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Abstract

We conduct a large scale RCT to investigate peer e↵ects in computer assisted learning

(CAL). Identification of peer e↵ects relies on three levels of randomization. It is already

known that CAL improves math test scores in Chinese rural schools. We find that paired

treatment improves the beneficial e↵ects of treatment for poor performers when they are

paired with high performers. We test whether CAL treatment reduces the dispersion in

math scores relative to controls, and we find statistically significant evidence that it does.

We also demonstrate that the beneficial e↵ects of CAL could potentially be strengthened,

both in terms of average e↵ect and in terms of reduced dispersion, if weak students are

systematically paired with strong students during treatment. To our knowledge, this is the

first time that a school intervention has been identified in which peer e↵ects unambiguously

help weak students catch up with the rest of the class without imposing any learning cost

on other students.

⇤We would like to acknowledge Dell Inc. and the LICOS Centre for Institutions and Economic Development
for their generous support to REAP’s computer assisted learning programs. We are very grateful to Scott Rozelle
for his constructive advice on this paper. We benefited from comments and suggestions from seminar participants
at the University of Santa Clara. We thank Weiming Huang and Yu Bai for their assistance in data cleaning and
program implementation. We acknowledge the assisstance of students from the Chinese Academy of Sciences and
Northwest University of Xi’an in conducting the surveys.
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1 Introduction

There has long been much interest in the possible existence of peer e↵ects in learning. Exam-

ples in economics include natural experiments in roommate or squadron member assignment in

institutions of higher education (Sacerdote 2001; Zimmerman, 2003; Lyle, 2007 & 2009; Carrell,

Fullerton and West, 2009; Shue, 2012) and in the assignment of students to school through

busing (Angrist and Lang, 2004) or random assignment to classes within schools (Vigdor and

Nechyba, 2007; Graham, 2008). There is also more recent evidence from randomized experi-

ments where the peer group composition is randomly varied by the researchers (Duflo, Dupas

and Kremer, 2011; Carrel, Sacerdote and West, 2013).

It has long been suspected that peer e↵ects in learning vary with the characteristics of

the peers. The di�culty is in estimating this heterogeneity in a convincing manner. The

existing studies on peer e↵ects vary largely in estimates (Sacerdote, 2011). Part of the reason

may be that many studies adopt a Linear-in-Means model that assumes that peer e↵ects are

homogeneous across students (Hoxby and Weingarth, 2005). Ignoring the heterogeneity of peer

e↵ects among students with di↵erent characteristics can lead to misleading conclusions about

the existence or the magnitude of peer e↵ects. Furthermore, using concurrent outcomes of the

peer group to identify peer e↵ects on own outcome cannot distinguish real peer e↵ects from

common shocks that a↵ect the whole group (Sacerdote, 2001). It can also be di�cult to identify

the true peer group with whom a student interacts. For instance, increasing the number of high-

achieving students in a group may induce low-achieving students to form subgroups among each

other, something they might not have done if high-achieving students are less available (Carrel,

Sacerdote and West, 2013). Introducing exogenous changes in peer groups often is crucial to

obtaining correctly estimated peer e↵ects.

A major challenge in properly identifying heterogenous peer e↵ects is to suitably control for

all possible e↵ects of treatment that are not driven by peer e↵ects themselves. In this paper

we tackle this challenge using data from a large-scale randomized controlled trial that allocates

primary school students to computer assisted learning (CAL). We take advantage of the fact

that randomization takes place at three levels: (1) assignment of schools to CAL treatment and

control; (2) assignment of students to CAL treatment either individually or in pairs; and (3)
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random assignment of a peer for those students assigned to treatment in pairs. We also have

baseline data on all students, including results from a standardized academic test. We show that

these di↵erent pieces of information are needed to identify the heterogeneous e↵ect of receiving

the CAL treatment in pairs. Although it is possible to draw inference about how the e↵ect of

treatment varies by the type of peer with less data, it is not possible to establish the sign of the

e↵ect itself – and thus it is not possible to draw policy conclusions – without suitable control

groups. This problem is common to studies in which all subjects are paired, including several

of the studies cited above.

Our results indicate that the average e↵ect of computer assisted learning is the same whether

student receives the treatment individually or in pairs: on average, students do not learn more

(or less) if they receive CAL individually. This has important budgetary implications since it

is half as expensive to treat students in pairs compared to individual treatment. We also find

significant heterogeneous peer e↵ects. Weaker students benefit more from CAL if they are paired

with a stronger student, while stronger students learn more when they are paired with a weaker

student. In contrast, students of average ability benefit equally from CAL treatment irrespective

of the initial ability of the student they are paired with.

These findings contribute to the existing literature in several ways. The study adds to

the general understanding of peer e↵ects estimated from experimental evidence. In particular,

we believe this is the first study that estimates peer e↵ects by randomly pairing students for

a specific learning activity in class. Our study highlights the importance of heterogeneous

peer e↵ects in this context. The evidence provided in our study suggests that learning can be

enhanced by optimally pairing students for joint learning activities – in our case, by pairing low

and high-achieving students together. We suspect that this arises because strong students get

an even better understanding of the material when they try to explain it to their weaker peers.

These conclusions about pairing have important policy implications for a cost-e↵ective delivery

of computer assisted learning programs in China and elsewhere. Such findings complement

ongoing work estimating the average treatment e↵ects of CAL in di↵erent regions of China and

among di↵erent rural populations (e.g., Lai et al., 2011, 2012 and 2013; Mo et al., 2013 and

2014).

The paper is organized as follows. The experimental design is summarized in Section 2. In
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Section 3 we present our testing strategy in detail, contrasting what can – and cannot – be

inferred with di↵erent types of data. The student data are described in Section 4. Estimation

results are detailed in Section 5.

2 The experiment

During the 2011-2012 academic year, we conducted a randomized controlled trial to study peer

e↵ects in Computer Assisted Learning (or CAL) in China. The main focus of the CAL inter-

vention is remedial tutoring in mathematics to complement the regular school curriculum. CAL

is not intended to help top student performers advance faster and learn more than the school

curriculum. It aims instead at helping weaker students keep up with the rest of the class. What

is unclear is whether it is capable of reaching this objective.

