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Disproving Causal Relationships Using Observational Data

Abstract: Economic theory is replete with causal hypotheses that are scarcely tested
because economists are generally constrained to work with observational data. This
article describes the use of causal inference methods for testing a hypothesis that one
random variable causes another. Contingent on a sufficiently strong correspondence
between the hypothesized cause and effect, an appropriately related third variable can be
employed for such a test. The procedure is intuitive, and is easy to implement. The basic
logic of the procedure naturally suggests strong and weak grounds for rejecting the
hypothesized causal relationship. Monte Carlo results suggest that weakly-grounded
rejections are unreliable for small samples, but reasonably reliable for large samples.
Strongly-grounded rejections are highly reliable, even for small samples.

Introduction and Background

Questions of causality have been central to economics from its beginnings, as the
title of Adam Smith’s An Inquiry into the Nature and Causes of the Wealth of Nations
clearly indicates. Economic theory is, at its most fundamental level, a body of
hypotheses regarding causal relationships among economic variables — endowments,
production, exchange, and consumption of goods, rates of exchange between goods and
stores of value, aggregations of such quantities, and the evolution of these quantities over
time. Does an increase in income cause a person to consume more of a good? Does an
increase in the money supply cause higher aggregate output?

Causal relationships in economics are not contemplated merely to satisfy idle
intellectual curiosity. An understanding of such relationships is necessary if one wishes
to address counterfactual questions of economic policy, and successfully impact the level
of one quantity through the direct manipulation of another (Reiss and Cartwright, 2003).
Hoover (2001) goes so far as to state that the uncovering of causal relationships among

economic variables for the purpose of policy making is the “ultimate justification” for the



study of macroeconomics. Would an increase in the Federal Funds rate cause a decrease
in the rate of general price inflation? Will greater availability of public transport cause
reduced aggregate fuel consumption, helping us meet a policy objective of reducing
releases of green house gases?

Even though questions of causality are an integral part of economic theory, the
practice of economic measurement has had an uneasy relationship with the matter.
Haavelmo (1944) and other Cowles Commission econometricians devised structural
equation models that explicitly represented hypothesized causal relationships. Explicit
causal interpretations of these types of models have largely fallen out of favor, however,
and they are today often interpreted simply as compact representations of joint
probability distributions (Pearl, 2000). A perceived empirical failure of such structural
modeling efforts motivated the extensive adoption of multivariate time series methods
that have no clear causal interpretation (Heckman, 2000).

Econometricians’ reluctance to draw strong, explicit conclusions regarding
causality no doubt stems in large part from the observational data with which we are
forced to work. Mill (1884) regarded causal inference using observational data as
impossible, a sentiment that has been shared by many economists since. Even when
confronted with empirical results that seem inconsistent with the causal content of
economic theory, econometricians will generally assign blame to auxiliary hypotheses
rather than questioning the theory itself (Blaug, 1992). Thus economic theories are
generally “confirmed” of “verified”; rigorous testing of hypothesized causal relations in

economics is sorely limited.



Despite Mill’s beliefs on the matter, many scholars have begun to infer causal
relationships from observational data. Reichenbach (1956) proposed that causal
relationships among random variables have specific implications for associated statistical
independence relations. Hausman (1983) provides an early acknowledgment in
economics that such causal inference should be feasible. More recently, several
algorithms for conducting such inference have been proposed (Spirtes, Glymour and
Scheines, 2000; Glymour and Cooper, 1999; and Pearl, 2000). This literature has focused
on a definition of cause that stresses “manipulation” rather than statistical regularity or
prediction. So that variable A is said to cause variable B if and only if one can
manipulate B by manipulating A (Woodward 2003, chapter 2 and Pearl 2000, page 85).
Manipulation-based definitions of causality are an improvement on prediction-based
definitions, as they admit the possibility of latent variables. For example, a drop in the
reading on a barometer (a change in position of a needle on a barometric pressure scale)
predicts stormy weather in the future; however, one doesn’t believe that by manipulating
the barometer, by physically moving the needle on the instrument, one can affect the
status of future rain conditions. One recognizes the existence of a latent variable
(atmospheric pressure) that affects both the barometer reading and weather.

