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Disproving Causal Relationships Using Observational Data 

 
Abstract:  Economic theory is replete with causal hypotheses that are scarcely tested 
because economists are generally constrained to work with observational data.  This 
article describes the use of causal inference methods for testing a hypothesis that one 
random variable causes another.  Contingent on a sufficiently strong correspondence 
between the hypothesized cause and effect, an appropriately related third variable can be 
employed for such a test.  The procedure is intuitive, and is easy to implement.  The basic 
logic of the procedure naturally suggests strong and weak grounds for rejecting the 
hypothesized causal relationship.  Monte Carlo results suggest that weakly-grounded 
rejections are unreliable for small samples, but reasonably reliable for large samples.  
Strongly-grounded rejections are highly reliable, even for small samples. 
 

 

Introduction and Background 

Questions of causality have been central to economics from its beginnings, as the 

title of Adam Smith’s An Inquiry into the Nature and Causes of the Wealth of Nations 

clearly indicates.  Economic theory is, at its most fundamental level, a body of 

hypotheses regarding causal relationships among economic variables – endowments, 

production, exchange, and consumption of goods, rates of exchange between goods and 

stores of value, aggregations of such quantities, and the evolution of these quantities over 

time.  Does an increase in income cause a person to consume more of a good?  Does an 

increase in the money supply cause higher aggregate output?   

Causal relationships in economics are not contemplated merely to satisfy idle 

intellectual curiosity.  An understanding of such relationships is necessary if one wishes 

to address counterfactual questions of economic policy, and successfully impact the level 

of one quantity through the direct manipulation of another (Reiss and Cartwright, 2003).  

Hoover (2001) goes so far as to state that the uncovering of causal relationships among 

economic variables for the purpose of policy making is the “ultimate justification” for the 
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study of macroeconomics.  Would an increase in the Federal Funds rate cause a decrease 

in the rate of general price inflation?  Will greater availability of public transport cause 

reduced aggregate fuel consumption, helping us meet a policy objective of reducing 

releases of green house gases? 

Even though questions of causality are an integral part of economic theory, the 

practice of economic measurement has had an uneasy relationship with the matter.  

Haavelmo (1944) and other Cowles Commission econometricians devised structural 

equation models that explicitly represented hypothesized causal relationships.  Explicit 

causal interpretations of these types of models have largely fallen out of favor, however, 

and they are today often interpreted simply as compact representations of joint 

probability distributions (Pearl, 2000).  A perceived empirical failure of such structural 

modeling efforts motivated the extensive adoption of multivariate time series methods 

that have no clear causal interpretation (Heckman, 2000). 

Econometricians’ reluctance to draw strong, explicit conclusions regarding 

causality no doubt stems in large part from the observational data with which we are 

forced to work.  Mill (1884) regarded causal inference using observational data as 

impossible, a sentiment that has been shared by many economists since.  Even when 

confronted with empirical results that seem inconsistent with the causal content of 

economic theory, econometricians will generally assign blame to auxiliary hypotheses 

rather than questioning the theory itself (Blaug, 1992).  Thus economic theories are 

generally “confirmed” of “verified”; rigorous testing of hypothesized causal relations in 

economics is sorely limited. 
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Despite Mill’s beliefs on the matter, many scholars have begun to infer causal 

relationships from observational data.  Reichenbach (1956) proposed that causal 

relationships among random variables have specific implications for associated statistical 

independence relations.  Hausman (1983) provides an early acknowledgment in 

economics that such causal inference should be feasible.  More recently, several 

algorithms for conducting such inference have been proposed (Spirtes, Glymour and 

Scheines, 2000; Glymour and Cooper, 1999; and Pearl, 2000). This literature has focused 

on a definition of cause that stresses “manipulation” rather than statistical regularity or 

prediction.  So that variable A is said to cause variable B if and only if one can 

manipulate B by manipulating A (Woodward 2003, chapter 2 and Pearl 2000, page 85).  

Manipulation-based definitions of causality are an improvement on prediction-based 

definitions, as they admit the possibility of latent variables.  For example, a drop in the 

reading on a barometer (a change in position of a needle on a barometric pressure scale) 

predicts stormy weather in the future; however, one doesn’t believe that by manipulating 

the barometer, by physically moving the needle on the instrument, one can affect the 

status of future rain conditions.  One recognizes the existence of a latent variable 

(atmospheric pressure) that affects both the barometer reading and weather.    