2.1 Experimental design

One of the objectives of the study is to identify interventions that can bridge the educational

gap between rich and poor Chinese counties. For this reason, we implement the randomized

controlled trial in a poor area of China. We select the Shaanxi Province, a province with one

of the greatest number of nationally designated poor counties (CNBS, 2013). Within Shaanxi,

we choose to focus on the Ankang prefecture because it is the poorest prefecture in the province

(CNBS, 2013). Of the eight counties in Ankang that are nationally-designated as poor (CNBS,

2013), we randomly select four. With an average per capita income of 4000 RMB ($650) per

year in 2011, the four selected counties have an average income that is far below the rural China

average, which was 6977 RMB in 2011 (CNBS, 2011). All 72 six-year primary schools in the four

selected counties are included in the experiment. Within sample schools, we work with students

in grades three to six because the CAL software was produced for these grades.1 All classes in

these grades are included. None of our sample students had ever participated in a CAL program

prior to the 2011-12 academic year. A total of 7881 grade students were involved in the study.

Half of the 72 sample schools were randomly assigned to receive the CAL treatment and the

other half were assigned to the control group. When dividing schools into treatment and control,

1Grade 1 and 2 students are not included because they can not read at levels high enough to use software.
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we pre-balanced on the student and family characteristics reported in Table 2, following the

methodology suggested by Bruhn and McKenzie (2009). The CAL intervention was implemented

during over the entire 2011-2012 academic year. Students in treated schools received two 40-

minute CAL sessions per week. The sessions took place in the school and they were mandatory

for all students in treated schools.

Protocols are designed to ensure that the control schools provide a true counterfactual.

Students in the 36 control schools took their regular math classes as usual, without any CAL

intervention. To avoid spillover e↵ects across schools, the principal, teachers, students, and

parents in the control schools were not informed of the CAL project. The research team did

not visit the control schools except for the baseline and endline surveys. No placebo activity

was organized in control schools. Treatment thus represents additional teaching time. The

possibility of accidental spillover is minimized by the fact that there was only one sample school

per town. This means that the average distance between control and treatment schools is more

than 30 kilometers. No student in a treatment school lived in a village with a student from a

control school.

During CAL sessions, students played math games designed to help them review and practice

the material taught during their regular math classes. The instructional videos and games that

make up the content of the CAL software are all based on the material in text books that

use rural China’s most common curriculum, the uniform national curriculum. The content is

grade-specific and is the same across all treated schools for students in the same grade. In a

typical session, the students first watch an animated video that reviews the material taught by

their math teacher during that week. The students then play games containing various math

exercises. The games have cartoon characters and story lines that make the exercises fun.

Many CAL students were randomly assigned a peer who was a student in the same class. The

pair shared a computer during the CAL sessions. Peers were assigned randomly by the research

team from among the students in the same class. Peer assignment was decided once and for

all at the beginning of the academic year after the baseline survey, and it remained unchanged

over the duration of treatment. To keep a log of which students shared a computer in each CAL

session, students were required to log in using their unique username and password. According

to log records, there was almost no switching of peers across sessions. Furthermore, less than
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one percent of paired students participated in a session alone due to their peer’s absence on the

day of the session.

Because some classes have an odd number of students, six percent of students in treated

schools were not assigned a peer. As as result, the sample includes both paired and unpaired

students. Unpaired students participated in the same CAL sessions as the paired students, but

they did not have to share their computer with anyone. In addition, some students lost their

peer when the peer left the school in the middle of the school year. These students were not

reassigned a peer. If a student participated to more than half of the CAL sessions without

sharing a computer, this student is categorized as unpaired for the purpose of our analysis. This

only a↵ects 23 students in 7 schools.

The experimental protocol was designed to minimize interaction with students other than

one’s peer. During CAL sessions, paired students were allowed to interact freely, but no dis-

cussion or interaction was allowed with other students. Sharing a pair of earphones also helped

paired students focus their attention and conversations on their own computer, and limit con-

versations with others. The teacher who supervised a CAL session was only allowed to help

students with scheduling, computer hardware issues, and software operation. The main duty

of the teacher-supervisor was to ensure that each weekly CAL sessions matched the pace of

regular math classes. According to our own in-class observations, the sessions were so intense

that the students had little time or interest to interact with other student pairs or with the

teacher-supervisor.

2.2 Data collection

We conducted two survey rounds in the 72 sample schools – one at baseline in June 2011 and

one at endline in June 2012. All students in grades three to six participated in the two rounds

of surveys. The baseline survey was conducted at the end of the spring semester, before any

implementation of the CAL intervention had begun. The endline survey was conducted in June

2012 after the intervention had been running for an entire academic year. The two survey rounds

are almost identical in terms of design and questionnaire. Information includes the gender of

the student, whether the student is an only child, whether the student had prior computer

experience, and whether the student’s mother and father are illiterate.
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During each survey round, the enumeration team visited each school and gave all students

a standardized math test. The test is a grade-specific multiple choice test and is identical for

all students in the same grade. The questions are all chosen from the TIMSS test data bank.

Elementary teachers in rural schools of Shaanxi Province screened the questions to ensure that

they were appropriate, i.e., neither too di�cult nor too easy for the average student. None of the

questions repeat questions used as exercises in the CAL software. The test takes 25 minutes and

was administered using pen and paper so as not to advantage CAL students. Since students take

a grade-specific test, scores are not directly comparable across baseline and endline. To make

test scores comparable, they have been standardized using grade-specific test scores obtained

by control students. Throughout the analysis, math scores are measured in terms of standard

deviation units relative to the average score of control students.

3 Testing strategy

Our aim is to obtain consistent estimates of the heterogeneous e↵ect of CAL treatment on paired

students. In this section we discuss how this can be achieved using the data at our disposal.

The pros and cons of di↵erent estimation approaches are briefly discussed before we settled on

our preferred estimation strategy. Discussing di↵erent possible methodologies in some detail will

save much time when we present the results themselves.

We need to distinguish between three types of treatment e↵ects: (a) the average treatment

e↵ect of CAL; (b) the average treatment e↵ect of taking CAL in pairs rather than individually;

and (c) the e↵ect of having been assigned a particular peer, conditional on being paired. The

first e↵ect (a) is the focus of earlier work by Lai et al. (2011, 2012 & 2013) and Mo et al.

(2013 & 2014). These studies estimate the average treatment e↵ects of CAL in di↵erent regions

of China and among di↵erent rural populations. The estimated program impacts range from

0.12 standard deviations of a one-semester program among migrant students to 0.26 standard

deviations of a three-semester program among rural students. The third e↵ect (c) is what we

focus on here. The question is whether we can obtain a consistent estimate of (c) without also

consistently estimating (a) and (b).
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3.1 Unpaired students

Control students measure the average performance of children without CAL treatment, while

unpaired CAL students measure the average performance of CAL without peer e↵ects. For

unpaired students, the e↵ect of CAL treatment can be written:

yit+1 = yit + h(yit) + f(yit)Tt + uit+1 (1)

where yit denotes the performance of student i in the math test at time t, Ti = {0, 1} is a

dummy for being assigned to CAL treatment, and Pi = {0, 1} is a dummy for receiving the CAL

treatment in pairs.

