, the dependent variables are whether farmers know (yj
select

 = 

1) or do not know of (yj
select

 = 0), as well as whether farmers do (yj
probit

 = 1) or do not possess 

(yj
probit

 = 0) GAP certification. The analysis is based on a set of explanatory variables, which 

represent farm characteristics, such as land size and wealth for example, as well as network 

characteristics. Of the network characteristics, exposure measures the links of an individual 

farm household to those households which are aware of the innovation. The variable reflects 

the proportion of contacts that know about an innovation when compared to contacts that 

don‘t know, indicating levels of communication among farm households (Valente, 2005). 

Royal Project membership and owning a motorbike are proxies for the number of ties an actor 

has with the outside world. The variable “Village head” in turn acts as a measure of the 

importance or prominence of a person in a network. 

The low level of profitability of an innovation could also explain a prolonged adoption period. 

A t-test for differences in output per hectare and per month did not reject the null hypothesis 

of the difference in output between non-GAP certified and GAP certified cropping activities 

being smaller or equal than 0 (Ho: diff ≤ 0) for leafy vegetables (t = 0.807, p = 0.201), 

greenhouse vegetables (t = -3.042, p = 0.999) and litchis (t = 1.045, p = 0.176). The probit 

model with sample selection used to estimate the adoption probabilities resulted in a Wald 

chi2 of 342.77 (Prob > chi2 = 0.000). Therefore, as a whole, the model is statistically 

significant. At the same time, the likelihood-ratio (LR) test indicates that the results of fitting 
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the combined model, which corrects for the sample selection bias, are significantly different 

from the outcomes produced when separately fitting the selection model for the knowledge of 

GAP and the probit model for GAP certification (chi2 = 3.88; Prob.> chi2 = 0.049). It is thus 

necessary to use the full model instead of a simple probit regression. Table 4 shows the 

regression output. Even though some of the variables might be conceptually related, the 

variance inflation factor used was 1.99, which suggests that multi-collinearity is not an issue. 

Table 4  

 

Education, membership of the Royal Project extension organization, as well as exposure to 

peers who know about an innovation, have a highly significant, positive effect on the level of 

knowledge of the GAP standard. Also, farmers who regularly apply pesticides and own a 

motorbike, so increasing their mobility, are more likely to know about the GAP standard. The 

percentage of high value vegetables as well as litchi on the farm, which are included as 

control variables, the age of the household head, diversification (growing more than one crop) 

and liquidity per capita in the farm household, are other positive and significant determinants 

of certification with the GAP standard. In contrast, farm size, farm age and having a village 

head in the household have a significant negative impact on the adoption of the GAP 

standard. Bigger and older farm households or those with a household member in a traditional 

leadership position are therefore likely to be less innovative.  

3.7 The perennial crop module 

Perennial crops are handled differently to annual crops by MPMAS, since the crop yield is not 

only influenced by input use, but also by crop age. As shown in Table 5, the present 

application includes three crops that are processed as perennials: litchi fruit trees (30 years), 

IPM leafy vegetable crop rotations (six years) and roses (six years). Three different input-

output levels or management options are distinguished for litchi, while for IPM vegetables the 

distinction is between three different rotation schemes. The switching between input-output 

guarantees that, after an investment in perennial crops has been made, adjustments are still 

possible for agents during each simulation period. However, For roses a uniform type of 

management is assumed in the model. In the case of having insufficient funds, agents also 

have the option to leave their plots idle, so receiving no income from these activities.  

Table 5  
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The leafy vegetables grown with IPM methods are annual crops; however, integrated pest 

management requires that certain crop rotations are used to break the pest cycle and maintain 

soil quality. Therefore, several annual cropping activities over the course of one year are 

grouped together according to what was observed in the field, in order to create three rotation 

schemes. IPM is knowledge intensive and requires some upfront investments to be made. 

Light terracing, including the planting of grass strips, as well as plastic rain shelters make up 

the acquisition costs. Changing from the conventional production of cash crops with high 

external input use to agro-ecological IPM practices can be expected to involve some initial 

yield losses. In the model, this conversion period is taken into account by treating IPM 

vegetable rotations as perennial crops and specifying a yield factor for each year. Being a 

completely new innovation not yet adopted by any agent at the beginning of the simulation, 

each adopter thus incurs yield losses when starting to grow IPM leafy vegetables, based on 

examples can be found in the literature on the yield impact of conversion from conventional 

to organic practices. (Giovannucci, 2006; Seufert et al., 2012). Table 6 shows how IPM 

vegetables are contained in the MP model as a perennial crop. 

Table 6  

 

3.8 Other input data 

Crop yields depend on the amount of water supplied, and the CropWat model (Allen, 1998; 

Doorenbos et al., 1979) and can be incorporated within MPMAS as an optional crop growth 

tool, as is the case for the Mae Sa watershed application. As with previous applications of 

MPMAS with respect to land-use decision-making in Thailand (Schreinemachers et al., 2009; 

Schreinemachers et al., 2010), the present model uses the CropWat model to simulate yield 

responses to water supply. The water availability in a month is controlled by in MPMAS, 

based on Weather data from the Royal Project station and irrigation options.  

Market data for is specified each simulation period and comprises buying prices for inputs, 

such as hired labor, pesticides and other variable inputs, as well as farmgate selling prices for 

the outputs of each cropping activity. Short-term credits and deposits, just like remunerations 

for off-farm labor, are also part of the market data. Due to the rather limited size of the Mae 

Sa watershed when compared to the overall area under horticulture in northern Thailand, the 

production output for the watershed is assumed not to affect price formation. Furthermore, 

due to the relatively short simulation period of five years, constant market data was assumed.  
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3.9 The scenario specifications of simulation experiments 

The Scenario Manager in MPMAS enables the user to specify changes in parameters and run 

a sequence of simulation experiments that stepwise isolate the effects of parameter changes 

(Berger et al., 2006). This means it is possible to design pesticide use reduction scenarios 

which constrain or affect the decision-making of agents in different ways. For instance, prices 

for pesticide inputs can be increased, access to IPM can be granted or pesticide use constraints 

can be switched on or off for different simulation runs. For pesticide use reduction policies, a 

range of parameters can be used to evaluate the effect of an intervention. This is instrumental 

to test the sensitivity of results to different levels of change. The focus of this study is on 

financial instruments and innovation diffusion. Table 7 gives an overview of the different 

policy interventions employed for assessing pesticide use reduction strategies within 

MPMAS, all of which can be simulated stand-alone or as combined interventions. The 

interventions can occur at different levels, denoted as low, medium and high. More precisely, 

the Mae Sa watershed model includes options to introduce taxes and combine them with lump 

sum compensation payments to agents according to farm size. Further scenarios involve 

subsidies and price premiums in conjunction with the introduction of IPM technology. The 

disincentives and incentives can be combined in policy packages. All instruments are 

evaluated in terms of their capability to reduce overall and toxic (WHO I and WHO II) 

pesticides use, their impact on farm incomes, their cost-effectiveness and how far they induce 

agents to adopt sustainable pest management practices. 