Hoover (2001) considers the use of causal inference methods in economics.
Swanson and Granger (1997), Demiralp and Hoover (2003), and Hoover (2005) describe
the use of causal inference algorithms for inferring contemporaneous causal relations
among variables in vector autoregressions. Demiralp, Hoover, and Perez (2006) advance

a bootstrap method for assessing the confidence that can be placed on such results.



Applications in economics include Akleman, et al. (1999), Haigh and Bessler (2003), and
Bessler (2003).

The designers of causal inference algorithms seem to intend them to be used in a
manner that might be described as “data mining” or “machine learning”. In such use,
observations of a large number of potentially related variables are assembled, and a
causal structure among those variables is inferred. Most proposed algorithms conduct
this overall inference by sequentially conducting several individual tests of conditional
independence among the variables. This multiple testing leads to criticism that the
overall probability of an error is unknown, and possibly unreasonably high, particularly
for a large system. Casual experimentation with the algorithms using data sets with a
moderate to high number of variables suggests that results are indeed fragile, and
reversals of the direction of causal flow are not uncommon as one changes the
algorithms’ parameters. Demiralp and Hoover (2003) investigate such issues using
Monte Carlo methods, and find that the probabilities of such errors are sensitive to the
peculiarities of the data sets and are difficult to quantify.

In this paper, we explore the use of causal inference methods for testing specific
hypothesized causal relations — Hy: A causes B. Employing these methods in this way
entails advantages over the more typical method of application. First, relatively small
numbers of causally related variables are needed, and the researcher needs not observe all
potentially causally relevant variables. Observing some variable C that is causally related
in a certain way to A and B allows rejection Hy, regardless of what other causally-related
variables may or may not exist. Second, this narrow focus implies that there are only a

limited number of ways in which latent, concomitant variables might influence the



observed variables involved in the test. This allows us to numerically estimate the size of
the test. Third, testing such a hypothesis with respect to a particular C involves only
three individual tests of unconditional independence. Due to this simplicity, the test can
be easily conducted without using specialized computer software, and the researcher is
fully aware of the basis for a particular conclusion.

After describing the application of causal inference methods to test specific causal
hypotheses, we present the results of a Monte Carlo evaluation of the size of such tests.
We then illustrate the method, rejecting a counter-intuitive causal hypothesis relating to

Peltzman’s (1975) traffic safety study.

The Casual Inference Algorithm Test of Hy: A Causes B

The method that we now describe is essentially a subset of the method described
in Spirtes, Meek, and Richardson (1999). They present the Causal Inference (CI)
algorithm, which is appropriate for inferring causal relationships among random variables
when zero or more of those variables are unobserved.' This is a subset in the sense that
we concern ourselves only with inference over sets of three observed variables (A, B, and
C), and only with particular combinations of independence tests whose results may allow
us to reject Ho: A causes B, based on evidence provided by C. This greatly reduces the
complexity of the inference procedure and the potential computational burden. We
attempt to provide as intuitive an explanation of the concepts as possible; the rigorous
development of these concepts is presented in the original source and references cited

therein.

' They present a “fast” version of their algorithm (the “FCI” algorithm), which is implemented in the
Tetrad 11, 111, and IV computer programs. We have no need here for the extra steps that they take to reduce
the computational burden when considering large numbers of variables.



Causal relationships between two random variables in an underlying linear causal
structure are graphically represented by an edge, or line, connecting those variables. An
arrowhead on one end of an edge indicates the direction of causation. We assume that
there are no cycles present in the system. An example graph is presented in Figure 1, in
which a latent variable L causes observed variables A and B, and B is additionally
influenced by C.

We do not assume that all causally relevant variables are observed. This implies
that the independence relations over the observed variables will be consistent with
multiple underlying full causal structures. In graphs over only observable variables, such
observationally equivalent causal structures will be represented using edges with circles
on one end. An edge A o— B indicates that either A causes B, or they share a latent
common cause, or both.