In model (1) h(.) denotes the learning that takes place without treatment. This is estimated

from the control population, and in general it varies with the initial level of the student yit.

For instance, if a student has already learned a topic, further instruction in that topic will not

improve his/her knowledge of that subject. We expect h(.) to be positive on average because

students above the mean at baseline have a higher likelihood of being above the average at

endline, except for regression to the mean due to measurement error or random performance

variation on the test. The yet-to-be-defined function f(.) captures the heterogeneous e↵ect of

treatment conditional on initial knowledge. For instance, if treatment has a stronger e↵ect on

initially weak students, then f(.) is an decreasing function.

With a su�ciently large number of observations, we could in principle estimate a flexible

version of model (1). Unfortunately we do not have that luxury. A linear version of model (1)

is of the form:

yit+1 = k + ⇢yit + (↵+ �(yit � yt))Tt + uit+1 (2)

where we have explicitly demeaned yit in the interaction term so that ↵ can be interpreted as

the average treatment e↵ect (Wooldridge, 2003).

The intercept k is the average unconditional level of knowledge at t+ 1 without treatment,

⇢ � 1 is the average growth rate in knowledge, ↵ is the average e↵ect of the CAL treatment

on all students, and � is the heterogeneous e↵ect of treatment depending on initial knowledge.

If the treatment helps weaker students catch up, then � < 0: initially knowledgeable students
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benefit less from treatment.

3.2 Paired students

For paired students, the total e↵ect of treatment can be written as:

yit+1 = yit + h(yit) + f(yit)Tt + g(yjt|yit)Pt + uit+1 (3)

where g(.) is an unknown function that captures peer e↵ects. By experimental design Tt = 1

whenever Pt = 1 – i.e., only students who take CAL are paired. In our estimation, we posit g(.)

to be of the form:

g(yjt|yit) = �0 + �1(yit � yt) + �2(yjt � yt) + �3(yit � yt)(yjt � yt) (4)

where we have demeaned all y’s to facilitate interpretation of the parameters. The interpretation

of each coe�cient is as follows: �0 > 0 is the average incremental gain in learning for a student

of average initial knowledge paired with an average peer, compared to an unpaired student of

similar ability; �1 < 0 means that a student i with high initial knowledge benefits from CAL less

if paired than if not paired; �2 > 0 means that a student i benefits more from CAL if paired to

a student j with high initial knowledge than if paired with an average peer; and �3 < 0 means

that a student i of high initial knowledge benefit less from CAL if paired with another high

knowledge student j compared to being paired with an average peer. More formally, we have:

@g

@yit
= �1 + �3(yjt � yt)

@g

@yjt
= �2 + �3(yit � yt)

@2g

@yit@yjt
= �3

Combining (2) with (4) the estimated model is:

yit+1 = k + ⇢yit + (↵+ �(yit � yt))Tt (5)

+(�0 + �1(yit � yt) + �2(yjt � yt) + �3(yit � yt)(yjt � yt))Pt + uit+1
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Coe�cient ↵ measures (a), the average treatment e↵ect of CAL and coe�cient �0 measures

(b), the average treatment e↵ect of being paired for treatment. Peer e↵ects (c) are captured by

coe�cients �1,�2 and �3.2

3.3 Class e↵ects

So far we have assumed that CAL and pairing have an e↵ect that depends on the absolute level

of initial knowledge of students and their peers. It is also possible that what matters is the

initial knowledge of a student relative to others in the class. This could arise, for instance, if

teachers teach to the class, i.e., go through the curriculum faster or deeper if the average student

is stronger/is learning faster. In this case, CAL may help laggard students to catch up.3

To capture this possibility, we include yct, the average initial knowledge of the class, as

additional regressor, and we enter all interaction terms as deviation to the class mean yct.
4 The

estimated model becomes:

yit+1 = k + ⇢0yit + ⇢1yct + (↵+ �(yit � yct))Tt (6)

+(�0 + �1(yit � yct) + �2(yjt � yct) + �3(yit � yct)(yjt � yct))Pt + uit+1

Estimating this model is the focus of the empirical part of the paper.

3.4 The golfer model

It is useful to compare our preferred model (6) to an alternative model used by Guryan, Kroft,

and Notowidigdo (2009) to estimate peer e↵ects among golfers. Indeed there are many simi-

larities between their experimental design and ours, given that golfers are randomly assigned

to play in pairs. Guryan et al. wish to estimate whether a golfer plays better if paired with

2The � coe�cients should be understood as capturing both exogenous and endogenous peer e↵ects (Manski
1993), i.e., the e↵ect of being paired with a treated student j, and the multiplier e↵ect of j’s CAL-induced learning
on i’s own learning. To estimate endogenous and exogenous e↵ects separately, we would either need to observe
paired students who did not to receive CAL treatment, or observe students paired with di↵erent numbers of peers
(e.g., Fafchamps and Vicente 2014; Fafchamps, Vaz and Vicente 2014). Neither of these is possible here given the
design of our intervention.

3Even if relative performance does not matter, we still may want to include average class performance as
regressor to control for class di↵erences that may, in a small sample, be correlated with treatment.

4The reader may wonder whether, in model (6), ↵ can still be interpreted as the ATE of the CAL intervention
even though we have not subtracted the mean of (yit�yct) from each interaction term. The answer is yes because
the mean of (yit � yct) is, by construction, equal to 0.
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a good golfer than if paired with a bad golfer. Let yit+1 be the performance of golfer i in the

tournament, and let yjt be the past performance of the paired player. The model that Guryan

et al. estimate is of the form:

yit+1 = �0 + �2yjt + uit+1 (7)

only using data on paired subjects, i.e., with Pi = 1. This is because, by design, tournaments

only include paired golfers.

In model (7) there is an exclusion bias because yit is positively correlated with yit+1 –

and hence with eit+1 – but negatively correlated with yjt. This negative correlation arises

mechanically because good golfers are, on average, paired with golfers that are worse than

them, while bad golfers are, on average, paired with golfers that are better than them. The

solution Guryan et al. propose is to add yit as control to eliminate the bias:

yit+1 = �0 + �1yit + �2yjt + uit+1 (8)

Caeyers (2013) shows that exclusion bias is largest when the size of the randomly assigned peer

group is small – e.g., a pair.