Table 7 

  

4. Model verification and validation 

Verification implies checking that the resources allocated to agents are consistent with the 

observed resources available to farmers. Consistency is tested on six important assets: 

household size, liquidity, greenhouses owned, area under chrysanthemum cultivation, area 

under litchi orchards and area under rose cultivation. All of these are expressed as per 

household quantities. Using linear regression without a constant, the regression line is 

predicted. Slope coefficients and R-squared values close to unity indicate a good fit between 

the outcome of the asset allocation by the lottery and the asset allocation recorded in the 

survey. Seed values, used to initiate the Monte Carlo simulation of the lottery, affect the 

random allocation of assets, which requires testing the robustness of agent population 

configurations over different seed values. Here, the lottery proved to produce robust results.  
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Table 8 

  

The validation process was carried out for three key outcome variables: land-use, sales 

revenues and pesticide use. Similar to verification, the goodness of fit between reality and the 

model outcomes is determined by regressing the observed data from the farm household 

survey against the simulated data generated by the model (forcing the intercept through the 

origin), evaluating the slope coefficient of the regression line and the R-squared. Coefficients 

between 0.95 and 1.05, and R-squared values between 0.95 and 1, are deemed sufficient for 

each of the three outcome variables at the aggregate level. The criteria are met for this 

application, across the various configurations of the agent population produced by 19 

different seed values. As Table 8 shows, the model was able to produce a robust 

representation of real world land-use and associated agent revenues and pesticide use. As 

explained before, the agent population is subdivided into 15 clusters, and this allows for a 

validation of the model to take place at a less aggregated level. While the goodness of fit does 

not match the validation results at the aggregate level, average coefficients ranging from 

0.805 to 1.040, with standard deviations between 0.075 and 0.207, can be regarded as 

acceptable. The same applies to the summary statistics of the R-squared values.  

5. Results 

Table 9 shows that even high taxes have only a moderate impact on pesticide use. With the 

high proportional tax rate, the reduction lies at 7.34%, which involves an income loss of 

6.56%. Considering the differences between the high proportional taxes with and without 

compensation payments, it becomes apparent from the simulated outcomes that changes in 

pesticide use are negligible and income losses only partially offset. The changes in land-use 

induced by the tax levies prevent the baseline income levels being reached; therefore, lump 

sum payments only compensate for lost earnings to a minor or moderate degree. As far as 

land-use changes are concerned, crops involving less pollution, such as cereals or chayote 

become comparatively more attractive, but crops involving more pollution, such as onions or 

bell peppers become less attractive. 

Table 9  

 

In the following, the results of the pesticide use reduction strategies that promote the adoption 

of IPM rather than penalize the use of pesticides are presented. For this purpose, access to 

IPM is granted to the innovator segment in period 1. Price premiums are a mechanism used to 

increase the attractiveness of IPM. Here, farm gate selling prices are increased by 2, 5 and 
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10% respectively. Also, subsidies provided for IPM inputs are an important support measure 

that requires further study. The prices of bio-pesticides are then lowered by 20, 40 and 

eventually 60% to assess that effect on pesticide use, farm income levels and IPM diffusion. 

The IPM stand-alone scenario is included in the figures and tables below as a reference. IPM 

is comparatively profitable on average and should therefore be attractive to profit-maximizing 

agents. The diffusion of IPM does not differ between the IPM reference scenario and the low 

and medium price premium, as well as all the bio-pesticide subsidy scenarios. The innovation 

diffuses rather quickly, so that in year 4, agents in the early majority segment can already 

adopt IPM. However, for the high price bonus level scenarios, access to IPM becomes 

available to agents in the late majority segment in year 5. The change in pesticide use is also 

highest for this scenario, reaching 22% in period 5. As far as changes in incomes are 

concerned, farm agents are better off in all scenarios when compared to the baseline and the 

IPM stand-alone scenario.  

Table 10  

 

Even though overall and toxic pesticide use is the most reduced by the high price premium, in 

terms of expenditures, the scenario creates costs that are well beyond any potential tax 

revenues. In the case of the high proportional tax, as the tax scenarios showed, the 

government could generate revenues of ca. 6000 Baht for each of the 1941 agent households 

(see Table 9). This implies that, apart from high price premiums, roughly all of the scenarios 

could be financed by tax returns. The cost-effectiveness values shown in Table 10 are a 

measure used to evaluate the policy costs of the IPM incentive against the amount of reduced 

toxic pesticide applications. The bio-pesticide subsidies turn out to be the most cost-effective 

interventions. Considering the cost-effectiveness of only 300 Baht costs per household for 

each percent of pesticide reduction, the high bio-pesticide subsidy scenario can be considered 

a suitable policy option. Land-use changes clearly differ across the scenarios in terms of the 

reduction of area under leafy and greenhouse vegetables. Table 11 illustrates that the area 

under IPM can only be substantially increased with high price premiums in place. The other 

interventions, where the diffusion process does not reach the late majority, bring about a 

smaller change in the area under IPM, when compared to the IPM stand-alone scenario. 

Table 11 

 

From the above scenarios it is possible to derive a series of policy packages. The high 

proportional tax now needs  to be considered in combination with the introduction of IPM and 
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a range of appropriate IPM adoption incentives. A high tax alone achieves only a moderate 

reduction in pesticide use, not exceeding 7% to 8% over the simulation period. Tax revenues 

can be employed to either directly compensate farmers through lump sum payments or 

promote less pesticide-intensive production practices. The following scenarios show that 

spending the tax money on IPM promotion rather than redistributing it as a lump sum 

achieves higher pesticide use reduction rates. Contrary to the tax-compensation scheme, 

investing in IPM adoption has a clear temporal dimension, since impacts can be assumed to 

become more significant over time. According to the experts from Kasetsart University in 

Thailand, a subsidy for bio-pesticides would most likely be put into practice, since it fits the 

existing policy framework which already allows for the subsidizing of various agricultural 

inputs. Price-sensitive consumers in Thailand might however be reluctant to pay a price 

premium for sustainably produced vegetables. The cost-effectiveness analysis also comes out 

in favor of advocating a bio-pesticide subsidy over other policy measures. As Table 12 shows, 

the same reduction of pesticide use is achieved using a 5% price premium involving average 

costs of 4,110 Baht per household, and a 60% subsidy for bio-pesticides for which average 

costs only lie at 3,170 Baht per household. This cost is well below tax revenues, which leaves 

room for the augmentation of bio-pesticide use and the related, additional government 

expenditures. Therefore a policy package with an 80% bio-pesticide subsidy has been 

simulated is also shown in Table 12. Here costs on average are still covered by tax revenues 

and, as diffusion takes IPM adoption to the late majority, the area under IPM is much larger. 