We assume (A1) that Reichenbach’s (1956) principle of the common cause holds:
two variables are statistically dependent only if one variable causes the other, or they
share one or more common causes.” The causation between two variables may be
mediated by other variables — if A causes C and C causes B, we assume that A and B will
be statistically dependent. We also assume (A2) that two variables that share a common
cause will not be rendered statistically independent by peculiar, precisely offsetting
structural parameters. That is to say, independence relations reflect the underlying causal

3
structure.

* This is generalized in the more recent causal inference literature as the causal Markov assumption, which
extends the basic principal to accommodate conditional statistical independence between two indirectly
causally related variables, where the conditioning is over a common cause or a mediating variable.

3 This is referred to as the faithfulness condition in Spirtes, Glymour and Scheines (2000) and Glymour and
Cooper (1999). Pearl (2000) calls this the stability condition.



Given our assumptions, we can infer something regarding the causal structures
that underlie three observed variables based on their unconditional independence
relations. Suppose that A and B are statistically independent (denoted A L B). It follows
from Al and A2 that we must reject all causal structures represented by the graph A o—
Z o— B for any (possibly empty) set of variables Z, and we must therefore reject Hy: A
causes B.

Suppose that A and B are not statistically independent (denoted A ! L B). There

then exist four possible combinations of independence relations between the pairs {A, C}

and {B, C}.

Case 1: AL C,and B!L C. A and B are casually related by Al and A2, as are B and
C. By Al, A2 and the independence of A and C we must conclude that A cannot
cause C, either directly or indirectly, and that they cannot share a common cause.
The underlying causal structure must be a member of the class of structures

represented by the graph A o— B «—o0 C. Hj therefore cannot be rejected.

Case 2: A!L C, and B L C. By the same logic presented in Case 1, we conclude that

C 0— A <o B. There is no possibility that A is a cause of B. Hj is therefore rejected.

Case 3: AL C,and B L C. In this case C is not causally related to A and B by A2,
and provides no information regarding the causal connection between them as it did

in the first two cases. We therefore have no basis for rejecting Ho.



Case4: A!L C,and B !L C. Again the logic of Cases 1 and 2 cannot be applied.

There is no basis for rejecting Hy.*

There are thus two combinations of independence relations among A, B, and C that are
sufficient to reject Hy: A causes B: either 1) A L Bor2)A!LB,A!1 C,and B L C. The
interesting grounds for rejecting Hy is, of course, finding A!1L B,A!L C,and B L C. We
refer to C as a test instrument, and to a C such that A ! L C, and B L C as an evidential test
instrument.

This can be easily understood on an intuitive level by examining graphs
representing hypothetical causal structures in which A does cause B, as illustrated in
Figure 2. If we observe some variable C that is causally related to A, then as C varies
there should be some extent of corresponding variation in B. This is because either C
indirectly causes B (as in panel i), or because A and B share a common cause (as in panels
it and ii1). Stated differently, if no correspondence between B and is C is observed, then
either A and C are not causally related, or A does not cause B.

Since the data are observational, it not possible to manipulate A and monitor B for
possible changes. Essentially, what is required is a test instrument that is either naturally
manipulating (in some sense) A, or providing evidence of some manipulation of A’ The

selection of the instrument will be informed by the researcher’s knowledge of the

* In the full Causal Inference algorithm (or its fast counterpart), tests for conditional independence of pairs
of the observed variables would be conducted in this case, where the conditioning would be on the third
variable. The causal Markov condition mentioned in note 2 would be invoked, rather than our Al. In such
cases, however, there is no possibility of rejecting Hy. For example, if A and C are independent conditional
on B would be consistent with the classes of causal structures Ao— B o— C,A«<—o0B+«o0C,andA«<o0B
0— C. Any variable may be a cause of any other (either directly or indirectly).