Our model (5) can be seen as an extension of (8) to allow � to depend on the initial ability

of golfer i. If, as in Guryan et al., we limit the estimation sample to paired subjects only, model

(5) can be rewritten as:5

yit+1 = (k + �0 + (⇢+ �)yt) + (⇢+ � + �1)(yit � yt)

+�2(yjt � yt) + �3(yit � yt)(yjt � yt) + uit+1 (9)

5This is obtained by using:

yit+1 = k + ⇢yit + �yitTit

+(�0 + �1(yit � yt) + �2(yjt � yt) + �3(yit � yt)(yjt � yt))Pt + uit+1

= (k + �0 � �1yt) + (⇢+ � + �1)yit + �2(yjt � yt) + �3(yit � yt)(yjt � yt) + uit+1

from which we get our model in Guryan form:

yit+1 = (k + �0 � (�1 + �2)yt + �3y
2
t ) + (⇢+ � + �1 � �3yt)yit

+(�2 � �3yt)yjt + �3yityjt + uit+1
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where we preserved the original notation.

The above shows two things. First, since we include past performance as regressor, our

estimation model corrects for exclusion bias. Secondly, if we only use observations on paired

students we cannot estimate ⇢, � and �1 separately from each other. In other words, we cannot

distinguish whether better able students perform better when paired (�1), from whether students

perform play better with CAL (�), and from whether students who did well at baseline also

perform better at endline (⇢). We can, however, still obtain consistent estimates �2 and �3. But

without an estimate of �1 we cannot compute the correct marginal e↵ects of treatment. We will

illustrate this in the empirical section.

Model (9) can be modified to include class e↵ects as in (6). The same observation holds:

since the mean of (yit � yct) is always 0 by construction, the interpretation of the coe�cients is

the same as above.

4 The data

A total of 7881 students from 72 primary schools were involved in the study. This total can be

broken down into 1555 grade three students, 1927 grade four students, 2115 grade five students,

and 2284 grade six students (Figure 1). There are 3852 students in the CAL schools and 4029

students in the control schools. Ninety-six percent of the students (3679) in the CAL schools

have a peer with whom they shared a computer during the CAL sessions. The rest, i.e., 173

students sat alone without sharing a computer. As stated above, unpaired students arise mostly

in classes with an odd number of students. On average, there was one student who had no peer

in every two classes.

Table 1 presents information about balance across the three di↵erent types of treatments

implemented in our experiment. We compute balance with respect to performance on the June

2011 math test and for the student characteristics collected in the baseline survey. The first two

columns of Table 1 report regression coe�cients of the variables listed on the left on treatment

dummies. The comparison is between treated and control students and the dummy is 1 in treated

schools and 0 in control schools. Results show that random assignment of CAL treatment across

schools produced balanced groups of students in the CAL and control schools along all available
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variables.

The next two columns of Table 1 compare paired and unpaired students. Here the comparison

is between students who are treated individually and those who are treated in pairs. The dummy

is 1 for those treated in pairs, and 0 for those treated individually. We do not find any significant

di↵erence between the two groups in terms of baseline characteristics. From this we conclude

that randomization was successful and balanced is achieved on baseline characteristics.

The last two columns check random peer assignment for those treated in pairs. This is

important given our emphasis on estimating heterogenous peer e↵ects: if, in spite of our best

e↵orts, peers are not assigned randomly, we worry that paired students may have been matched

on unobservables, a feature that may introduce correlated unobservable e↵ects and contaminate

our inference.

In column (5) the Table reports regression coe�cient of the baseline characteristic of one

student on the baseline characteristic of the other. The estimated regression is of the form:

yit = �0 + �2yjt + uit (10)

As discussed earlier, such random assignment test is subject to exclusion bias: because a student

cannot be his/her own peer, negative correlation between peer characteristics naturally arises

under random assignment. Consequently, under the null hypothesis of random assignment esti-

mated b�2 are not centered on 0 but on a negative number. Caeyers (2013) derives the magnitude

of the bias for groups and selection pools of fixed size and shows that the bias is particularly

large when the randomly assigned group is small, e.g., in pairs. We cannot use Caeyers formula

here because the size of the selection pools varies: class sizes are not constant. To circumvent

this problem, we simulate the distribution of b�2 under the null using a so-called permutation

method. This method also delivers a consistent p-value for �2 and thus o↵ers a way of testing

the null of random assignment. This method works as follows. The object is to calculate the

distribution of b�2 under the null that yit and yjt are uncorrelated. To simulate b�2 under the null,

we create counterfactual random matches and estimate (10). In practice, this is implemented by

artificially scambling the order of students within each class to reassign them into counterfactual

random pairs. By construction these samples of paired observations satisfy the null of random
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assignment within classroom. We repeat this process 1000 times to obtain a close approximation

of the distribution of b�2 under the null. We then compare the actual b�2 to this distribution to

get its p-value.

We present in Figure 2 the simulated distribution of b�2 for baseline math scores under the

null hypothesis of random assignment. These simulated b�2’s are centered around -0.05, with

very few values at or above 0. As shown in the first line of column (5) in Table 1, the b�2

estimated from the sample -0.03. Comparing this number to the histogram of b�2 under the null

reported in Figure 2, we find that 27% of simulated coe�cients are larger than -0.03. From this

we conclude that the p-value is 0.27: we cannot reject the null hypothesis of random assignment

based on baseline math scores.

In column (5) and (6) of Table 1 we report the coe�cient estimates for other baseline char-

acteristics as well as similarly calculated p-values for the null hypothesis of random assignment

by these characteristics. All p-values are above the 10% level. From this we conclude that the

random assignment of peers was implemented in a satisfactory manner.

Attrition during the experiment is low. A total of 7536 sample students surveyed in the

baseline participated in the endline survey. Only 4% of the students who took the baseline

survey did not take the endine survey. Based on information provided by the schools, attrition

is mainly due to illness, dropout, and transfers to schools outside of the town. In Table 2 we

examine whether attrition is correlated with treatment. Column 1 shows that attrition rates

do not di↵er statistically between CAL school students and control school students. Attrition

is also not correlated with being paired or not (Table 2, column 2) or with being assigned to a

high or low achieving peer Table 2, column 3).