Therefore pesticide use in period 5 is also reduced to a greater extend, by 34%. 

Table 12 

 

It is of interest to examine more closely which agents gain or lose from the introduction of 

IPM. Figure 6, for the scenario involving a tax and a 80% bio-pesticide subsidy, helps to 

understand that reductions in pesticide use and changes in income with regard to the baseline 

situation are experienced across the agent population. The graph on the right shows that 

income gains occur across the lower and middle ranges of the cumulative agent distribution, 

while for the upper range losses are evident. Gains clearly outweighing losses in terms of 

agent count and magnitude. The innovativeness of agents and the adoption of IPM are the 

main drivers of positive changes in income. The less innovative agents register most losses.  

Figure 6 
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6. Discussion and conclusion 

6.1 Strength and weaknesses of the MPMAS application 

Overall, the temporal and spatial dimensions of the model, the combination of social network 

and optimization dynamics, as well as the analytical gains due simulating impacts on a 

heterogeneous population, are original features of MPMAS. The present MPMAS application 

harnesses these features and applies them to a new field of study. Agent-based modeling has 

so far not been used to assess crop protection policies. It increases the complexity of modeled 

processes and helps avoid problems of over-specialization and aggregation bias inherent in 

previous research using representative farm MP modeling (Falconer, 2000) or aggregate 

sector MP modeling (Jacquet et al., 2011). The results obtained with MPMAS illustrate the 

adjustments and reactions of individual farm agents to crop protection innovation and 

pesticide policy interventions, permitting an analysis of impacts for different polluter groups, 

including a more detailed representation of the dissemination of IPM among agents. The 

incorporation of network constraints alongside optimization in a multi-agent system generally 

distinguishes MPMAS from other bio-economic farm models used to assess innovations and 

responses to policies (Janssen and van Ittersum, 2007). Compared to a rule-based multi-agent 

system (Becu et al., 2003), MPMAS stands out, as optimizing agents with innovation access 

can evaluate adoption more effectively against the full range of existing cropping activities.  

The level of agent access to an innovation is defined by the stage of innovation diffusion and 

by the agent’s innovativeness. This presumes that the discrete innovativeness variable, which 

is calculated for each agent, can capture a range of factors such as social position, farm 

characteristics, and risk perceptions and attitudes. Therefore, the default random allocation of 

innovativeness in MPMAS has recently been replaced by a more refined direct assignment 

approach, which goes beyond previous improvements (Quang et al., 2014; Schreinemachers 

et al., 2009). It has been argued that risk perception is often absent from adoption research A 

concern raised by Abadi Ghadim and Pannell (1999) refers to the learning process, which 

according to them consists of a trial and error period in which farmers evaluate an innovation. 

The lack of learning-by-doing limits the scope of action of farm agents and constitutes an 

important shortcoming of the innovation diffusion approach, as modeled in this MPMAS 

application. It is the result of implementing IPM for leafy vegetables as a perennial crop 

which prevents agents from abandoning it in the years after adoption, though they can keep 

the land under IPM idle. The disadvantage of this needs to be weighed against the advantage 
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of using the perennial crop feature for IPM, which allows the model to represent changing 

yields over the lifetime of an innovation.  

In their assessment of economic incentives for pesticide use reduction, Skevas et al. (Skevas 

et al., 2012) extended the standard econometric model of production function with 

exponential damage control term, in order to capture the effect of environmental spill-overs 

such as biodiversity loss. They used data from three cropping seasons and focused on potato 

farmers only. Predicted coefficients served to model the impact of taxes or quotas on reducing 

pesticide use, which was split into two toxicity classes. Unlike MP-based models, such a 

statistical modeling approaches cannot fully represent the substitutions made between a big 

range of active ingredients. Falconer and Hodge (Falconer, 2000) confirmed that an important 

reason, why actual responses may be higher than theoretically predicted, is related to the 

assumptions and reductionist approaches used when modeling, especially with regard to the 

range of options available to producers. Falconer and Hodge’s seminal case study of pesticide 

use reduction policies in the UK is based on a representative MP farm model and focuses on 

taxes and levies. The data used for their model stems from experimental trials for 12 crops, 

those which serve as approximations of conventional and low-input farming production 

activities (Falconer, 2000, 2001). Similarly, an MP-based pesticide policy model for the 

French agricultural sector developed by Jacquet et al. (Jacquet et al., 2011) is built on 

agronomic trial results and expert knowledge. In contrast to these two models, the MPMAS 

model developed here exhibits a more data driven model set-up, because it contains actual 

empirical observations with varying pesticide observations. Instead of empirical observations, 

it would have been possible to resort to expert opinion in order to parameterize the cropping 

activities for the model. While the entomological and ecological aspects of crop-pesticide 

interaction could have been represented more accurately, the empirically-grounded model 

implementation more closely reflects the actions of the farmers themselves. This allows the 

model to create a vast range of realistic substitution possibilities that fit the agro-ecological 

conditions, whereas the fit between expert knowledge or site-specific data from well-managed 

trails and actual farming practices can sometimes be unclear. The simulation period over 

which these interventions are assessed is deliberately kept brief, so ignoring the interaction of 

farm-level decision-making and ecological processes, or environmental spill-overs such as 

pesticide resistance build-up and changes in natural pest control, is less pertinent than when 

dealing with an extended simulation period. In terms of temporal analysis, the focus of this 

study is mainly on the short-run diffusion of IPM in relation to different adoption incentives.  
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6.2 Implications for pesticide policy-making 

The issues of food safety and pesticide risk reduction continue to be high on the agenda of 

Thai policy-makers. This thesis analyses a range of economic instruments that can help to 

tackle the problem of heavy pesticide use, though not all of these instruments are equally 

effective, practicable or relevant.  

