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1. INTRODUCTION: OBJECTIVES OF THE PAPER  

In the last decade the empirical research on policy evaluation has paid increasing attention to 

the so-called Treatment-Effects (TE) literature (Imbens and Wooldridge, 2009). A rich toolkit 

allowing the estimation of these TEs under different and complex circumstances has 

progressively taken form. Nonetheless, though equipped with this powerful toolkit, 

practitioners often encounters serious problems in adapting it to the peculiar real-world 

circumstances into which policy measures have been actually implemented. As a 

consequence, the recent empirical literature has also focused on assessing the robustness of 

the estimated policy impacts to identify those that are strongly dependent on the specific 

limitations of the adopted methods with respect to the real context under study (Chabé-Ferret, 

2010).    

In the case of the quantitative evaluation of Common Agricultural Policy (CAP) measures and 

reforms, these two apparently contrasting tendencies of an increasingly powerful toolkit and 

the need of robustness of results clearly emerge.  On the one hand, the growing interest in 

such approaches is evident for the second pillar of the CAP, whose measures seem 

particularly suitable for these empirical methodologies (European Commission, 2006; 

EENRD, 2010; Pufahl and Weiss, 2009; Lukesch and Schuh, 2010; Salvioni and Sciulli, 

2011; Michalek, 2012; Chabé-Ferret and Subervie, 2013). On the other hand, it is widely 

agreed that the same does not hold true for the first pillar of the CAP (still the largest part of 

CAP budget) as the way it is designed and delivered makes these methods not particularly 

helpful, or simply useless, to achieve a proper impact evaluation (Esposti, 2011a).   

The objective of this paper is to critically re-consider the apparent infeasibility of the TE 

econometrics’ toolkit  in the case of the First Pillar of the CAP by pursuing the evaluation of 

the impact of its 2005 Reform (FPR henceforth)
1
, following two different estimation 

strategies. The first strategy consists in adopting the largely prevalent matching methodology 

in the literature (the Propensity Score Matching, PSM) enriched by a set of testing procedures 

and robustness checks (Becker and Ichino, 2002; Abedie et al., 2004; Becker and Caliendo, 

2007; Nannicini, 2007; Nichols, 2007) to assess to what extent the approach is suitable for the 

                                                           
1 Though approved in 2003, the FPR implementation actually started in 2005. In addition, for some productions  (cotton, hop, 

olive oil, tobacco, sugar, fruits and vegetables, wine) the decoupling of the support formerly delivered through the individual 

OCMs  was actually approved and accomplished in the following years (2004-2008) (OECD, 2011, pp.64-65). For the sake 

of simplicity, we refer here to all these reform steps as the “2005 First Pillar Reform” or FPR (see also sections 3.2.1 and 4).   
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case under study. The second strategy is not based, in its simplest form, on matching because 

the counterfactuals simply are the beneficiary farms themselves observed before the policy 

intervention. It is the Differences-In-Differences (DID) approach that has been already 

proposed for the evaluation of single measures of the second pillar of the CAP and is often 

combined with the PSM (Salvioni and Sciulli, 2011; Chabé-Ferret and Subervie, 2013). 

Several methods have been proposed over the years also to assess the robustness of these 

results (and the validity of the underlying assumptions) and will be here applied to provide 

further elements to the comparison across the alternative TE estimation approaches.  

This paper applies these two empirical strategies in sequence to compare their results and 

assess the robust empirical evidence. They are applied to a balanced panel of 6542 Italian 

FADN farms observed over years 2003-2007. Therefore, these farms are observed before and 

after the FPR, whose implementation, in Italy, actually started in 2005, and the period under 

analysis is symmetric with respect to the treatment. Over these years, about 83% of these 

farms received payments from the first pillar; therefore, only 17% can be considered as non-

treated units. This panel sample seems appropriate to apply both the abovementioned 

approaches by demonstrating, at the same time, their strengths and limitations.  

2. THE CONCEPTUAL BACKGROUND: WHY EVALUATING THE IMPACT OF THE FPR IS 

DIFFICULT?  