Hoover (2001) considers the use of causal inference methods in economics.  

Swanson and Granger (1997), Demiralp and Hoover (2003), and Hoover (2005) describe 

the use of causal inference algorithms for inferring contemporaneous causal relations 

among variables in vector autoregressions.  Demiralp, Hoover, and Perez (2006) advance 

a bootstrap method for assessing the confidence that can be placed on such results. 
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Applications in economics include Akleman, et al. (1999), Haigh and Bessler (2003), and 

Bessler (2003). 

The designers of causal inference algorithms seem to intend them to be used in a 

manner that might be described as “data mining” or “machine learning”.  In such use, 

observations of a large number of potentially related variables are assembled, and a 

causal structure among those variables is inferred.  Most proposed algorithms conduct 

this overall inference by sequentially conducting several individual tests of conditional 

independence among the variables.  This multiple testing leads to criticism that the 

overall probability of an error is unknown, and possibly unreasonably high, particularly 

for a large system.  Casual experimentation with the algorithms using data sets with a 

moderate to high number of variables suggests that results are indeed fragile, and 

reversals of the direction of causal flow are not uncommon as one changes the 

algorithms’ parameters.  Demiralp and Hoover (2003) investigate such issues using 

Monte Carlo methods, and find that the probabilities of such errors are sensitive to the 

peculiarities of the data sets and are difficult to quantify. 

In this paper, we explore the use of causal inference methods for testing specific 

hypothesized causal relations – H0: A causes B.  Employing these methods in this way 

entails advantages over the more typical method of application.  First, relatively small 

numbers of causally related variables are needed, and the researcher needs not observe all 

potentially causally relevant variables.  Observing some variable C that is causally related 

in a certain way to A and B allows rejection H0, regardless of what other causally-related 

variables may or may not exist.  Second, this narrow focus implies that there are only a 

limited number of ways in which latent, concomitant variables might influence the 
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observed variables involved in the test.  This allows us to numerically estimate the size of 

the test.  Third, testing such a hypothesis with respect to a particular C involves only 

three individual tests of unconditional independence.  Due to this simplicity, the test can 

be easily conducted without using specialized computer software, and the researcher is 

fully aware of the basis for a particular conclusion. 

After describing the application of causal inference methods to test specific causal 

hypotheses, we present the results of a Monte Carlo evaluation of the size of such tests.  

We then illustrate the method, rejecting a counter-intuitive causal hypothesis relating to 

Peltzman’s (1975) traffic safety study. 

 

The Casual Inference Algorithm Test of H0: A Causes B 

The method that we now describe is essentially a subset of the method described 

in Spirtes, Meek, and Richardson (1999).  They present the Causal Inference (CI) 

algorithm, which is appropriate for inferring causal relationships among random variables 

when zero or more of those variables are unobserved.1  This is a subset in the sense that 

we concern ourselves only with inference over sets of three observed variables (A, B, and 

C), and only with particular combinations of independence tests whose results may allow 

us to reject H0: A causes B, based on evidence provided by C.  This greatly reduces the 

complexity of the inference procedure and the potential computational burden.  We 

attempt to provide as intuitive an explanation of the concepts as possible; the rigorous 

development of these concepts is presented in the original source and references cited 

therein. 

                                                 
1 They present a “fast” version of their algorithm (the “FCI” algorithm), which is implemented in the 
Tetrad II, III, and IV computer programs.  We have no need here for the extra steps that they take to reduce 
the computational burden when considering large numbers of variables. 
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 Causal relationships between two random variables in an underlying linear causal 

structure are graphically represented by an edge, or line, connecting those variables.  An 

arrowhead on one end of an edge indicates the direction of causation.  We assume that 

there are no cycles present in the system.  An example graph is presented in Figure 1, in 

which a latent variable L causes observed variables A and B, and B is additionally 

influenced by C. 

We do not assume that all causally relevant variables are observed.  This implies 

that the independence relations over the observed variables will be consistent with 

multiple underlying full causal structures.  In graphs over only observable variables, such 

observationally equivalent causal structures will be represented using edges with circles 

on one end.  An edge A o→ B indicates that either A causes B, or they share a latent 

common cause, or both. 