First of all, it needs to be stressed however that policy implications are related to 

methodology. Skevas et al. (2012) found that a lack of response by Dutch farmers to increases 

in the price of pesticides is critically influenced by their choice of model. As they used an 

econometric simulation model based on an exponential damage control specification, the 

impact of the tax is determined by the low output elasticity of pesticide use. Therefore, a 

120% tax only reduced pesticide applications by 4%. The high values of pesticide overuse 

that result from the econometric pesticide productivity analysis carried out for Thai farmers 

with a similar methodological set-up, also suggests that the responsiveness of farmers to 

higher pesticide tax levels of is very low. From their review of 17 studies and an analysis of 

the potential for pesticide taxation in Mexico, Pina and Forcada (2004) ascertained that own-

price elasticities of pesticide demand are generally low, which leads them to conclude that 

farmers will not change their on-farm practices, but instead decide to absorb impacts through 

their incomes. The representative MP farm model of Falconer and Hodge (2000, 2001) 

showed that only high taxes can achieve significant pesticide use reductions. This is in line 

with the results of the model used here, which demonstrates that, while the tax impact is far 

from great, a 50% tax can reduce pesticide use by 8.5%. While the model parameterization is 

influenced by the exponential damage control term, the dynamic optimization process is 

based on a vast array of activities, constraints and pesticide substitution options, and thus 

provides a more detailed representation of the actual farm household decision-making 

environment. In conclusion, MP-based farm models seem to yield more perceptible tax 

impacts than econometric analyses. At first glance, the sector MP model of Jacquet et al. 

(2011) produced extra-ordinary results, since a 16% tax reduced pesticide use by 20%. It must 

be said however that, in contrast to MPMAS, the model was not calibrated to reproduce 

observed behavior, but set up to explore the capacities of a series of low-input technologies 

without access constraints. In the MPMAS simulation scenario, in which a 50% tax is 

combined with low-input IPM access, the innovation becomes available to the first three 

innovator segments and the reduction of pesticide use rises to 13.5%. The availability of 

technologies and the sequence of access, both of which are a function of individual 
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characteristics and time, influenced the results significantly. Also, the redistribution effect of 

the tax revenues has an essential impact on the model outcomes. In this regard, the results 

here are in line with those of Jacquet et al. (2011), who tested the direct compensation of 

farmers against the provision of subsidies to organic farming. Their model and the MPMAS 

application used here provide evidence that financially supporting sustainable farming 

technologies are more effective at achieving the environmental goal of lower pesticide 

applications, than the per hectare redistribution of collected taxes. The simulation results of 

both models indicate that, due to the good rate of return provided by low-input innovation, 

incomes are on average not negatively affected by policy-induced land-use changes.  

For policy makers, it is important of know which policy mix works best. It turned out that the 

high level bio-pesticide subsidy is the most cost effective, practicable and realizable adoption 

incentive policy. The MPMAS model demonstrates that the combination of a high 

proportional tax and a 60% bio-pesticide subsidy, one financed by tax revenues, reduces 

overall pesticide use after five simulation periods by 18%, and more toxic pesticide use by 

almost 25%. With additional funds it could be possible to sustain a 80% bio-pesticide subsidy 

and, as a result, increase toxic pesticide use reductions to almost 35%. On the whole, 

reductions of that magnitude can be considered significant over a short time horizon. This 

finding is in line with those of Falconer and Hodge (Falconer, 2000), who stated that taxes 

can be more effective if farmers are provided with pest control alternatives. The lack of 

alternatives to synthetic pesticides among Thai farmers has been described as one of the main 

factors causing the high levels of pesticide use in the country (Lamers et al., 2013; 

Schreinemachers et al., 2011). Praneetvatakul et al. (2013) concluded that it is best to 

introduce a package of policies that combines an environmental tax with supportive measures 

to help farmers change their on-farm practices. This research has confirmed this, by showing 

that the availability of IPM for one group of vegetable crops can bring down pesticide 

pollution levels, especially if accompanied by policies to incentivize adoption. Due to a lack 

of data, IPM methods are only included in the model for leafy vegetables. With integrated 

pest control available for other cropping activities, in particular bell peppers, tomatoes and 

flowers, even more far-reaching reductions can be achieved. The same is likely to be the case 

for a time horizon above five simulation periods; however, due to the innovation diffusion 

over time, the long-term financing of bio-pesticide subsidies or price premiums might not be 

covered by tax revenues. One way to guarantee financing for subsidies and price premiums 

would be to cap the number of eligible farmers or the amount of eligible land. Transaction 
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costs, for which no estimates were available in the model, can be assumed to be lower when 

implementing a single incentive policy with a policy infrastructure already in place, rather 

than a mix of payments, subsidies and price premiums. At the moment however, subsidies for 

conventional agriculture continue to dominate, and there is a lack of government will to 

promote sustainably produced products in the domestic market, despite official commitments 

to the contrary. Kasem and Thapa (Kasem and Thapa, 2012) pointed out that there is a clear 

divergence between the commitments of policy-makers, and actual practice in Thailand.   

In addition, a crucial factor in the impact of policies on pesticide use is the nature of the 

accompanying innovation. GAP certification is not the subject of innovation diffusion in the 

MPMAS model, as evidence suggests that the public GAP standard in Thailand has little 

impact on reducing pesticide use due to a lack of standard compliance and changes in on-farm 

practices (Amekawa, 2013; Schreinemachers et al., 2012), but it was decided to use a more 

far-reaching sustainability innovation, that is the IPM system practiced by farmers belonging 

to Royal Project station in Doi Angkhang. The transfer of data from that location to the Mae 

Sa watershed can be regarded as unproblematic in terms of crop suitability, since the climate, 

soils and topography are similar in both locations. Extension services, which supports farmers 

through the provision of production and marketing advice, need to be further developed. In 

places, with a lack of solid advisory structures, an innovation, such as a comprehensive agro-

ecological IPM system, which requires a high degree of skill transfer and logistics to be in 

place, is more difficult to become established. The preparation of biological pest control and 

fertilizing inputs, as well as the sequence of input applications for IPM is knowledge-

intensive. Investments are required to improve the capacity of government agencies and 

NGOs to better respond to farmers’ demands, facilitate knowledge exchange and strengthen 

community initiatives. Farmer field schools have been successfully tested in Southeast Asia in 

order to implement community IPM (Pontius et al., 2002), but they need to be tailored to the 

local circumstances. In the context of northern Thailand, agro-ecological IPM practices are 

not widespread. The example of Doi Angkhang, as well as the econometric analysis of GAP 

certification adoption provided here, suggests that formal institutions providing effective 

extension services are important. This however does not rule out to link formal advisory 

services to informal farmer networks and promote participatory approaches that take into 

account the diversity of demand for innovations, and allow farmers to adapt innovations to 

their needs. Their role in Thailand has been found to be important (Schreinemachers et al., 

2013). Also in this study, exposure, that is the links between farmers who are aware and those 
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who are not aware of an innovation, is also shown to be vital for innovation adoption. For 

public investments this means policy-makers needs to prioritize the building of long-term 

interactive knowledge partnerships and innovation networks (Neef et al., 2013). 