In 2003 the first pillar of the CAP underwent what can be considered the most radical reform 

of its half-century history; the so-called Fischler Reform (Sorrentino et al., 2011). With 

decoupling the FPR substantially changed the way support is delivered to farms. One of the 

purposes of decoupling was (re)orientation to market, that is, to eliminate the distorting effect 

on production decisions of the precedent coupled support and leave the farmers free to 

produce what they consider more profitable in the market. This is explicitly mentioned in 

many EU Commission documents and, therefore, it can be considered as the main declared 

objective of the reform itself: “the next movement towards market orientation for the 

European agricultural sector came in 2003, when a major overhaul of the CAP was 

undertaken. […] The current decoupled direct payment […] ensures that farmers respond to 

market signals while providing income support” (European Commission, 2011, p. 6; see also 

OECD, 2011, pp. 140, 184). 
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Therefore, an ex post evaluation of the effectiveness of the FPR should assess whether and to 

what extent the decoupling of first pillar’s support really oriented farmers to market. Despite 

the wide empirical literature produced on the impact of the FPR at both the farm and several 

aggregate levels (OECD, 2011; Sorrentino et al., 2011), such evaluation has never been 

performed using the rich toolkit of TE econometrics, mainly because it is considered unsuited, 

or of too difficult adaptation, to this case. This may be surprising since, after all, the FPR 

itself has substantially increased the clarity and the identifiability of the treatment associated 

to the first pillar of the CAP. Many and heterogeneous coupled payments (associated to about 

30 Common Market Organizations, CMOs) have been transformed into a unique and 

decoupled Single Farm Payment (SFP) directly delivered to the farmer (European 

Commission, 2011; OECD, 2011). This makes the FPR treatment easily measurable as the 

amount of money that, at the farm level, have been transformed from several coupled 

payments into a decoupled SFP.   

Nonetheless, among the empirical issues that could be raised in applying this kind of 

methodological approaches to the FPR (Esposti, 2014), the critical limitation that apparently 

prevents such application is the lack of suitable control group or counterfactuals.
2
 To apply 

the TE logic counterfactual observations must exist; that is, observations where the outcome 

variable(s) is (are) observed without the treatment.
3
 In the case of the FPR, however, finding a 

proper strategy to identify counterfactuals and compare them to treated units represents an 

often unsolved research challenge. On the one hand, the non-treated units (that is, farms 

receiving no support under the first pillar of the CAP and, therefore, not involved by the FPR) 

are rare. On the other hand, they are not treated just because of their peculiar production and 

managerial choices. Even though a non-treated sample can be observed, it can be hardly 

considered a proper counterfactual sample because of this peculiarity, that is, those 

unobserved characteristics that affect, at the same time, the outcome and the treatment 

assignment. In the TE jargon, the specificity of the FPR as a treatment makes almost 

impossible to get rid of the selection-on-unobservables bias (Esposti, 2011a).  

When dealing with the FPR, all these issues simultaneously arise. In such uncomfortable and 

unconventional condition (multiple outcomes, multiple and multivalued treatments, no natural 

counterfactuals), it should not surprise that the TE logic and econometrics has been 

                                                           
2 Assessing treatment effects within experimental or quasi-experimental situations presents substantially different 

methodological issues and solutions  (Duflo et al., 2006).  
3 Assessing treatment effects within experimental or quasi-experimental situations presents substantially different 

methodological issues and solutions  (Duflo et al., 2006).  
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considered unsuited for the evaluation of the first pillar of the CAP and of the FPR, in 

particular.  

3. TWO ALTERNATIVE SOLUTIONS TO IDENTIFY AND ESTIMATE THE TE 

From the discussion above it emerges that the selection of appropriate counterfactual 

observations depends on the farm sample under observation. In general term, a large farm 

panel is needed both in the cross-sectional dimension, to include enough not treated farms, 

and in the time dimension, to include enough pre and post-treatment observations. This panel 

sample must also include all the relevant variables to indentify and estimate the ATT: 

univocal outcome variables (the target of the treatment) (Y); the variable expressing the 

presence (if binary) or the intensity (if multivalued or continuous) of the treatment (T); the set 

of all other socio-economic, structural, production variables that affect the outcome variable 

and its dynamics beyond and regardless the treatment (X). If these conditions are met,
4
 the TE 

of the FPR can be identified and estimated following two alternative strategies, and a 

combination of them, each with own pros and cons with respect to the four abovementioned 

major issues.   