As a final check, we repeat the balancedness tests of Table 1 using only the non-attriting

sample. The same conclusions hold: we cannot reject balance on all baseline characteristics for

the first two treatments. We also repeat the permutation tests to check random peer assignment

on baseline math scores. We obtain p-values all above 0.1 and again fail to reject the random

peer assignment hypothesis.
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5 Empirical analysis

In the first column of Table 4 we report coe�cient estimates for model (9), the ‘golfer’ model

in which we only use data on paired students. The mean math score of the class at baseline

yct is included as control. The other estimate coe�cient are shown interacted with Pi since,

by construction, only paired students are used in the regression. As explained in Section 2,

coe�cient [6] estimates ⇢ + � + �1, the combined e↵ect of past performance on its own ⇢,

interacted with CAL treatment �, and interacted with being paired �1. This coe�cient is

statistically significant, but we do not know which of the three e↵ects it captures. Coe�cient

[8] is an estimate of �2 while coe�cient [10] is an estimate of �3. We note that �3 is significant

and negative, which suggests that a low ability student benefits more from CAL if paired with

a high ability student – or vice versa. Without an estimate of �1 we cannot compute g(.) in (4)

and thus we cannot tell whether the absolute e↵ect of CAL treatment is higher for high or low

ability students.

By using data on control and unpaired students, we are able to separately estimate ⇢, �

and �1. This is done in the third column of Table 4, which estimates model (6) on the entire

population of non-attriting students. Coe�cient [1] is an estimate of ⇢, which measures the

extent to which performance in the June 2011 math test helps predict performance in the

June 2012 math test. Since ⇢ < 1, this indicates math test scores exhibit a strong element

of regression to the mean. This might arise because math test scores are noisy measures of

math ability. Another possibility is that it signals convergence towards an average level of math

proficiency. Since the purpose of our experiment is not to distinguish between the two, we do

not pursue this issue any further. Coe�cient [3] is an estimate of the average treatment e↵ect of

the CAL intervention, which is positive, statistically significant, and large in magnitude. This

estimate is discussed in detail in Mo et al. (2014).

More of interest here is coe�cient [4], which is an estimate of �. This coe�cient is indistin-

guishable from 0, indicating that the average positive e↵ect of CAL on math performance is the

same across students, irrespective of past performance. If this coe�cient had been negative, we

would have concluded that CAL helped laggard students catch up with their better performing

peers. This is not what we find. A zero � implies that, by itself, CAL is unable to reduce the
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performance gap between students in a class. We observe a similar finding regarding �1, which

corresponds to coe�cient [6] in column 3: the coe�cient is slightly positive, but nowhere near

statistically significant. In other words, students who did poorly on the June 2011 math test

did not benefit more from CAL when paired than students who did well on that test. Taken

together, these findings indicate that coe�cient [6] in column 1 is entirely driven by ⇢, that is,

by coe�cient [1] in column 3. This is exactly what we find: the coe�cients are identical in

magnitude and in significance.

Using coe�cient estimates from column 3, we report in Table 5 the predicted performance of

paired students at the June 2012 math test. Predictions are calculated for various hypothetical

pairings of students with di↵erent levels of initial ability. The first row of the Table reports

the predicted June 2012 performance of students who did quite poorly on the June 2011 test,

that is, who received mark that is two standard deviation below the average. The first column

is the predicted performance of such a student if he/she were paired with a student who did

equally poorly on the June 2011 test. This predicted performance is -0.95, that is, just shy of

one standard deviation below the average June 2012 test score. As emphasized earlier, there is

random variation in test results for the same student over time, and thus considerable regression

to the mean: someone who did exceptionally poorly in June 2011 must have had an unusually

bad day, and their performance is predicted to improve in June 2012.

Moving to the other columns of row 1, we see that the predicted performance of an unusually

poorly performing student improves if this student is paired with a better performing student

during the CAL intervention: if such a student were paired with a top performer in 2011, their

predicted performance would rise to -0.63, that is, 0.63 standard deviations below the 2012

test score average. We test whether the di↵erence between columns 1 (-0.95) and 5 (-0.63) is

statistically significant and we report the p-value of this test in the last column of Table 5. We

find that the di↵erence is significant at the 2% level, implying that a poorly performing student

benefits more from CAL if paired with a high performer. A statistically significant e↵ect of being

paired with a good performer is also found in the second row of Table 5, that is, for students

who received a score one standard deviation below average in June 2011.

In contrast, for a student who received an average score in 2011, we find no statistically sig-

nificant relationship between predicted performance and the performance of the paired student.
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In other words, the predicted performance of an average student is the same irrespective of

the past performance of the student they are paired with during the CAL treatment. A similar

result is found for students who received a mark one standard deviation above the average in the

June 2011. For students who performed exceptionally well in 2011, we find that their predicted

2012 performance is, if anything, higher if they were paired with a poorly performing student:

+1.21 compared to +0.99 standard deviation above the mean. This di↵erence, however, is not

statistically significant at conventional levels (p-value of 14%).

To test the robustness of our findings to alternative functional form assumptions, we rees-

timate models (9) and (6) with additional quadratic terms (coe�cients [7] and [9]). Results

are shown in columns 2 and 4 of Table 4, respectively. We find some evidence of non-linearity

for paired students with respect to own 2011 scores. Other coe�cients are largely una↵ected.

We report in Table 6 the performance predictions obtained using coe�cient estimates reported

in column 4 of Table 4. These calculations confirm the findings from Table 5. Students who

performed one or two standard deviation below average in 2011 do better in 2012 if they are

paired with high performers (significant at the 6% and 8% level, respectively). In contrast, high

performers in 2011 do not do less well in 2012 if paired with poor performers; this di↵erence is

large in magnitude, albeit not statistically significant.

Tables 5 and 6 demonstrate that treatment e↵ects vary across pairings. In Table 7 we present,

for each of the pairings in Table 5, the predicted e↵ect of CAL treatment relative to control

students. The Table also reports pairing-specific p-values for the significance of the e↵ect relative

to controls. What the Table shows is that significant benefits from CAL are concentrated on

two groups: (1) average and below-average students paired with above average-students; and (2)

above-average students paired with below average students. The first group corresponds to the

last two columns of the first three rows, where the estimated treatment e↵ects of paired CAL are

all positive and statistically significant at the 10% or better. The second group corresponds to

the last two rows in columns one and two, with p-values less than 0.1. For weak students paired

with weak students, the point estimate of the ATE is negative (row 1, column 1), although it is

not statistically significant.
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5.1 Improved pairing

Table 7 has shown that peer e↵ects are stronger for some pairings than others. This suggests

that it may be possible to increase the average treatment e↵ect of CAL on math scores by

favoring negative assorting, that is, by pairing weak students with strong students. To investigate

the magnitude of this potential e↵ect, we hypothetically match the weakest students with the

strongest students in each class and calculate the predicted e↵ect of CAL using the coe�cients

estimated in Table 4 (column 3).6

To implement this idea, we proceed as follows. We begin by sorting all the students in a class

by their 2011 math score. We then pair the first student from the top with the first from the

bottom, then the second from the top with the second from the bottom, and so on until every

student is paired (if the number of students in the class is even) or until the median student

is left to be treated individually (if the number of students in the class is odd). We can then

compute the predicted treatment e↵ect for each individual in the sample conditional on this

improved match. Finally we aggregate these predicted e↵ects to obtain the average predicted

e↵ect of the optimal match.