The outcomes of the MPMAS model imply that, if the institutional context allows for 

knowledge of IPM innovations to take root among local communities, the integrated 

management of pests will be widely adopted, implemented and due to its profitability 

sustained in the long run. Different types of interventions need to be balanced. Policies aimed 

at addressing the environmental externalities caused by market participation for example 

should be combined with socially-oriented policies that target poorer segments of the 

population (Zeller et al., 2013). The prediction of innovativeness and the simulation results 

regarding IPM adoption shown here demonstrate that poorer households can be innovative 

and so benefit from the introduction of farm-income increasing innovations, such as IPM. 

Only the wealthier and highly polluting households benefit little. In a nutshell, integrated pest 

management can partly mitigate the environmental impacts of agricultural intensification, 

without negatively affecting livelihoods. A trade-off between environmental protection and 

livelihoods can be avoided if policy-makers manage to introduce economic incentives to 

motivate changes in growing practices as well as create an enabling environment in which 

farmers can learn about IPM.  



 

 
26 

 

References 

Abadi Ghadim, A.K., Pannell, D.J., 1999. A conceptual framework of adoption of an 

agricultural innovation. Agricultural Economics 21, 145-154. 

Allen, R.G., 1998. Crop evapotranspiration: guidelines for computing crop water 

requirements, Irrigation and Drainage Series No. 56. Food and Agriculture Organization of 

the United Nations, Rome. 

Amekawa, Y., 2013. Can a public GAP approach ensure safety and fairness? A comparative 

study of Q-GAP in Thailand. The Journal of Peasant Studies 40, 189-217. 

Becu, N., Neef, A., Schreinemachers, P., Sangkapitux, C., 2008. Participatory computer 

simulation to support collective decision-making: Potential and limits of stakeholder 

involvement. Land Use Policy 25, 498-509. 

Becu, N., Perez, P., Walker, A., Barreteau, O., Page, C.L., 2003. Agent based simulation of a 

small catchment water management in northern Thailand: Description of the 

CATCHSCAPE model. Ecological Modelling 170, 319-331. 

Berger, T., 2001. Agent-based spatial models applied to agriculture: a simulation tool for 

technology diffusion, resource use changes and policy analysis. Agricultural Economics 25, 

245. 

Berger, T., Birner, R., Díaz, J., McCarthy, N., Wittmer, H., 2007. Capturing the complexity of 

water uses and water users within a multi-agent framework Water Resources Management 

21, 129-148. 

Berger, T., Schreinemachers, P., 2006. Creating agents and landscapes for multiagent systems 

from random samples. Ecology and Society 11, 10 - 19. 

Berger, T., Schreinemachers, P., Woelcke, J., 2006. Multi-agent simulation for the targeting 

of development policies in less-favored areas. Agricultural Systems 88, 28-43. 

Doorenbos, J., Kassam, A.H., Bentvelsen, C.I.M., 1979. Yield response to water, Irrigation 

and Drainage Series No. 33. Food and Agriculture Organization of the United Nations, 

Rome. 

Ecobichon, D.J., 2001. Pesticide use in developing countries. Toxicology 160, 27-33. 

Falconer, K., Hodge, I., 2000. Using economic incentives for pesticide usage reductions: 

responsiveness to input taxation and agricultural systems. Agricultural Systems 63, 175-194. 

Falconer, K., Hodge, I., 2001. Pesticide taxation and multi-objective policy-making: farm 

modelling to evaluate profit:environment trade-offs. Ecological Economics 36, 263 - 279. 

Giovannucci, D., 2006. Evaluation of Organic Agriculture and Poverty Reduction in Asia. 

IFAD, Rome. 

Grovermann, C., Schreinemachers, P., Berger, T., 2013. Quantifying pesticide overuse from 

farmer and societal points of view: An application to Thailand. Crop Protection 53, 161-168. 

Jacquet, F., Butault, J.-P., Guichard, L., 2011. An economic analysis of the possibility of 

reducing pesticides in French field crops. Ecological Economics 70, 1638-1648. 

Janssen, S., van Ittersum, M.K., 2007. Assessing farm innovations and responses to policies: 

A review of bio-economic farm models. Agricultural Systems 94, 622-636. 

Kasem, S., Thapa, G.B., 2012. Sustainable development policies and achievements in the 

context of the agriculture sector in Thailand. Sustainable Development 20, 98-114. 



 

 
27 

 

Lamers, M., Schreinemachers, P., Ingwersen, J., Sangchan, W., Grovermann, C., Berger, T., 

2013. Agricultural Pesticide Use in Mountainous Areas of Thailand and Vietnam: Towards 

Reducing Exposure and Rationalizing Use, in: Fröhlich, H.L., Schreinemachers, P., Stahr, 

K., Clemens, G. (Eds.), Sustainable Land Use and Rural Development in Southeast Asia: 

Innovations and Policies for Mountainous Areas. Springer Berlin Heidelberg, pp. 149-173. 

Neef, A., Ekasingh, B., Friederichsen, R., Becu, N., Lippe, M., Sangkapitux, C., Frör, O., 

Punyawadee, V., Schad, I., Williams, P., Schreinemachers, P., Neubert, D., Heidhues, F., 

Cadisch, G., The Dang, N., Gypmantasiri, P., Hoffmann, V., 2013. Participatory Approaches 

to Research and Development in the Southeast Asian Uplands: Potential and Challenges, in: 

Fröhlich, H.L., Schreinemachers, P., Stahr, K., Clemens, G. (Eds.), Sustainable Land Use 

and Rural Development in Southeast Asia: Innovations and Policies for Mountainous Areas. 

Springer Berlin Heidelberg, pp. 321-365. 

Nolan, J., Parker, D., Van Kooten, G.C., Berger, T., 2009. An Overview of Computational 

Modeling in Agricultural and Resource Economics. Canadian Journal of Agricultural 

Economics/Revue canadienne d'agroeconomie 57, 417-429. 

Parker, D.C., Manson, S. M., Janssen, M. A., Hoffmann,  M. J., Deadman, P., 2003. Multi-

Agent System Models for the Simulation of Land-Use and Land-Cover Change: A Review. 

Annals of the Association of American Geographers 93. 

Pina, C.M., Forcada, S.A., 2004. Effects of an environmental tax on pesticides in Mexico. 

Industry and Environment 27, 34 - 38. 