3.1. The Propensity Score Matching (PSM) 

The first, and currently very popular, strategy consists in matching the most similar treated 

and non-treated units and then compare their outcome, Y. Similarity is assessed by looking at 

the set of exogenous variable (covariates), X, that may affect the outcome beside the 

treatment. The use of matching in program and policy evaluation has increased in the last due 

decades mostly because of a strongly simplifying methodology (Rosenbaum and Rubin, 

1983). It consists in performing the matching not on the basis of the multivariate set X but 

only on the basis of a scalar variable, the Propensity Score (PS), representing the estimated 

probability of a given unit to be assigned the treatment conditional on X. Matching based on 

the propensity score (the Propensity Score Matching, PSM) strongly facilitates the 

identification and estimation of the TE. 

In fact, the proper identification and estimation of the TE with this matching strategy requires 

precise conditions. Whether the application of matching to the case of interest here (the FPR) 

                                                           
4 As will be detailed in section 4, the FADN/RICA database now allows large-enough farm panels in this respect (Cagliero et 

al., 2010).  
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really satisfies these conditions can be questioned. In particular, one problem is the lack of 

balance between the two groups of units to be matched and compared. Not only the number of 

counterfactuals is low (i.e., the non-treated units are few compared to the treated units); they 

are also peculiar and, maybe, unsuitable for the comparison with the treated units.  

3.1.1. Identification issues: Unconfoundedness and ATT 

Consider a sample of N observations (farms). Let iY  indicate the outcome variable observed 

in the generic i-th farm (unit), i = 1,…, N (where N is the sample size) and T=0,1 the binary 

policy treatment (T=0 if not treated, T=1 if treated). Let’s assume that the attribution of a 

given treatment to the i-th farm does not affect the TE on the j-th farm, Nij ,...,0=≠∀ . This 

assumption is called stable-unit-treatment-value assumption (SUTVA). It seems plausible 

whenever micro data are used and the treatment assignment to single units may hardly have 

aggregate (or macro) effects (e.g., on partial and general equilibrium market adjustments) 

(OECD, 2011). In the present case, however, the SUTVA also implies the absence of 

diffusion or spillover effects like, for instance, imitation.
5
  

By Average Treatment Effect (ATE) we intend the following expected value:
6
  

(1) ( )
01 iii

YYEATE −=   

ATE actually expresses the difference that would be observed in the outcome in a purely 

experimental (or randomization) situation, that is, as the same i-th farm were observed, in 

sequence, under treatment and non-treatment. In practice, with observational (or non-

experimental) data, we really observe only the outcome under one of the possible states.
 
The 

outcome in all other cases is, in fact, hypothetical or potential (Rubin, 1974; Imbens and 

                                                           
5 As the FPR concerns farms’ market orientation, excluding such spillover effects of the treatment may seem a relevant 

assumption. Nonetheless, it is still hardly testable. Chabé-Ferret and Subervie (2013) actually suggest that a test on this 

assumption’s validity can be still attempted by looking at neighboring farmers’ outcome variable dynamics before and after 

the treatment. Such kind of statistical test, however, would imply making the spatial dimension explicit within the adopted 

panel sample, that is, to introduce spatial econometrics techniques. This solution seems computationally demanding when 

micro data are used (6542 units in the present case) and is here ignored. However, it may represent an interesting direction 

for future research.   
6 If i indexes a randomly drawn unit in the population we can also write iATEATE = , where ATE  is also called Population 

Average Treatment Effect (PATE). In the sample, ATE  is calculated averaging iATE  across the sample units and it is also 

called Sample Average Treatment Effect (SATE) (Abadie et al., 2004). Henceforth, in the present study, whenever the ATE 

has to be intended as SATE, ,we drop the i index in the notation for simplicity.  
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Wooldridge, 2009).
7
 With observational data, the actual research question is: which is the 

impact of the treatment on the outcome observed in treated units? The answer to this question 

is provided by the Average Treatment effect on the Treated (ATT):  

(2) ( )1
01

=−= TYYEATT  

where the answer only concerns the units that were actually treated and does not apply to 

units that were not treated.  