To recall, in the data the average treatment e↵ect of CAL is a 0.17 SD improvement in math

score. Based on our calculations, this improved pairing would further improve math test scores

of paired students by another 0.03 SD relative to random pairing. This is equivalent to an 18%

increase in treatment e↵ectiveness on average. The di↵erence between improved and random

pairing is even larger – 0.04 SD – for weaker students, that is, for those with a 2011 math score

below the class average. Improved pairing could thus be particularly beneficial to weak students.

5.2 Dispersion in math scores

We have seen from Tables 5 to 7 that students at both extremes of the score distribution gain

more from CAL, especially if they are optimally matched. By itself, however, this does not tell

us whether CAL leads to a reduction or an increase in the dispersion of math scores in treated

classes. In other words, it does not tell us whether the improvement in math scores is achieved

6We do not claim that such pairing is optimal. Finding the pairing that maximizes average gains would
probably require calculating, for each class, the value of predicted endline scores for each possible pairing of
students in the class. While this is not impossible to implement in theory, negative assorting is much easier to
implement in practice and is thus a more realistic policy. Booij, Leuven and Oosterbeek (2014) discusses a variety
of assignment rules in the context of the assignment of university students to tutorial groups.
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by helping weak students to catch up or by helping strong students to get further ahead of their

peers.

To investigate this important issue from a policy point of view, we first note that the average

improvement in math scores is 0.16 SD for students who scored higher than or equal to the class

median in 2011. In contrast, the average improvement in scores is 0.19 SD for the students who

scored lower than the class median in 2011. We further note that 9% of the average treatment

e↵ect of 0.17 is attributable to the “catching up” of the poorer performing students. From this

we suspect that CAL reduces the dispersion in math scores for paired students compared to

controls.

We can also look at the dispersion in scores directly. To this e↵ect, we present in Table 8

various interdecile ranges for control and paired students. The first row reports the di↵erence

in standardized math scores between the 90th percentile (Q9) and the 10th percentile (Q1)

students. This di↵erence is 2.67 standard deviations for control students and 2.61 for paired

students. Similar findings are shown in row 2 – which compares the 80th to the 20th percentiles

– and in row 3 – which compares the 70th to the 30th percentiles. These results suggest that

CAL reduced the dispersion in math scores among the treated population. In other words,

students who were initially weak benefitted more than students who were initially strong.

Because interdecile di↵erences are small in magnitude, we wonder whether they are statisti-

cally significant. To obtain a p-value for each of the three columns of Table 8, we use a method

that has the advantage of being entirely non-parametric. Our null hypothesis is that the distri-

bution of scores among the control and treatment populations is the same. We want to compare

each of the interdecile di↵erences in Table 8 to the distribution of interdecile di↵erences that

would arise under the null. To derive the distribution of these di↵erences under the null, we

simulate it from the data by randomly drawing hypothetical controls and treatments from the

pooled observations, keeping the number of controls and treated identical to the actual data.

In practice, this is achieved by randomly re-sorting the pooled data and assigning the first N c

observations to controls and the others to treated – where N c is the number of control observa-

tions in the actual data.7 We do this 1000 times and draw a histogram of interdecile di↵erences

7Before pooling we normalize the two distributions to have the same mean by subtracting the ATE of 0.17
from the paired students’ scores.
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simulated over these 1000 replications. We then compare this histogram to the actual di↵erence

reported in Table 8. The p-value of the reported di↵erence is the proportion of the histogram

that lies to the right of the (positive) di↵erence. For row 1, the di↵erence is 2.67-2.61=0.06.

Of the simulated di↵erences under the null, 10% are larger than 0.06. The p-value of 0.06 is

thus 10%. Similar calculations for row 2 and 3 yield p-values of 0.07 and 0.00, respectively. We

therefore conclude that the reduction in dispersion induced by CAL is statistically significant.

We also calculate what further reduction in dispersion could be achieved with improved

pairing. To this e↵ect, we construct counterfactual distributions of math scores with negative

assorting. This is achieved as follows. We first obtain predicted math scores for negatively

assorted pairs following the methodology already described in the previous sub-section. By con-

struction, the distribution of predicted scores has a smaller variance than actual scores because

it omits the random variation contained in the residuals. In order to produce a counter-factual

distribution that can be compared to the sample distributions presented in Table 8, we need to

‘add’ the error term back in. This is achieved by adding the residuals from regression (6) to the

counter-factual predictions with improved pairing. We compare the resulting hypothetical dis-

tribution to the control population. Point estimates indicate that improved pairings generates

a further – albeit small – reduction in the interdecile range of math scores. Applying the same

permutation method as before to test whether the di↵erence is significant, we find that it is not

significant for all interdecile ranges reported in Table 8 – although it is borderline significant

(p-value of 0.16) for the 90-10 interdecile range. These findings therefore do not suggest that

negative assorting students would increase dispersion in math scores relative to random pairing

– and may even reduce it.

6 Conclusion

We have conducted a large scale randomized controlled trial to investigate peer e↵ects in learning.

Identification of peer e↵ects relies on three levels of randomization. We randomly assign schools

to a treatment that successfully improves math learning. Within treated schools, students

take the treatment either individually or in pairs. Finally, paired students are assigned a peer at

random from the class population. In the methodological section, we show that this experimental
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designs improves on earlier designs commonly used in the literature on peer e↵ects in learning,

such as paired designs used by Sacerdote (2001), Lyle (2007, 2009) and Shue (2012). We also

avoid some of the pitfalls of paired designs discussed for instance in Guryan et al. (2009).

Our findings can be summarized as follows. Except for the first finding which confirms Mo

et al. (2014), the others are all original to this paper.

1. In the Chinese rural schools we studied, computer assisted learning (CAL) leads to an

average 0.17 standard deviation improvement in math scores among primary school stu-

dents.

2. This average e↵ect is the same whether students take CAL individually or in pairs.

3. There is no evidence of convergence in math scores among students who take CAL indi-

vidually.

4. Among paired students, poor performers benefit more from CAL when they are paired

with good performers.