Pontius, J., Dilts, R., Bartlett, A., 2002. Ten Years of IPM Training in Asia - From Farmer 

Field School to Community IPM. FAO, Bangkok. 

Praneetvatakul, S., Schreinemachers, P., Pananurak, P., Tipraqsa, P., 2013. Pesticides, 

external costs and policy options for Thai agriculture. Environmental Science & Policy 27, 

103-113. 

Quang, D.V., Schreinemachers, P., Berger, T., 2014. Ex-ante assessment of soil conservation 

methods in the uplands of Vietnam: An agent-based modeling approach. Agricultural 

Systems, 108-119. 

Rogers, E.M., 2003. Diffusion of Innovations, 5 ed. Simon and Schuster. 

Schreinemachers, P., Berger, T., 2011. An agent-based simulation model of human–

environment interactions in agricultural systems. Environmental Modelling & Software 26, 

845-859. 

Schreinemachers, P., Berger, T., Sirijinda, A., Praneetvatakul, S., 2009. The diffusion of 

greenhouse agriculture in Northern Thailand: Combining econometrics and Agent-Based 

Modeling. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 

57, 513-536. 

Schreinemachers, P., Berger, T., 2006. Land use decisions in developing countries and their 

representation in multi-agent systems. Journal of Land Use Science 1, 29 - 44. 

Schreinemachers, P., Fröhlich, H., Clemens, G., Stahr, K., 2013. From Challenges to 

Sustainable Solutions for Upland Agriculture in Southeast Asia, in: Fröhlich, H.L., 

Schreinemachers, P., Stahr, K., Clemens, G. (Eds.), Sustainable Land Use and Rural 

Development in Southeast Asia: Innovations and Policies for Mountainous Areas. Springer 

Berlin Heidelberg, pp. 3-27. 



 

 
28 

 

Schreinemachers, P., Potchanasin, C., Berger, T., Roygrong, S., 2010. Agent-based modeling 

for ex-ante assessment of tree crop technologies: litchis in northern Thailand. Agricultural 

Economics 41, 519-536. 

Schreinemachers, P., Schad, I., Tipraqsa, P., Williams, P., Neef, A., Riwthong, S., Sangchan, 

W., Grovermann, C., 2012. Can public GAP standards reduce agricultural pesticide use? 

The case of fruit and vegetable farming in northern Thailand. Agriculture and Human 

Values 29, 519-529. 

Schreinemachers, P., Sringarm, S., Sirijinda, A., 2011. The role of synthetic pesticides in the 

intensification of highland agriculture in Thailand. Crop Protection 30, 1430-1437. 

Schreinemachers, P., Tipraqsa, P., 2012. Agricultural pesticides and land use intensification in 

high, middle and low income countries. Food Policy 37, 616-626. 

Schreinemachers, P., Tipraqsa, P., Berger, T., 2007. Assessing innovations and sustainability 

strategies with multi-agent systems, International Symposium towards Sustainable 

Livelihoods and Ecosystems in Mountainous Regions, Chiang Mai. 

Seufert, V., Ramankutty, N., Foley, J.A., 2012. Comparing the yields of organic and 

conventional agriculture. Nature 485, 229-232. 

Skevas, T., Stefanou, S.E., Lansink, A.O., 2012. Can economic incentives encourage actual 

reductions in pesticide use and environmental spillovers? Agricultural Economics 43, 267-

276. 

Valente, T.W., 2005. Models and methods for innovation diffusion, in: P. J. Carrington, J. 

Scott, S. Wasserman (Eds.), Models and Methods in Social Network Analysis. Cambridge 

University Press, Cambridge, UK. 

Van de Ven, W.P.M.M., Van Praag, B.M.S., 1981. The demand for deductibles in private 

health insurance: A probit model with sample selection. Journal of Econometrics 17, 229-

252. 

WHO, 2009. The WHO recommended classification of pesticides by hazard and guidelines to 

classification. World Health Organization, Geneva. 

Wilson, C., Tisdell, C., 2001. Why farmers continue to use pesticides despite environmental, 

health and sustainability costs. Ecological Economics 39, 449-462. 

Zeller, M., Ufer, S., Van, D., Nielsen, T., Schreinemachers, P., Tipraqsa, P., Berger, T., Saint-

Macary, C., Van, L., Keil, A., Dung, P., Heidhues, F., 2013. Policies for Sustainable 

Development: The Commercialization of Smallholder Agriculture, in: Fröhlich, H.L., 

Schreinemachers, P., Stahr, K., Clemens, G. (Eds.), Sustainable Land Use and Rural 

Development in Southeast Asia: Innovations and Policies for Mountainous Areas. Springer 

Berlin Heidelberg, pp. 463-490. 



 

 
29 

 

Tables 

 

Table 13: Basic farm household and farm characteristics 
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Pers. % 

1000  

baht 

1000  

baht 

md/ 

m/hh 

md/ 

m/hh 

md/ 

m/hh y. ha # % % % % % 

Central-Mid 3.6 95 66.3 32.6 51.8 21.3 8.8 22 0.8 8.4 50 35 11 56 9 

Central-High 3.2 100 74.9 41.6 50.1 15.6 10.7 23.8 0.7 11.0 1 29 23 69 14 

Southern-High 6.6 58 28.6 10.8 81.6 22.3 14.1 24.8 2.0 1.8 1 97 45 78 58 

Western-High 6.1 62 35.4 7.2 75.9 11.6 19.1 24 2.2 1.6 11 100 0 62 33 

Northern-High 7.1 66 28.1 4.9 94.4 18.2 17.6 21 2.2 0.5 52 96 26 100 64 
Note: md = mandays, m = months, hh = household 

 

 

Table 14: Production data for IPM vegetable rotations as practiced by farmers at Doi 

Angkhang (2012, n = 34) 

Growing  

length 

Labor 

requirement 

Bacillus 

turingh. 