> Our “test instrument” is very similar to the “switch variable” or “experimental handle” defined in Reiss
(2003). We do not, however, require that C cause A as in his EH1. Such a C would be sufficient, but a C
that shares a common cause with A will also serve. Our test instrument is also similar to the instruments
used in instrumental variables estimation, as discussed by Reiss.



underlying problem. The researcher will likely have in mind some alternative
hypothesized causal structure(s) wherein B causes A or they share a common cause (i.e.,
Hy is false). A good choice of a C would, under some plausible alternative(s), be
believed likely causally unrelated to B except via A. The existence of any evidential test
instrument requires rejection of Hy, even though there will doubtlessly exist numerous
non-evidential test instruments.®

A test of Hy: A causes B is readily operational in the linear, normal case using
Fisher’s z-test of correlations. Suppose that the underlying causal structure is linear in
that it can be represented by a recursive structural equation model
(1) X=I,+I'X+¢
where X is a vector of random variables (both observed and unobserved), I’y is a
conformable coefficient vector, I'; is a conformable triangular (for some ordering of the
variables in X) coefficient matrix with non-zero terms corresponding to the directed edges
in the corresponding graph, and ¢ is a conformable vector of independent normal errors.
The variables in the non-zero terms on the right-hand side of this equation cause the
variables on the left hand side, but the converse in not true. The test then consists simply
of computing all three correlation coefficients, conducting Fisher’s z-test on each, and
determining if either of the conditions sufficient for rejecting Hy are true: either 1) pag =
0 or 2) pag # 0, pac # 0, and psc = 0.

The first condition, pag = 0, is an inherently weak basis for concluding that A
causes B is false. This is because the burden of proof in the z-test is opposite of that

needed for the causal hypothesis — we would reject Hy: A causes B based on failing to

® This is, of course, Popper’s swan argument. Popper would likely not approve of the inductive nature of
the procedure described here, however.



reject Ho: pas = 0. We henceforth refer to this as a weak-basis rejection of Hy: A causes
B. If A does, in fact, cause B, but the correspondence is weak, we are likely to often fail
to reject pag = 0, especially for small samples. Due to these weak-form rejections, the
overall size of the test of CI Algorithm test is approximately bound from below by one
minus the power of the z-test.

A rejection of Hy: A causes B due to finding pag # 0, pac # 0, and pgc =0 (Case 2
above) is a strong-basis rejection. In this case, the burden proof in the z-tests is such that
we are confident that the pairs {A, B} and {A, C} are indeed causally related. Moreover,
any correspondence between B and C should be evident if A causes B, despite the fact
that the burden of proof is opposite of that which is desired in the z-test of Hy: pgc = 0.
This is because the process that leads to a strong-basis rejection reflects a self-correcting
mechanism that reduces the probability of a type II error in this latter z-test. The risk of
such an error is greatest when | pgc | and the available sample are both small. As the
sample gets smaller, however, the sample correlation coefficients rag and rac must be
larger before we are convinced that the corresponding population correlation coefficients
are not zero. On average, this corresponds to higher population correlation coefficients,
including pgc if A causes B is true. Thus the test of Hy: psc = 0 is not conducted in
circumstances where it is highly susceptible to type II errors. Strong-basis rejections are
therefore likely to reflect the underlying causal structure, and are unlikely to result from

the inherent difficulty in discerning weak causal relationships using observational data.

Monte Carlo Simulations
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To test the empirical size of the CI algorithm test, we generate a large number of
random systems in which the null hypothesis is true, and observe the frequency with
which it is rejected. The random systems all feature three observed variables, over which
there are 25 possible acyclic causal structures.” In eight of these structures, A causes B
directly (i.e., there is an edge A — B), and in one structure A causes B indirectly (A — C
— B).

The observed variables are assumed to be a subset of a larger causal structure that
includes zero or more unobserved variables. There is an infinite number of possible full
causal structures that might be considered, however there is a finite number of possible
sets of independence relations among the observed variables. A latent variable that is a
cause of only one of the observed variables does not impact these independence relations.
Latent variables that do not cause any of the observed variables (but may be caused by
them) would similarly not impact causal inference over the observed variables. Also, the
independence relations among the observed variables will be identical whether two
observed variables share a single latent common cause or share more than one such
common cause.