5. Average performers benefit equally irrespective of who they are paired with.

6. Good performers benefit more from CAL when paired with poor performers.

Taken together, these findings allow us to conclude that (1) computer assisted learning

improves math test scores in Chinese rural schools and that (2) paired treatment improves the

beneficial e↵ects of treatment for poor performers when they are paired with high performers,

without hurting the performance of others. The second finding is similar to that reported by

Booij, Leuven and Oosterbeek (2014) in the context of tutorial groups for university students.

One of the concerns at the onset of this experiment was that CAL could widen the knowledge

gap between weak and strong students. This is not what we find. We test whether CAL

treatment reduces the dispersion in math scores relative to controls, and we find statistically

significant evidence that it does. We also demonstrate that the beneficial e↵ects of CAL could

potentially be strengthened, without significant increase in the dispersion of scores, if weak

students are systematically paired with strong students during treatment. To our knowledge, this

is the first time that a school intervention has been identified in which peer e↵ects unambiguously
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help poor student performers catch up with the rest of the class, without imposing any learning

cost on other students. The treatment is good for both e�ciency and equity.

We are not claiming that similar e↵ects would be obtained by pairing students in other ways,

for instance, as roommates. The treatment tested here may have stronger peer e↵ects because

it creates an environment that naturally induces students to interact. Roommates and other

groups, on the other hand, may decide not to interact, as indicated for instance in the work of

Carrel, Sacerdote and West (2013).
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Table 1. Balance between CAL school students and control school students, students who 
were paired and who sat alone in CAL classes, and between students who were assigned to a 
high achieving or a low achieving peer before attrition. 
�  �  Independent variables 
  

CAL treatment 
(1=yes; 0=no) 

Pair status 
(1=had a peer; 
2=sat alone) 

Standardized 
baseline math test 
score of the peer - 
class mean score 

(SD) 
  (1) (2) (3) (4) (5) (6) 

�  �  Coef S.E. Coef S.E. Coef 
Simulated 
P-values 

[1] 
Standardized own math 
test score - class mean 
score (SD) 

0.00  0.00  0.04  0.07  -0.03  0.28  

[2] Boy (1=yes;0=no) 0.00  0.01  -0.01  0.03  0.00  0.43  

[3] Only Child (1=yes, 
0=no) 

0.01  0.03  0.03  0.04  0.00  0.45  

[4] 
Had computer 
experience before the 
program (1=yes;0=no) 

0.00  0.03  0.07  0.05  0.00  0.48  

[5] Mother is illiterate 
(1=yes; 0=no) 

0.00  0.01  0.02  0.02  0.01  0.21  

[6] Father is illiterate 
(1=yes; 0=no) 

0.01  0.00  0.00  0.02  0.00  0.36  

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to present information about balance across the three different types of 
treatments in our experiment. The tests regress the variables listed on the left (each at a time) 
on the dummy variable of treatment status, the dummy variables of the pairing or the baseline 
math performance of the peer.  
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Table 2. Comparisons of attrition between the CAL school students and control school 
students, students who were paired and who sat alone in CAL classes, and between students 
who were assigned to a high achieving or a low achieving peer 

Dependent variable: attrition (1=students attrited; 0=students 
remained in the sample)  

  (1) (2) (3) 

[1] CAL treatment (1=yes; 0=no) -0.00 �  �  
  (0.01)   

[2] Pairing status (1=had a peer; 
0=alone) 

 -0.00  
  (0.02)  

[3] Standardized baseline math score of 
the peer - class mean score (SD) 

  -0.00 
   (0.01) 

[4] Observations 7,881 3,852 3,675 
[5] R-squared 0.000 0.000 0.000 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to show whether attrition rates are different among the groups defined by the 
three different types of treatment. The test regresses attrition status on the different treatment 
variable.  
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Table 3. Balance between CAL school students and control school students, students who 
were paired and who sat alone in CAL classes, and between students who were assigned to a 
high achieving or a low achieving peer after attrition 

�  �  Independent variables 
  

CAL treatment 
(1=yes; 0=no) 

Pair status 
(1=had a 

peer; 2=sat 
alone) 

Standardized 
baseline math test 
score of the peer - 
class mean score 

(SD) 
  (1) (2) (3) (4) (5) (6) 

�  �  Coef S.E. Coef S.E. Coef Simulated 
P-values 

[1] Standardized own math test score 
- class mean score (SD) 

0.00  0.00  0.04  0.07  -0.03  0.24 

[2] Boy (1=yes;0=no) 0.00  0.01  -0.02  0.03  0.01  0.21 
[3] Only Child (1=yes, 0=no) 0.01  0.03  0.02  0.04  0.00  0.46 

[4] Had computer experience before 
the program (1=yes;0=no) 

0.00  0.03  0.07  0.06  0.00  0.45 

[5] Mother is illiterate (1=yes; 0=no) 0.00  0.01  0.02  0.02  0.01  0.11 
[6] Father is illiterate (1=yes; 0=no) 0.01  0.01  0.00  0.02  0.00  0.31 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at school level. 
The test aims to present information about balance across the three different types of 
treatments in our experiment. The tests regress the variables listed on the left (each at a time) 
on the dummy variable of treatment status, the dummy variables of the pairing or the baseline 
math performance of the peer.  
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Table 4. The impact of the CAL treatment, the pairing status and the types of peer on own 
evaluation math score 

Dependent variable: Own standardized 
evaluation math score (SD) 

[1] [2] [3] [4] 

[1] Own standardized baseline math 
score (SD) 

  
0.47*** 0.50*** 

 
  

(0.02) (0.02) 

[2] Class mean of the standardized 
baseline math score (SD) 

0.62*** 0.63*** 0.18*** 0.17*** 

 
(0.06) (0.06) (0.04) (0.04) 

[3] 
CAL treatment (1=yes; 0=no)   

0.17* 0.17* 

 
  

(0.09) (0.09) 
[4] CAL treatment * (own score - class 

mean)a 
  

0.00  0.00  

 
  

(0.08) (0.09) 
[5] Being paired in CAL classes (1=yes; 

0=no) 
  

0.03  0.02  

 
  

(0.09) (0.09) 
[6] Being paired * (own score - class 

mean) 
0.47*** 0.49*** 0.02  0.04  

 
(0.02) (0.02) (0.09) (0.09) 

[7] [Being paired * (own score - class 
mean)]^2 

 
0.03** 

 
0.04*** 

 
 

(0.01) 
 

(0.01) 
[8] Being paired * (peer score - class 

mean)b 
0.02  0.01  0.02  0.01  

 
(0.01) (0.02) (0.02) (0.02) 

[9] 
[Being paired * (peer score - class 
mean)]^2 

 
-0.01  

 

-0.01  

 
(0.01) (0.01) 

[10] Being paired * (own score - class 
mean) * (peer score - class mean) 