Bacillus 

subtilis 

Tricho- 

derma 

Azadi- 

rachtin 
Metazan 

Bio-

pesticide 

costs 

Other var. 

costs 

Sales 

revenues 

(months) 
(mandays 

/ha/ month) 

(kg/ha/ 

month) 

(kg/ha/ 

month) 

(kg/ha/ 

month) 

(kg/ha/ 

month) 

(kg/ha/ 

month) 

(baht/ha/ 

month) 

(baht/ha/ 

month) 

(baht/ha/ 

month) 

Rotation option 1: Cool season cabbage -> Hot season lettuce -> Rainy season spinach 

2.33 693 11.15 4.00 4.00 0.82 1.16 7,334 18,412 202,499 

Rotation option 2: Cool season lettuce -> Hot season spinach -> Rainy season cabbage 

2.33 407 6.46 11.15 4.00 4.00 0.81 7,334 21,063 114,488 

Rotation option 3: Cool season spinach -> Hot season lettuce -> Rainy season cabbage 

2.33 334 10.56 6.46 5.21 5.21 0.00 5,479 14,535 82,962 
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Table 15: Crop data selected for the MP matrix  

Crop 
Observations by land 

– flat (1) to steep (4) 

Growing 

length 
Yield Labor 

Variable 

inputs 

Pesticide 

use 
Irrigated 

  1(#) 2(#) 3(#) 4(#) Months tons/ha mandays/ha 1000baht/ha kg/ha % 

Upland rice 3 2 2 2 5.73 1.68 15.61 2.04 0.20 0 

Maize 1 2 4 4 4.73 2.24 9.79 0.59 0.07 9 

White cabbage 6 14 26 20 3.36 25.64 95.19 30.55 1.58 26 

Chinese cabbage 6 14 26 20 2.49 23.66 97.84 21.17 2.09 56 

Chinese kale 8 3 8 4 2.32 5.93 211.83 15.91 1.62 96 

Lettuce 2 9 10 3 2.48 9.45 100.12 23.68 0.94 54 

Bell pepper 32 13 6 4 5.64 45.99 247.02 434.08 29.45 100 

Tomato 2 4 7 2 5.20 68.68 416.18 591.52 14.34 100 

Onion 3 3 3 3 4.00 26.30 165.29 85.72 8.61 100 

Green bean 5 11 8 4 3.00 8.97 152.06 13.25 1.59 89 

Chayote 10 9 2 6 6.23 18.67 178.99 85.76 0.09 96 

Chrysanthemum 12 2 11 0 4.33 52.12 198.85 32.91 12.23 100 

Roses 2 2 2 2 12.00 164.37 133.46 131.92 19.44 100 

Litchi 12 12 12 12 12.00 4.05 11.80 3.32 0.82 67 

 

 

Table 16: Probit regression with sample selection - Output 

 GAP standard certification           

(probit model) 

 GAP knowledge             

(selection model) 

Variables Coef. SE  Coef. SE 

Household size (#) 0.023 0.051  0.007 0.042 

Farm size (ha) -0.386
***

 0.103  -0.093 0.081 

Percentage of high value vegetables (%) 0.860
**

 0.399  0.315 0.251 

Percentage of litchi (%) 2.023
***

 0.418  0.363 0.349 

Farm age (years) -0.045
**

 0.020  0.014 0.012 

Age household head (years) 0.070
***

 0.024  -0.006 0.012 

Education (yes=1) 1.148
***

 0.291  0.809
***

 0.223 

Grow more than 1 crop (yes=1) 0.821
**

 0.396  0.339 0.214 

Applying pesticides regularly (yes=1) 0.361 0.223  0.345
**

 0.174 

Liquidity per capita (1000 baht) 0.003
***

 0.001  0.001 0.001 

Own motorbike (yes=1) 0.668
*
 0.344  0.379

*
 0.237 

Member of Royal Project (yes=1) 1.502
***

 0.229  1.054
***

 0.163 

Exposure (#) 2.201
***

 0.607  2.194
***

 0.439 

Village head (yes=1) -1.009
*
 0.543  -0.021 0.454 

Born in the Mae Sa watershed (yes=1)    -0.014 0.168 

Constant -7.506 1.072  -3.163 0.669 

N 111  295 

Wald chi2 = 342.778, Prob. > chi2 = 0.000   

LR test of independent equations (rho = 0): Chi2 = 3.88; Prob. > chi2 = 0.049 

Note: Significance levels: *P < 0.10, **P < 0.05, ***P < 0.01 
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Table 17: Data of perennials crops in the model 

Perennial crop Lifespan Acquisition 

cost 

Price Av. yield 

potential 

Av. crop 

yield factor 

Av.  

labor 

Av. cash  

cost 

Years 1000 baht/ha 1000 baht/ton ton/ha  mandays/ha 1000 baht/ha 

Litchi low input 30 2.43 9.23 2.10 0.78 106.02 0.00 

Litchi average input 30 2.43 9.23 3.08 0.78 111.88 2.35 

Litchi high input 30 2.43 9.23 5.53 0.78 217.92 6.43 

IPM veg. rotation 1 6 9.12 11.70 56.77 0.90 3,378.51 165.4 

IPM veg. rotation 2 6 9.12 11.00 64.07 0.90 3,751.65 176.2 

IPM veg. rotation 3 6 9.12 12.60 42.86 0.90 3,008.31 130.5 

Roses 6 96.21 8.20 157.64 0.90 1,565.81 141.5 

Note: The price for flowers is given in 1000 baht/1000 flowers and the yield in 1000 fl./ha. 

 
Table 18: Part of the MP model showing simplified implementation of IPM vegetables as 

perennial crops 
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Units   kg kg ha ha ha ha  ha ha ha ha ha md.    

Activities (#)   2 5 12 12 24 12  12 12 24 12 4 1    

Objective function   E(+C) E(-C) 
   

           

Invest land ha 4   1 
  

  1       ≤ 0 

Land ha 4   
   

      1   = (+R) 

Labour md. 1   
   

       1  ≤ (+R) 

Monthly water l/sec 12   (+A) (+A) (+A)   (+A) (+A) (+A)     ≤ (+R) 

IPM land ha 12   +1 +1 +1 +1  +1 +1 +1 +1    = (+R) 

IPM innov. Access - 1   (+1) (+1) (+1) (+1)  (+1) (+1) (+1) (+1)    ≤ (+I) 

Capital use  Baht 1   (+A) (+A) (+A)   (+A) (+A) (+A)     ≤ (+R) 

Sprinkler irrigation ha 12   +1 +1 +1   +1 +1 +1     ≤ (+R) 

Balance bio-pestic. Kg 5  -1 +A +A +A   +A +A +A     ≤ 0 

Balance monthly 

land 
ha 48 

  
+1 +1 +1  

 
+1 +1 +1  

 -1  ≤ 0 

Bal. labor IPM veg. md. 1   (+A) (+A) (+A)   (+A) (+A) (+A)   -1  ≤ 0 

Balance IPM veg. kg 6 +1  
 

E(-Y) E(-Y)    E(-Y) E(-Y)     ≤ 0 

Note: E = Expected values, C = Price coefficients, Y = Crop Yields, A = Technical coefficients, R = Available resources, I = 

Available innovations. Values in round brackets are adjusted inside the model. Bold values are agent-specific. md.= mandays 

 
Table 19: Overview of policies at different intervention levels 

Intervention Low (1) Medium (2) High (3) 