We assume (A1) that Reichenbach’s (1956) principle of the common cause holds: 

two variables are statistically dependent only if one variable causes the other, or they 

share one or more common causes.2  The causation between two variables may be 

mediated by other variables – if A causes C and C causes B, we assume that A and B will 

be statistically dependent.  We also assume (A2) that two variables that share a common 

cause will not be rendered statistically independent by peculiar, precisely offsetting 

structural parameters.  That is to say, independence relations reflect the underlying causal 

structure.3 

                                                 
2 This is generalized in the more recent causal inference literature as the causal Markov assumption, which 
extends the basic principal to accommodate conditional statistical independence between two indirectly 
causally related variables, where the conditioning is over a common cause or a mediating variable. 
3 This is referred to as the faithfulness condition in Spirtes, Glymour and Scheines (2000) and Glymour and 
Cooper (1999).  Pearl (2000) calls this the stability condition. 
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Given our assumptions, we can infer something regarding the causal structures 

that underlie three observed variables based on their unconditional independence 

relations.  Suppose that A and B are statistically independent (denoted A ⊥ B).  It follows 

from A1 and A2 that we must reject all causal structures represented by the graph A o→ 

Z o→ B for any (possibly empty) set of variables Z, and we must therefore reject H0: A 

causes B. 

Suppose that A and B are not statistically independent (denoted A !⊥ B).  There 

then exist four possible combinations of independence relations between the pairs {A, C} 

and {B, C}.   

 

Case 1: A ⊥ C, and B !⊥ C.  A and B are casually related by A1 and A2, as are B and 

C.  By A1, A2 and the independence of A and C we must conclude that A cannot 

cause C, either directly or indirectly, and that they cannot share a common cause.   

The underlying causal structure must be a member of the class of structures 

represented by the graph A o→ B ←o C.  H0 therefore cannot be rejected. 

 

Case 2: A !⊥ C, and B ⊥ C.  By the same logic presented in Case 1, we conclude that 

C o→ A ←o B.  There is no possibility that A is a cause of B.  H0 is therefore rejected. 

 

Case 3: A ⊥ C, and B ⊥ C.  In this case C is not causally related to A and B by A2, 

and provides no information regarding the causal connection between them as it did 

in the first two cases.  We therefore have no basis for rejecting H0. 

 



 8

Case 4: A !⊥ C, and B !⊥ C.  Again the logic of Cases 1 and 2 cannot be applied.  

There is no basis for rejecting H0.4 

 

There are thus two combinations of independence relations among A, B, and C that are 

sufficient to reject H0: A causes B:  either 1) A ⊥ B or 2) A !⊥ B, A !⊥ C, and B ⊥ C.  The 

interesting grounds for rejecting H0 is, of course, finding A !⊥ B, A !⊥ C, and B ⊥ C.  We 

refer to C as a test instrument, and to a C such that A !⊥ C, and B ⊥ C as an evidential test 

instrument. 

This can be easily understood on an intuitive level by examining graphs 

representing hypothetical causal structures in which A does cause B, as illustrated in 

Figure 2.  If we observe some variable C that is causally related to A, then as C varies 

there should be some extent of corresponding variation in B.  This is because either C 

indirectly causes B (as in panel i), or because A and B share a common cause (as in panels 

ii and iii).  Stated differently, if no correspondence between B and is C is observed, then 

either A and C are not causally related, or A does not cause B. 

Since the data are observational, it not possible to manipulate A and monitor B for 

possible changes.  Essentially, what is required is a test instrument that is either naturally 

manipulating (in some sense) A, or providing evidence of some manipulation of A.5  The 

selection of the instrument will be informed by the researcher’s knowledge of the 
                                                 
4 In the full Causal Inference algorithm (or its fast counterpart), tests for conditional independence of pairs 
of the observed variables would be conducted in this case, where the conditioning would be on the third 
variable.  The causal Markov condition mentioned in note 2 would be invoked, rather than our A1.  In such 
cases, however, there is no possibility of rejecting H0.  For example, if A and C are independent conditional 
on B would be consistent with the classes of causal structures A o→ B o→ C, A ←o B ←o C, and A ←o B 
o→ C.  Any variable may be a cause of any other (either directly or indirectly). 
5 Our “test instrument” is very similar to the “switch variable” or “experimental handle” defined in Reiss 
(2003).  We do not, however, require that C cause A as in his EH1.  Such a C would be sufficient, but a C 
that shares a common cause with A will also serve.  Our test instrument is also similar to the instruments 
used in instrumental variables estimation, as discussed by Reiss. 
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underlying problem.  The researcher will likely have in mind some alternative 

hypothesized causal structure(s) wherein B causes A or they share a common cause (i.e., 