For these reasons, we specify systems in which there are three possible latent
variables, Lag, Lac, and Lgc, each of which is a latent common cause of the two indicated
observed variables. Each of these may or may not be present in a system. There are thus
2% possible arrangements of latent common causes that may accompany the 9 causal
structures among observed variables in which A causes B. We therefore consider 9 x 2° =

72 causal structures, which fully represent all possible patterns of independence relations

7 Each of the three possible edges has one of three possible states: absent, pointing in one direction, or
pointing in the opposite direction. There are therefore 3° = 27 possible causal structures, two of which
involve cycles: A—>B —->C —>Aand A—B«— C«—A.
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among observed variables. In each trial, we randomly select one of these 72 causal
structures with equal probability.

For each of one hundred thousand trials, equation (1) is parameterized to reflect
the selected causal structure. Without loss of generality, I'y is a zero vector for all trials.
Following Demiralp and Hoover (2003), the parameters of the I'; matrix are selected to
reflect three signal strengths. Individual elements are drawn from a U(0,d) distribution,
where d is calibrated so that the mean parameter value will result in one of three desired
population correlation coefficients between two variables®. These correlation levels are
set at 0.25, 0.50, and 0.75 to reflect low, medium, and high signal strengths, respectively.
For each observation in each trial, € in (1) is drawn, with individual elements
independently distributed as N(0,1). Equation (1) is then solved for X’ = [A, B, C, Lag,
Lac, Lac] for that observation.

Finally, for each trial we apply the CI algorithm test of Hy: A causes B, described
in the previous section, to the observed variables A, B, and C. The numbers of failures to
reject, weak-basis rejections, and strong-basis rejections are tabulated. All rejections
constitute type I errors, as Hy is true by design in all systems. We consider sample sizes
of 50, 100, 250, 500, and 1,000. For each sample size, one hundred thousand trials are
conducted. All z-tests are initially conducted using an alpha value of 0.10.

The proportions of trials that result in weak-basis and strong-basis rejections are
reported in Table 1. For the medium and high signal strengths, the proportions of weak-
basis rejections are reasonably low for all sample sizes, generally falling below the

nominal size of 0.10 employed in the underlying z-tests. For large samples (by social

¥ When one is the sole cause of the other, in the sense of equation (1).
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science standards), the proportions of weak-basis rejections are low, even when the signal
strength is low. However, as expected, the limited power of the z-test at low signal
strengths results in large proportions of weak-basis rejections for smaller samples. These
results confirm the difficulty of detecting a weak causal relationship between two
variables using observational data. This suggests the importance of disclosing the nature
of a rejection (weak-basis or strong-basis) when applying the CI algorithm test, especially
when working with small samples.

By contrast, the proportion of strong-basis rejections is reasonably low for all
sample sizes and all signal strengths. In all cases the proportion of strong-basis rejections
is below the proportion of weak-basis rejections. Performance again improves
moderately as sample size increases, and improves dramatically as signal strength
increases. The proportion of strong-basis rejections is almost always below the nominal
size of 0.10 used in the underlying z-tests, and the researcher can thus have a much
greater degree of confidence in such a result.

The above results suggest that it may be desirable to employ a higher nominal size
in the underlying z-tests, in order to reduce the probability of making a type II error in the
initial test of Hy: pag = 0. This might especially be advisable when the sample
correlation coefficient between A and B is low, giving the researcher the opportunity to
strongly reject Hy: A causes B. This would certainly reduce the incidence of weak-basis
rejections, but what effect would this have on incidence of strong-basis rejections? A
strong-basis rejection will not be possible if either a type I or type II error is made in the

underlying z-tests. Adjusting the alpha value reduces the probability of one type of error,
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but increases the probability of the other. Strong-basis rejections are thus naturally robust
to the confidence level employed in the underlying independence tests.

We conduct a second set of simulations that use an alpha value of 0.20 in the
underlying z-tests, with results presented in Table 2. The incidence of weak-basis
rejections is indeed substantially improved for small sample sizes and low signal
strengths, and the proportions of strong-basis rejections are very similar to the previous
results in all cases. The proportions of strong-basis rejections are only worse for low
signal strengths and the smallest two sample sizes, and then only marginally so. The
higher alpha value for the z-tests thus affords a greater degree of confidence in weak-
form rejections, while generally preserving the degree of confidence in strong-form
rejections.