Prop. tax  

(+ compensation 

payment) 

WHOIa & Ib: 20% 

WHOII: 15% 

WHOIII: 10% 

WHOU: 5% 

WHONL: 5% 

WHOIa & Ib: 50% 

WHOII: 40% 

WHOIII: 30% 

WHOU: 20% 

WHONL: 20%  

WHOIa & Ib: 70% 

WHOII: 50% 

WHOIII: 40% 

WHOU: 30% 

WHONL: 30%  

Price premium for IPM 

produce 
2% price increase  5% price increase  10% price increase  

Bio-pesticide subsidy   20% price decrease  40% price decrease  60% price decrease  
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Table 20: Summary statistics for validation results for three outcome variables across all seed 

values 

 
Land-use Sales revenues Pesticide use 

 
Coef. R2 Coef. R2 Coef. R2 

Obs.  19 19 19 19 19 19 

Mean 0.991 0.995 0.960 0.962 0.980 0.981 

Std. dev. 0.008 0.001 0.008 0.004 0.001 0.001 

Min. 0.976 0.994 0.944 0.951 0.978 0.980 

Max. 1.004 0.997 0.973 0.970 0.985 0.982 

 

 

Table 21: Evaluation of interventions for tax scenario impacts when compared to the baseline 

Scenario name Δ income 
Tax 

revenues 

Δ pesticide use Δ toxic pesticide use 

Av. P. 5 Av. P. 5 

  
 (%) 

(1000 

baht/hh) 

(1000  

baht/hh) 
(%) (%) (%) (%) 

Low proportional tax -1.24 -3.17 1.48 -2.06 -2.08 -2.67 -2.74 

Medium proportional tax -3.96 -10.10 4.21 -5.03 -5.12 -6.26 -6.29 

High proportional tax -6.56 -16.71 6.74 -7.34 -7.38 -8.26 -8.27 

High prop. tax + compensation -4.81 -12.28 6.73 -7.47 -7.46 -8.27 -8.21 

Note: Averages over all agents and simulation periods, values represent the difference between the respective scenario and the baseline 

 

Table 22: Evaluation of policies for IPM + adoption incentives 

Scenario  Δ income 
Policy 

costs 

Net  

benefit 

Δ pesticide use Δ toxic pes. use Cost- 

effectiveness Av. P. 5 Av. P. 5 

  % 
1000 

baht/hh 

1000 

baht/hh 

1000 

baht/hh 
% % % % 

policy costs/ 

av. Δ toxic  

pes. use 

IPM, stand-alone 10.93 28.31 0.00 28.31 -5.53 -9.71 -7.81 -12.95 - 

IPM + low price prem. 11.74 30.43 1.50 28.93 -5.74 -10.11 -8.26 -13.47 -0.18 

IPM + med. price prem. 12.08 31.36 3.85 27.50 -6.62 -11.04 -9.30 -14.69 -0.41 

IPM + high price prem. 17.01 44.32 10.48 33.85 -10.09 -22.17 -13.10 -27.25 -0.80 

IPM + low subsidy 11.20 29.02 0.96 28.06 -5.92 -10.65 -8.28 -13.63 -0.12 

IPM + med subsidy 11.97 31.02 1.95 29.07 -6.02 -10.81 -8.60 -14.15 -0.23 

IPM + high subsidy 12.07 31.36 3.01 28.35 -6.49 -11.17 -9.29 -14.90 -0.32 

Note: Averages over all agents and simulation periods, values represent the difference between the respective scenario and the baseline, for 

pesticide use reductions average (Av.) & period 5 (P.5) values are reported.  
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Table 23: Land-use changes for IPM + adoption incentives 

Scenario  Cereals Leafy veg. Greenh. veg. Other veg. Flowers Fruit tree IPM  

Name % % % % % % ha 

IPM, stand-alone -0.81 -19.31 -12.36 -34.71 -2.37 -1.17 207.25 

IPM + low price prem. -0.81 -19.65 -12.37 -36.77 -2.41 -0.52 218.60 

IPM + med. price prem. -1.31 -20.45 -13.21 -38.47 -2.82 -0.77 230.44 

IPM + high price prem. -7.90 -34.32 -29.92 -72.21 -6.25 -0.20 413.92 

IPM + low subsidy -0.73 -19.66 -12.58 -36.52 -4.06 -0.52 216.89 

IPM + med subsidy -1.41 -20.23 -13.02 -37.51 -2.63 -0.69 224.04 

IPM + high subsidy -1.37 -20.78 -13.55 -38.50 -2.80 -0.42 233.16 

Note: Results of period 5 averaged over all agents, values represent the difference between the respective scenario and the baseline, total 

cultivated area in the model: 1100 ha 

 

 

Table 24: Evaluation of policy packages 

Scenario Δ 

income 

Av.  

Tax 

revenues 

Av.  

Policy  

costs 

Av.  

Δ pesticide    

use  

Δ highly toxic 

pesticide use  

Innov. 

access  

IPM area 

Av.  P. 5  Av.  P. 5  P. 5 P. 5 

 IPM + tax +   (%)  (1000  

baht/hh)  

(1000  

baht/hh)  

(%)  (%)  (%)  (%)  (Adopter 

group) 

(ha) 

No other 

intervention 

4.9  6.2  0.0  -12.9 -17.8 -16.3 -21.7 Early 

majority  

215.7  

Direct 

compensation  

6.0  6.2  -6.2  -12.8  -17.9  -16.3  -21.8  Early 

majority  

215.9  

Price  

premium 5%  

5.7  6.1  -4.1  -14.4  -20.1  -17.9  -24.4  Early 

majority  

237.5  

Bio-pesticide 

subsidy 60% 

5.5  6.1  -3.2  -14.9  -20.1  -17.9  -24.5  Early 

majority 

239.9  

Bio-pesticide 

subsidy 80% 

8.7  5.9  -5.4  -17.4  -29.0  -20.7  -34.3  Late 

majority 

414.5  

Note: Averages over all agents and simulation periods; values represent the difference between the respective scenario and the baseline, for 

average pesticide use reductions (Av.) and period 5 (P.5), values are reported.  
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Figures 

 

  

Figure 7: Gross margins and pesticide use for different crops (growing period in brackets) 

 

 

 

Figure 8: Proportion of pesticides used by different types and WHO toxicity classes 

 

 

 

Figure 9: Dynamics of the MPMAS Mae Sa watershed model 
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Figure 10: Representation of the estimated confidence intervals (CIs) used for data selection 
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Figure 11: Model of innovation diffusion in MPMAS 

 

 

  

Figure 12: Disaggregated pesticide use and income changes 

 