H0 is false).  A good choice of a C would, under some plausible alternative(s), be 

believed likely causally unrelated to B except via A.  The existence of any evidential test 

instrument requires rejection of H0, even though there will doubtlessly exist numerous 

non-evidential test instruments.6 

A test of H0: A causes B is readily operational in the linear, normal case using 

Fisher’s z-test of correlations. Suppose that the underlying causal structure is linear in 

that it can be represented by a recursive structural equation model 

(1) ε+Γ+Γ= XX 10  

where X is a vector of random variables (both observed and unobserved), Γ0 is a 

conformable coefficient vector, Γ1 is a conformable triangular (for some ordering of the 

variables in X) coefficient matrix with non-zero terms corresponding to the directed edges 

in the corresponding graph, and ε is a conformable vector of independent normal errors.  

The variables in the non-zero terms on the right-hand side of this equation cause the 

variables on the left hand side, but the converse in not true.  The test then consists simply 

of computing all three correlation coefficients, conducting Fisher’s z-test on each, and 

determining if either of the conditions sufficient for rejecting H0 are true: either 1) ρAB = 

0 or 2) ρAB ≠ 0, ρAC ≠ 0, and ρBC = 0. 

 The first condition, ρAB = 0, is an inherently weak basis for concluding that A 

causes B is false.  This is because the burden of proof in the z-test is opposite of that 

needed for the causal hypothesis – we would reject H0: A causes B based on failing to 

                                                 
6 This is, of course, Popper’s swan argument.  Popper would likely not approve of the inductive nature of 
the procedure described here, however. 
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reject H0: ρAB = 0.  We henceforth refer to this as a weak-basis rejection of H0: A causes 

B.  If A does, in fact, cause B, but the correspondence is weak, we are likely to often fail 

to reject ρAB = 0, especially for small samples.  Due to these weak-form rejections, the 

overall size of the test of CI Algorithm test is approximately bound from below by one 

minus the power of the z-test. 

A rejection of H0: A causes B due to finding ρAB ≠ 0, ρAC ≠ 0, and ρBC = 0  (Case 2 

above) is a strong-basis rejection.  In this case, the burden proof in the z-tests is such that 

we are confident that the pairs {A, B} and {A, C} are indeed causally related.  Moreover, 

any correspondence between B and C should be evident if A causes B, despite the fact 

that the burden of proof is opposite of that which is desired in the z-test of H0: ρBC = 0.  

This is because the process that leads to a strong-basis rejection reflects a self-correcting 

mechanism that reduces the probability of a type II error in this latter z-test.  The risk of 

such an error is greatest when | ρBC | and the available sample are both small.  As the 

sample gets smaller, however, the sample correlation coefficients rAB and rAC must be 

larger before we are convinced that the corresponding population correlation coefficients 

are not zero.  On average, this corresponds to higher population correlation coefficients, 

including ρBC if A causes B is true.  Thus the test of H0: ρBC = 0 is not conducted in 

circumstances where it is highly susceptible to type II errors.  Strong-basis rejections are 

therefore likely to reflect the underlying causal structure, and are unlikely to result from 

the inherent difficulty in discerning weak causal relationships using observational data.  

 

Monte Carlo Simulations  
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To test the empirical size of the CI algorithm test, we generate a large number of 

random systems in which the null hypothesis is true, and observe the frequency with 

which it is rejected.  The random systems all feature three observed variables, over which 

there are 25 possible acyclic causal structures.7  In eight of these structures, A causes B 

directly (i.e., there is an edge A → B), and in one structure A causes B indirectly (A → C 

→ B). 

The observed variables are assumed to be a subset of a larger causal structure that 

includes zero or more unobserved variables.  There is an infinite number of possible full 

causal structures that might be considered, however there is a finite number of possible 

sets of independence relations among the observed variables.  A latent variable that is a 

cause of only one of the observed variables does not impact these independence relations.  

Latent variables that do not cause any of the observed variables (but may be caused by 

them) would similarly not impact causal inference over the observed variables.  Also, the 

independence relations among the observed variables will be identical whether two 

observed variables share a single latent common cause or share more than one such 

common cause. 