Of course, sampling variation will prevent the researcher from knowing a
system’s true underlying signal strength. The low signal strength columns in the tables
thus reveal conservative levels of confidence that can be reported for weak-basis and
strong-basis rejections. The confidence level for a strong-basis rejection is simply the
proportion of such rejections reported in the tables. The confidence level for a weak-
basis rejection should be the sum of the proportions of weak- and strong-basis rejections,

as the researcher would presumably have accepted the stronger evidence.

Application
We intentionally apply the method to a hypothesis that most would consider
intuitively false. Peltzman (1975) finds that alcohol consumption is significantly

correlated with the total motor vehicle death rate. This is likely due to the fact that
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increased alcohol consumption is associated with increased incidence of impaired
driving. An alternative hypothesis however, might be that increased traffic deaths lead to
increased grief and stress, which in turn lead to increased alcohol consumption. We test
this latter hypothesis. We employ a test instrument that we expect to be causally related
to the death rate, but not necessarily to alcohol consumption: average motor vehicle
speed.

We employ annual observations from 1947 through 1993 of the total (both
occupant and pedestrian) number of traffic fatalities divided by the total vehicle mileage
(DEATH), average urban vehicle speed (SPEED), and average annual per capita alcohol
consumption (ALCOHOL).” Augmented Dickey-Fuller tests indicate that ALCOHOL is
mean stationary, that DEATH is trend stationary, and that SPEED is nonstationary in
levels, but stationary in first differences. Furthermore, all series exhibit autoregressive
characteristics. To accommodate these features of the data, we follow Swanson and
Granger (1997), Demiralp and Hoover (2003), Haigh and Bessler (2003), and Hoover
(2005) by conducting causal inference over filtered data. We estimate a vector-
autoregression (VAR) in first differences, with constants, using a Schwarz (1978)
information criterion-minimizing lag length of one. The innovations from this VAR are
all mean stationary, and approximately normally distributed. We cannot reject normality
for DEATH and ALCOHOL innovations using Jarque-Bera tests (p-values of 0.82 and
0.76, respectively). Normality for SPEED innovations is not rejected at a p-value of 0.91

if a single outlier reflecting the lowering of the national speed limit in 1974 to 55 miles

? Total traffic fatalities are taken from the National Safety Council’s Accident Facts (through 1974), and the
US Dept. of Transportation (DOT), National Highway Traffic Safety Admin., Fatal Accident Reporting
System (after 1974). Total vehicle mileage and speed data are from US DOT, Federal Highway Admin.,
Highway Statistics. Alcohol consumption data are from US Dept. of Health and Human Services, Public
Health Service, National Institute on Alcohol Abuse and Alcoholism, Surveillance Report, Dec. 1995.
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per hour is omitted. ~ The sample correlation coefficient between the putative cause and
putative effect is ((DEATH, ALCOHOL) = 0.341. For 45 observations, we reject HO: p =
0 at the 20% level using Fisher’s z-test for sample correlation coefficients greater than
0.198. Thus DEATH and ALCOHOL are causally-related, given Reichenbach’s common
cause principal, and there is not a weak correspondence that requires a weak-basis
rejection of Hy: DEATH causes ALCOHOL. The sample correlation coefficients between
the test instrument and putative cause is r(SPEED, DEATH) = 0.386. We are therefore
confident that SPEED is causally-related to DEATH. Finally, the sample correlation
coefficient between the test instrument and the putative effect is r(SPEED, ALCOHOL) =
0.136; they are not causally-related. SPEED is thus an evidential test instrument that
informs a strong-basis rejection of Hy: DEATH causes ALCOHOL. Using Table 2, and
conservatively assuming low signal strength in the underlying causal relations, we reject
Hy at approximately the 11% level of significance.