Frölich (2004), Nichols (2007) and Imbens and Wooldridge (2009), just to mention a few, 

provide a clear explanation on why in non-experimental settings ATTATE≠ . As we can write 

( ) ( ) ( )
0101

YEYEYYEATE −=−=  and ( ) ( ) ( )111
0101

=−===−= TYETYETYYEATT , 

ATE and ATT are equal only if  ( ) ( )1
00

== TYEYE  and ( ) ( )1
11

== TYEYE , that is, only if the 

expected value of a given treatment is independent on the subsample (treated units or 

counterfactuals) on which we are measuring it. In non-experimental settings, this condition is 

granted only under specific assumptions. Even if we just focus on 

( ) ( ) ( )111
0101

=−===−= TYETYETYYEATT , unless these strong assumptions are made, in 

non-experimental settings the TE remains unidentified.  

The key identification problem comes from the fact that, in observational data, we can not 

observe the counterfactual or potential outcome ( )1
0

=TYE , that is, the outcome that would be 

observed if the treated units were not treated. What we really observe is only ( )0
0

=TYE . In 

practice, with observational data we can only compute the difference ( ) ( )01
01

=−= TYETYE  

but this difference does not necessarily correspond (i.e, does not identify) the ATT as it is:    

(3)     

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ([ 0101101
00000101

=−=−==−=−=−===−= TYETYEATTTYETYETYETYETYETYE

 

The latter term of the right-hand side is the so-called selection bias as it corresponds to the 

difference between what we can observe, ( ) ( )01
01

=−= TYETYE , and what we want to 

estimate (ATT). It is a “selection” bias because it occurs whenever a difference in the outcome 

between the treated and the control units would be observed regardless the treatment itself. 
                                                           
7
 This is also known as the fundamental problem of causal inference (Holland, 1986). From this perspective, estimating the 

parameters of the potential outcome distribution is a missing data problem because we can see only one outcome per 

individual.  
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So, the difference does not depend on the treatment but on how these units have been selected 

within the two groups: there is some unobserved difference between the two groups that, at 

the same, conditions the participation to the treatment and the outcome regardless of the 

treatment. As the selection bias depends on the presence of some unobserved characteristics, 

it is also called selection-on-unobservable bias but it is, in fact, an omitted variable bias. 

Getting rid of this bias, consists, in practice, in finding ways to make the term 

( ) ( )[ ] 001
00

==−= TYETYE  and, consequently, ( ) ( ) ATTTYETYE ==−= 01
01

.  

A methodological solution to this identification problem directly tackles the issue of 

selection-on-unobservables. The idea is that, though a selection bias may be observed, the 

analyst is in the condition to detect and observe all the pre-treatment variables or 

characteristics X that generate it. This approach is generally referred to as selection-on-

observables approach. In practice, the identification of the ATT is achieved by assuming that:        

(4)    ( ) ( )0,1,
01

=−== TYETYEATT XX  since ( ) ( )[ ] 00,1,
00

==−= TYETYE XX  

This is the so-called Conditional Independence Assumption (CIA) or Unconfoundedness 

Assumption as we are assuming that, once we control for all relevant pre-treatment covariates 

X, the selection bias disappears. In particular, we recreate the condition of a randomized 

experiment and the ATT can be estimated by directly computing the difference between the 

observed outcome of the treated and the control units. Vector X is expected to contain all 

those pre-treatment variables that are, at the same time, correlated to the treatment assignment 

and to the outcome variable: once we control for them the difference in the outcome can be 

exclusively attributed to the treatment. This identification assumption can be hardly tested, if 

not ex post,
8
 and still remains the critical point of this approach as we can not definitely 

exclude that a further unobserved confounding variable (i.e., correlated with both the 

treatment assignment and the outcome variable) still exists. 

Nonetheless, under the CIA, the identification of the ATT is granted and the problem 

becomes how to estimate the conditional expected values in (4), that is, ( )1,
1

=TYE X  and 

( )0,
0

=TYE X . An easy way could be to estimate ( )1,
1

=TYE X  and ( )0,
0

=TYE X  by 

running a parametric  regression of Y  on X and T (a dummy variable). Nonetheless, this 

parametric approach finds two major drawbacks. First of all, a parametric linear specification 

                                                           
8 See Chabé-Ferret and Subervie (2013) for more details. 
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of the relation between 
1
Y  on X must be assumed, whereas this relation might be more 

complex and vary over the sample. Secondly, such approach estimates the ATT by using all 

the observed variation of covariates X while, in fact, it may be the case that only a portion of 

this range of variation is common to both treated and control units. This common portion is 

also called common support and it is intuitively more appropriate to limit the estimation of the 

conditional expectations in (4), thus of the ATT, to this common support (Imbens and 

Wooldridge, 2009).  