 For these reasons, we specify systems in which there are three possible latent 

variables, LAB, LAC, and LBC, each of which is a latent common cause of the two indicated 

observed variables.  Each of these may or may not be present in a system.  There are thus 

23 possible arrangements of latent common causes that may accompany the 9 causal 

structures among observed variables in which A causes B.  We therefore consider 9 × 23 = 

72 causal structures, which fully represent all possible patterns of independence relations 
                                                 
7 Each of the three possible edges has one of three possible states: absent, pointing in one direction, or 
pointing in the opposite direction.  There are therefore 33 = 27 possible causal structures, two of which 
involve cycles: A → B → C → A and A ← B ← C ← A. 
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among observed variables.  In each trial, we randomly select one of these 72 causal 

structures with equal probability. 

 For each of one hundred thousand trials, equation (1) is parameterized to reflect 

the selected causal structure.  Without loss of generality, Γ0 is a zero vector for all trials.  

Following Demiralp and Hoover (2003), the parameters of the Γ1 matrix are selected to 

reflect three signal strengths.  Individual elements are drawn from a U(0,d) distribution, 

where d is calibrated so that the mean parameter value will result in one of three desired 

population correlation coefficients between two variables8.  These correlation levels are 

set at 0.25, 0.50, and 0.75 to reflect low, medium, and high signal strengths, respectively.  

For each observation in each trial, ε in (1) is drawn, with individual elements 

independently distributed as N(0,1).  Equation (1) is then solved for X’ = [A, B, C, LAB, 

LAC, LBC] for that observation. 

 Finally, for each trial we apply the CI algorithm test of H0: A causes B, described 

in the previous section, to the observed variables A, B, and C.  The numbers of failures to 

reject, weak-basis rejections, and strong-basis rejections are tabulated.  All rejections 

constitute type I errors, as H0 is true by design in all systems.  We consider sample sizes 

of 50, 100, 250, 500, and 1,000.  For each sample size, one hundred thousand trials are 

conducted.  All z-tests are initially conducted using an alpha value of 0.10. 

The proportions of trials that result in weak-basis and strong-basis rejections are 

reported in Table 1.  For the medium and high signal strengths, the proportions of weak-

basis rejections are reasonably low for all sample sizes, generally falling below the 

nominal size of 0.10 employed in the underlying z-tests.  For large samples (by social 

                                                 
8 When one is the sole cause of the other, in the sense of equation (1). 



 13

science standards), the proportions of weak-basis rejections are low, even when the signal 

strength is low.  However, as expected, the limited power of the z-test at low signal 

strengths results in large proportions of weak-basis rejections for smaller samples.  These 

results confirm the difficulty of detecting a weak causal relationship between two 

variables using observational data.  This suggests the importance of disclosing the nature 

of a rejection (weak-basis or strong-basis) when applying the CI algorithm test, especially 

when working with small samples. 

By contrast, the proportion of strong-basis rejections is reasonably low for all 

sample sizes and all signal strengths.  In all cases the proportion of strong-basis rejections 

is below the proportion of weak-basis rejections.  Performance again improves 

moderately as sample size increases, and improves dramatically as signal strength 

increases.  The proportion of strong-basis rejections is almost always below the nominal 

size of 0.10 used in the underlying z-tests, and the researcher can thus have a much 

greater degree of confidence in such a result.   

The above results suggest that it may be desirable to employ a higher nominal size 

in the underlying z-tests, in order to reduce the probability of making a type II error in the 

initial test of H0: ρAB = 0.   This might especially be advisable when the sample 

correlation coefficient between A and B is low, giving the researcher the opportunity to 

strongly reject H0: A causes B.  This would certainly reduce the incidence of weak-basis 

rejections, but what effect would this have on incidence of strong-basis rejections?  A 

strong-basis rejection will not be possible if either a type I or type II error is made in the 

underlying z-tests.  Adjusting the alpha value reduces the probability of one type of error, 



 14

but increases the probability of the other.  Strong-basis rejections are thus naturally robust 

to the confidence level employed in the underlying independence tests. 

We conduct a second set of simulations that use an alpha value of 0.20 in the 

underlying z-tests, with results presented in Table 2.  The incidence of weak-basis 

rejections is indeed substantially improved for small sample sizes and low signal 

strengths, and the proportions of strong-basis rejections are very similar to the previous 

results in all cases.  The proportions of strong-basis rejections are only worse for low 

signal strengths and the smallest two sample sizes, and then only marginally so.  The 

higher alpha value for the z-tests thus affords a greater degree of confidence in weak-

form rejections, while generally preserving the degree of confidence in strong-form 

rejections. 