On an intuitive level, we can make an assumption about the direction of causal
flow between DEATH and the test instrument, SPEED — most people would believe that
increased vehicle speeds lead to greater traffic fatalities on average. Given this, if the
hypothesis that increased traffic fatalities caused increased alcohol consumption was true,
then there should be a significant correspondence between average vehicle speeds and
alcohol consumption, as the former would indirectly cause the latter. No such
correspondence is observed, and must reject the hypothesis. This example illustrates that
causal hypotheses can be rejected at conventional levels of confidence, even when
experimental manipulation is not possible, and only small numbers of observations are

available.
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Conclusion

This article describes the use of causal inference methods for testing a hypotheses
that one specific random variable causes another. This is in contrast to the more standard
use of such methods, which entails searching for a full set of causal relationships among
numerous variables. We describe how, contingent on a sufficiently strong
correspondence between the hypothesized cause and effect, an appropriately related third
variable can be employed in such a test. The procedure is easily understood. In the
linear normal case, the procedure is easy to implement, involving only the evaluation of
three sample correlation coefficients using Fisher’s z-test.

The basic logic of the testing procedure naturally suggests strong and weak bases
for rejecting hypothesized causal relationships. Monte Carlo results confirm that for
small samples, rejections motivated by the two different bases warrant substantially
different levels of confidence. When the strength of the underlying causal relations is
low, particularly between the hypothesized cause and effect, a small number of
observations can only provide a low degree of confidence in a rejection of the null
hypothesis. By contrast, when the strength of the underlying causal relationships is high,
particularly that between the hypothesized cause and effect, even a relatively small
number of observations can be used to reject the null hypothesis with a high degree of
confidence. The simulation results reveal that the size of the test with respect to these
strong evidence rejections is almost always lower than the alpha level employed in the
underlying z-tests. Future work should examine the robustness of the procedure to non-

normality and non-linearity.
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We illustrate the method using only 45 observations of U.S. traffic fatality rates,
which are hypothesized to cause per capita alcohol consumption. Using average vehicle
speeds as a test instrument, we are able to strongly-reject this counter-intuitive
hypothesis.

Economic theory is replete with causal hypotheses that are scarcely tested because
economists are generally constrained to work with observational data. The procedure
described here should facilitate the testing of such hypothesis, affording applied

economists the opportunity to more closely realize the ideals of scientific inquiry.
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Figure 1: An Example Graphical Representation of a Causal Structure
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Figure 2: Graphs Representing Causal Structures in which A Causes B

(1)

(i)

(iii)
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Table 1: Proportion of Rejections of a True Hy: A Causes B when Using an Alpha of

0.10 in Underlying z-tests.

Low Signal Medium Signal High Signal
Strength Strength Strength

N =50

Weak-basis Rejections 0.424 0.124 0.046

Strong-basis Rejections 0.094 0.043 0.013
N =100

Weak-basis Rejections 0.294 0.080 0.030

Strong-basis Rejections 0.106 0.035 0.009
N =250

Weak-basis Rejections 0.178 0.045 0.017

Strong-basis Rejections 0.100 0.025 0.006
N =500

Weak-basis Rejections 0.122 0.030 0.012

Strong-basis Rejections 0.085 0.020 0.005
N = 1,000

Weak-basis Rejections 0.083 0.020 0.008

Strong-basis Rejections 0.071 0.016 0.004
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Table 2: Proportion of Rejections of a True Hy: A Causes B when Using an Alpha of

0.20 in Underlying z-tests.

Low Signal Medium Signal High Signal
Strength Strength Strength

N =50

Weak-basis Rejections 0.331 0.094 0.035

Strong-basis Rejections 0.111 0.043 0.013
N =100

Weak-basis Rejections 0.228 0.061 0.023

Strong-basis Rejections 0.111 0.034 0.010
N =250

Weak-basis Rejections 0.136 0.034 0.013

Strong-basis Rejections 0.096 0.025 0.008
N =500

Weak-basis Rejections 0.093 0.023 0.009

Strong-basis Rejections 0.079 0.019 0.006
N = 1,000

Weak-basis Rejections 0.064 0.016 0.006

Strong-basis Rejections 0.065 0.016 0.005
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