For these two reasons, the recent empirical TE literature tends to prefer nonparametric 

approaches to the estimation of (4) and, in particular, it adopts matching estimators. Among 

this PSM estimator has become the most popular solution.     

3.1.2. Alternative Estimators and Robustness Check  

Generally speaking, matching is a statistical procedure that aims at pairing each treated 

observation with one or more control (non-treated) units showing the closest (i.e. statistically 

equal) observed covariates X in such a way we can assume that the treatment assignment to 

these pairs is random (i.e., units are equal for all relevant and observable characteristics 

except for the treatment). In practice, matching raises two serious empirical issues (Nichols, 

2007). The first problem consists in finding a metric (a scalar variable) measuring the distance 

among observations across the elements of vector X. Once this metric has been established, 

the second problem consists in finding appropriate rules to match treated and non-treated 

units (or groups) on the basis of this metric. Both aspects are computationally more 

demanding the greater the dimension of X. At the same time, however, a larger X guarantees 

about the validity of the CIA. Therefore, the key empirical problem in matching (also know as 

the curse of dimensionality) is the trade-off between the validity of the identifying assumption 

and the often unaffordable computational burden to achieve a proper matching. 

In their seminal contribution, Rosenbaum and Rubin (1983) proposed to use a scalar variable, 

the propensity score, as the metric to perform the matching. The Propensity Score (PS), ( )Xp

, is the probability of a given unit of being treated conditional on covariates X: 

(5)    ( ) ( ) ( )XXX TETp =≡Pr   

The key contribution of Rosenbaum and Rubin (1983) consists in demonstrating that, under 

the CIA, if treatment assignment is random conditional on X then it is also random 
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conditional on ( )Xp . As matching based on ( )Xp  (a scalar) is empirically much more 

affordable than matching based on X (a vector), the ATT can be thus more easily estimated 

(PSM estimation) as:
9
  

(6) ( )( ) ( )( )0,1,
01

=−== TpYETpYEATT XX   

The identification of the ATT on the basis of the PS still depends on the CIA assumption. The 

difference is that the assumption holds on ( )Xp . In other words, under the CIA, the PSM 

implies that ( )( )XpYE
1

 is independent on X as the PS already contains all the information 

about how X conditions the treatment assignment. When refereed to ( )Xp , the CIA is also 

called the Balancing Hypothesis (Becker and Ichino, 2002) because the validity of this 

hypothesis can be tested within the sample by checking the balancing condition: observations 

showing a very close PS also show a statistically equal distribution of X independently on the 

treatment status. An empirical practice that contributes to the balancing condition and 

improves the quality of matching consists in imposing the common support in ( )Xp . It 

implies that those treated (control) units whose ( )Xp  does not find a corresponding value in at 

least one control (non-treated) unit are excluded from the analysis.  

PSM identifies and estimates the ATT following a three-step procedure. Firstly, a parametric 

binary choice model (also called the Propensity Score Equation, usually taking the form of a 

conventional binomial probit or logit model) is estimated to obtain estimates of ( )Xp . 

Secondly, usually imposing common support and once the balancing condition has been 

validated,
10
 the matching of units is performed on the basis of ( )Xp  and pair-wise (or group-

wise) ATTs are computed as in (6). Finally, the average ATT is computed over the whole 

sample (or the common support) as the weighted average (where weights depend on the 

number of treated units) of the pair or group-wise ATTs. 

The second step of this procedure (the matching) is critical because it can be achieved 

following different strategies. Strictu sensu matching implies that for any treated unit (or for 

blocks of units) we look for the closest control unit(s) in terms of ( )Xp  (best matches). This 

case can take three alternative forms: Nearest Neighbour Matching, where matching is made 

                                                           
9 For more details and discussion on the asymptotic properties of these PSM estimators see Hahn (1998) and Imbens and 

Wooldridge (2009).    
10 See Becker and Ichino (2002) for more details on this first stage of the PSM estimation.  
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one-by-one;
11
 Stratification Matching, where matching is made on groups or block of units; 

Radius Matching, where any treated unit is matched with all control units falling within a 

predetermined distance, or radius r, from its own ( )Xp . An alternative strategy adopts a 

weighting procedure. Any treated unit is matched with all control units (within the common 

support) but each of them is weighted by the inverse of its distance from the ( )Xp . This case 

is known as Kernel Matching.  