Of course, sampling variation will prevent the researcher from knowing a 

system’s true underlying signal strength.  The low signal strength columns in the tables 

thus reveal conservative levels of confidence that can be reported for weak-basis and 

strong-basis rejections.  The confidence level for a strong-basis rejection is simply the 

proportion of such rejections reported in the tables.  The confidence level for a weak-

basis rejection should be the sum of the proportions of weak- and strong-basis rejections, 

as the researcher would presumably have accepted the stronger evidence. 

 

Application  

 We intentionally apply the method to a hypothesis that most would consider 

intuitively false.  Peltzman (1975) finds that alcohol consumption is significantly 

correlated with the total motor vehicle death rate.  This is likely due to the fact that 
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increased alcohol consumption is associated with increased incidence of impaired 

driving.  An alternative hypothesis however, might be that increased traffic deaths lead to 

increased grief and stress, which in turn lead to increased alcohol consumption.  We test 

this latter hypothesis.  We employ a test instrument that we expect to be causally related 

to the death rate, but not necessarily to alcohol consumption: average motor vehicle 

speed. 

 We employ annual observations from 1947 through 1993 of the total (both 

occupant and pedestrian) number of traffic fatalities divided by the total vehicle mileage 

(DEATH), average urban vehicle speed (SPEED), and average annual per capita alcohol 

consumption (ALCOHOL).9  Augmented Dickey-Fuller tests indicate that ALCOHOL is 

mean stationary, that DEATH is trend stationary, and that SPEED is nonstationary in 

levels, but stationary in first differences.  Furthermore, all series exhibit autoregressive 

characteristics.  To accommodate these features of the data, we follow Swanson and 

Granger (1997), Demiralp and Hoover (2003), Haigh and Bessler (2003), and Hoover 

(2005) by conducting causal inference over filtered data.  We estimate a vector-

autoregression (VAR) in first differences, with constants, using a Schwarz (1978) 

information criterion-minimizing lag length of one.  The innovations from this VAR are 

all mean stationary, and approximately normally distributed.  We cannot reject normality 

for DEATH and ALCOHOL innovations using Jarque-Bera tests (p-values of 0.82 and 

0.76, respectively).  Normality for SPEED innovations is not rejected at a p-value of 0.91 

if a single outlier reflecting the lowering of the national speed limit in 1974 to 55 miles 

                                                 
9 Total traffic fatalities are taken from the National Safety Council’s Accident Facts (through 1974), and the 
US Dept. of Transportation (DOT), National Highway Traffic Safety Admin., Fatal Accident Reporting 
System (after 1974).  Total vehicle mileage and speed data are from US DOT, Federal Highway Admin., 
Highway Statistics.  Alcohol consumption data are from US Dept. of Health and Human Services, Public 
Health Service, National Institute on Alcohol Abuse and Alcoholism, Surveillance Report, Dec. 1995. 
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per hour is omitted.   The sample correlation coefficient between the putative cause and 

putative effect is r(DEATH, ALCOHOL) = 0.341.  For 45 observations, we reject H0: ρ = 

0 at the 20% level using Fisher’s z-test for sample correlation coefficients greater than 

0.198.  Thus DEATH and ALCOHOL are causally-related, given Reichenbach’s common 

cause principal, and there is not a weak correspondence that requires a weak-basis 

rejection of H0: DEATH causes ALCOHOL.  The sample correlation coefficients between 

the test instrument and putative cause is r(SPEED, DEATH) = 0.386.  We are therefore 

confident that SPEED is causally-related to DEATH.  Finally, the sample correlation 

coefficient between the test instrument and the putative effect is r(SPEED, ALCOHOL) = 

0.136; they are not causally-related.  SPEED is thus an evidential test instrument that 

informs a strong-basis rejection of H0: DEATH causes ALCOHOL.  Using Table 2, and 

conservatively assuming low signal strength in the underlying causal relations, we reject 

H0 at approximately the 11% level of significance. 