-0.04** -0.03* -0.04** -0.03* 

 
(0.02) (0.02) (0.02) (0.02) 

[11] Constant 0.20*** 0.19*** 0.00  -0.01  

  
(0.03) (0.03) (0.03) (0.03) 

[12] Observations 3,524 3,524 7,536 7,536 
[13] R-squared 0.28 0.283 0.287 0.291 

* significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors in 
parentheses clustered at class level. 
The tests aim to show how the CAL treatment, the pairing status and the types of peer affect 
own evaluation math score. The tests regress own evaluation math score on the variables 
listed on the left.  
a The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
b The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 



! 30 

Table 5. Predicted own evaluation math scores of students with high or low achieving peers 
using the regression model excluding the quadratic terms of test scores 

�  

�  
Peer score - 
class mean= 

-2 

Peer score - 
class mean= 

-1 

Peer score - 
class mean= 

0 

Peer score - 
class mean= 

1 

Peer score - 
class mean= 

2 

P-value (difference 
between columns 1 

and 5) 

 
 

[1] [2] [3] [4] [5] [6] 

[1] 
Own score - 
class mean= -2 

-0.95 -0.85 -0.77 -0.69 -0.63 0.02 

[2] 
Own score - 
class mean= -1 

-0.49 -0.42 -0.37 -0.33 -0.31 0.02 

[3] 
Own score - 
class mean= 0 

0.03 0.06 0.07 0.08 0.07 0.21 

[4] 
Own score - 
class mean= 1 

0.59 0.59 0.57 0.55 0.51 0.35 

[5] 
Own score - 
class mean= 2 

1.21 1.18 1.13 1.07 0.99 0.14 

The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 6. Predicted evaluation math test scores of students with high or low achieving peers 
using regression model including the quadratic terms of test scores 

�  
�  

Peer score - 
class 

mean=-2 

Peer score - 
class 

mean=-1 

Peer score - 
class 

mean=0 

Peer score - 
class 

mean=1 

Peer score - 
class 

mean=2 

P-value (difference 
between column 1 

and 5) 

 
 

[1] [2] [3] [4] [5] [6] 

[1] 
Own score - 
class mean= -2 

-1.02 -0.92 -0.82 -0.72 -0.61 0.06 

[2] 
Own score - 
class mean= -1 

-0.48 -0.42 -0.36 -0.3 -0.24 0.08 

[3] 
Own score - 
class mean= 0 

0.05 0.07 0.09 0.11 0.13 0.46 

[4] 
Own score - 
class mean= 1 

0.59 0.57 0.54 0.52 0.5 0.38 

[5] 
Own score - 
class mean= 2 

1.13 1.06 1.00 0.93 0.87 0.18 

The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 7. Difference in predicted evaluation math test scores between control students and 
students that were paired 

�  

�  

Predicted 
evaluation 

math score of 
the control 

school students 
(without CAL) 

Difference 
between the 

control school 
students and the 

paired students in 
CAL schools 

Peer 
score - 
class 

mean= -2 

Peer 
score - 
class 

mean= -1 

Peer score 
- class 

mean= 0 

Peer 
score - 
class 

mean= 1 

Peer 
score - 
class 

mean= 2 

 
 

[1] [2] [3] [4] [5] [6] [7] 

[1] 
Own score - 
class mean= 

-2 
-0.88  

Difference in 
scores (SD) 

-0.07  0.03  0.11  0.19  0.25  

P-value 0.35  0.84  0.38  0.08  0.03  

[2] 
Own score - 
class mean= 

-1 
-0.43  

Difference in 
scores (SD) 

-0.06  0.01  0.06  0.10  0.12  

P-value 0.64  0.72  0.16  0.03  0.01  

[3] 
Own score - 
class mean= 

0 
0.02  

Difference in 
scores (SD) 

0.01  0.04  0.05  0.06  0.05  

P-value 0.34  0.13  0.05  0.02  0.02  

[4] 
Own score - 
class mean= 

1 
0.48  

Difference in 
scores (SD) 

0.11  0.11  0.09  0.07  0.03  

P-value 0.08  0.08  0.14  0.32  0.59  

[5] 
Own score - 
class mean= 

2 

0.93  
Difference in 
scores (SD) 

0.28  0.25  0.20  0.14  0.06  

�  P-value 0.08  0.13  0.33  0.81  0.76  
The variable of “own score” refers to own standardized baseline math score (SD) and the 
variable of “class mean” refers to class mean of the standardized baseline math score (SD). 
The variable of “peer score” refers to the standardized baseline math score of the peer (SD). 
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Table 8.Interdecile ranges of own evaluation math scores among the control school students 
and the paired students in CAL schools 

�  �  

Control 
students 

Paired 
students 

Paired 
students in 

optimal 
matching 

P-value 
for 

difference  
[1] - [2] 

P-value 
for 

difference  
[2]- [3]  

 
Interdecile ranges [1] [2] [3] [4] [5] 

[1] Q9 - Q1 2.67  2.61  2.57  0.10  0.16 
[2] Q8 - Q2 1.78  1.73  1.71  0.07  0.40 
[3] Q7 - Q3 1.19  1.08  1.08  0.00  0.54  
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Evaluation survey  
(June 2012)  
!

7881 students in 72 schools in Ankang prefecture, 
Shaanxi Province (1555 grade three students, 1927 
grade four students, 2115 grade five students and 
2284 grade six students) 
!

Randomly selected 36 schools to receive the CAL 
intervention (CAL schools), and the other 36 schools 
served as control schools. Randomly pair students within 
class to share a computer during CAL sessions.  
!

3847 students in 36 control 
schools analyzed. 
!

3689 students in 36 CAL schools 
analyzed. 3524 students had a 
peer during CAL sessions. 165 
students sat alone. 
!

4029 students in 36 control 
schools.  
!

3852 students in 36 CAL 
schools. 3679 students had a peer 
during CAL sessions. 173 
students sat alone. 

Baseline!
(June 2011)  
!

Allocation 
(September 2011)  
!

Figure 1: Experiment Profile  
!
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Figure 2. Histogram of !2 under the null for baseline math scores 
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Figure 3. Comparison of own standardized evaluation math score between the control schools 
students and the paired students in CAL treatment schools 
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Figure 4. Comparison between the own standardized evaluation math score of the actually 
paired students in CAL treatment schools and the predicted own standardized evaluation math 
score of the optimally paired students 
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Figure 5. The simulated distribution of the difference in the interdecile ranges between the 
control school students and the paired students in the CAL treatment schools under the null 
that the score dispersion of the two groups is the same 
 