On an intuitive level, we can make an assumption about the direction of causal 

flow between DEATH and the test instrument, SPEED – most people would believe that 

increased vehicle speeds lead to greater traffic fatalities on average.  Given this, if the 

hypothesis that increased traffic fatalities caused increased alcohol consumption was true, 

then there should be a significant correspondence between average vehicle speeds and 

alcohol consumption, as the former would indirectly cause the latter.  No such 

correspondence is observed, and must reject the hypothesis.  This example illustrates that 

causal hypotheses can be rejected at conventional levels of confidence, even when 

experimental manipulation is not possible, and only small numbers of observations are 

available. 
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Conclusion  

This article describes the use of causal inference methods for testing a hypotheses 

that one specific random variable causes another.  This is in contrast to the more standard 

use of such methods, which entails searching for a full set of causal relationships among 

numerous variables.  We describe how, contingent on a sufficiently strong 

correspondence between the hypothesized cause and effect, an appropriately related third 

variable can be employed in such a test.  The procedure is easily understood.  In the 

linear normal case, the procedure is easy to implement, involving only the evaluation of 

three sample correlation coefficients using Fisher’s z-test. 

The basic logic of the testing procedure naturally suggests strong and weak bases 

for rejecting hypothesized causal relationships.  Monte Carlo results confirm that for 

small samples, rejections motivated by the two different bases warrant substantially 

different levels of confidence.  When the strength of the underlying causal relations is 

low, particularly between the hypothesized cause and effect, a small number of 

observations can only provide a low degree of confidence in a rejection of the null 

hypothesis.  By contrast, when the strength of the underlying causal relationships is high, 

particularly that between the hypothesized cause and effect, even a relatively small 

number of observations can be used to reject the null hypothesis with a high degree of 

confidence.  The simulation results reveal that the size of the test with respect to these 

strong evidence rejections is almost always lower than the alpha level employed in the 

underlying z-tests.  Future work should examine the robustness of the procedure to non-

normality and non-linearity.   
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We illustrate the method using only 45 observations of U.S. traffic fatality rates, 

which are hypothesized to cause per capita alcohol consumption.  Using average vehicle 

speeds as a test instrument, we are able to strongly-reject this counter-intuitive 

hypothesis. 

 Economic theory is replete with causal hypotheses that are scarcely tested because 

economists are generally constrained to work with observational data.  The procedure 

described here should facilitate the testing of such hypothesis, affording applied 

economists the opportunity to more closely realize the ideals of scientific inquiry. 
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Figure 1: An Example Graphical Representation of a Causal Structure 
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Figure 2: Graphs Representing Causal Structures in which A Causes B 
 
(i) 

 
 
 
(ii) 

  
 
 
(iii) 
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Table 1: Proportion of Rejections of a True H0: A Causes B when Using an Alpha of 
0.10 in Underlying z-tests. 
 
 

  Low Signal 
Strength 

Medium Signal 
Strength 

High Signal 
Strength 

    
N = 50    

Weak-basis Rejections 0.424 0.124 0.046 
Strong-basis Rejections 0.094 0.043 0.013 

    
N = 100    

Weak-basis Rejections 0.294 0.080 0.030 
Strong-basis Rejections 0.106 0.035 0.009 

    
N = 250    

Weak-basis Rejections 0.178 0.045 0.017 
Strong-basis Rejections 0.100 0.025 0.006 

    
N = 500    

Weak-basis Rejections 0.122 0.030 0.012 
Strong-basis Rejections 0.085 0.020 0.005 

    
N = 1,000    

Weak-basis Rejections 0.083 0.020 0.008 
Strong-basis Rejections 0.071 0.016 0.004 
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Table 2: Proportion of Rejections of a True H0: A Causes B when Using an Alpha of 
0.20 in Underlying z-tests. 
 
 

  Low Signal 
Strength 

Medium Signal 
Strength 

High Signal 
Strength 

    
N = 50    

Weak-basis Rejections 0.331 0.094 0.035 
Strong-basis Rejections 0.111 0.043 0.013 

    
N = 100    

Weak-basis Rejections 0.228 0.061 0.023 
Strong-basis Rejections 0.111 0.034 0.010 

    
N = 250    

Weak-basis Rejections 0.136 0.034 0.013 
Strong-basis Rejections 0.096 0.025 0.008 

    
N = 500    

Weak-basis Rejections 0.093 0.023 0.009 
Strong-basis Rejections 0.079 0.019 0.006 

    
N = 1,000    

Weak-basis Rejections 0.064 0.016 0.006 
Strong-basis Rejections 0.065 0.016 0.005 

 