There is no clear-cut and univocal indication on which of these matching approaches should 

be preferred, though under the CIA they are asymptotically equivalent. In practice, in finite 

samples the performance of Stratification Matching is usually poorer compared to the other 

solutions while Kernel Matching is preferable. At the same time, given the specific conditions 

on which matching is performed a trade-off between bias and variance (accuracy) is often 

observed (Abadie and Imbens, 2002; Abadie et al., 2004). For these reasons, presenting 

results of all these matching procedures may serve as sensitivity analysis to assess the 

robustness of the ATT estimates.        

In fact, limiting matching estimation to the common support and testing for the balancing 

condition only ensures against the selection-on-observables bias but, evidently, can do 

nothing against the selection-on-unobservables bias. Evidently, these variables being 

unobservable, the presence of the bias they generate can not be tested: it is an hidden bias. At 

the same time, however, if there are unobserved variables that affect assignment to treatment 

and the outcome variable simultaneously, the respective hidden bias would make matching 

estimators not robust. As a consequence, checking the robustness and sensitivity of the 

matching estimates has become an increasingly important topic in the applied evaluation 

literature as a sort of indirect evidence of the presence of this hidden bias.  

To check whether there is some evidence of this selection-on-unobservables bias, Rosenbaum 

(1987; 2002) has proposed a bounding approach assessing how strongly an hypothetical 

unmeasured disturbing variable must influence the selection process to undermine the results 

of matching. This bounding approach does not test the unconfoundedness assumption itself.
12
 

Instead, Rosenbaum bounds provide evidence on how much the statistical significance of a 

matching result depends on this untestable assumption. If the results turn out to be 

significantly sensitive to this disturbing factor, the matching estimation of the ATT can not be 

                                                           
11 As the number of treated and control units may be different, replacement is allowed, that is, the same control unit can be 

the best match for more than one treated units.   
12 This would mean testing that no (unobserved) variable influences the selection into treatment.   
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considered robust enough with respect to a possible  unobserved heterogeneity between 

treatment and control cases.  

DiPrete and Gangl (2004) implements the Rosenbaum bounds approach by calculating the 

Wilcoxon signrank test, a nonparametric test providing upper and lower bound estimates of 

significance levels at given values of the hidden bias, the Γ parameter. Γ  is a measure of the 

degree of departure from the CIA. Γ=1 whenever matched individuals have the same 

probability of participating to the treatment; otherwise, the greater  Γ (>1), the more units that 

appear to be similar (in terms of observed covariates) can actually differ in their odds of 

receiving the treatment. Under the assumption of additive treatment effects, the DiPrete and 

Gangl (2004) approach also provide Hodges-Lehmann point estimates and confidence 

intervals for the ATT.   

An alternative implementation of the Rosenbaum approach is put forward by Nannicini 

(2007) and Ichino et al. (2008). Their application simulates a potential confounder in order to 

assess the robustness of the matching estimation of the ATT if the CIA is violated. The 

analysis is based on a simple idea. Under the hypothesis that the CIA is not satisfied given the 

observables but would be satisfied if one could observe an additional binary variable, a 

potential confounder is simulated in the data and used as an additional covariate in performing 

the matching estimation. The comparison of the estimates obtained with and without 

matching on the simulated confounder shows to what extent the original results are robust to 

specific sources of failure of the CIA, since the distribution of the simulated variable is aimed 

at capturing different hypotheses on the nature of potential confounding factors (Nannicini, 

2007). 

In the present empirical application, both applications of the Rosebaum bounds approach will 

be used. 

3.2. Differences-In-Differences (DID) 

3.2.1.  Identification issues 

Beside any helpful sensitivity analysis, it remains true that the major drawback of the 

matching method consists in the possible and not testable presence of hidden biases caused by 

unobservable covariates. In particular, in the case of the FPR the treatment is applied to a 

large majority of farms, therefore it is a non-selective generalized policy. Farms not involved 

by this policy are very peculiar and, therefore, represent a self-selected exception, thus 
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apparently not suitable counterfactuals in matching estimation. It seems more natural to 

consider, as suitable counterfactuals, the same treated units observed before the treatment. 

After all, any treated unit can be compared with itself observed before the treatment (the 

FPR). Such approach is called Difference-In-Difference (DID) estimation of the ATT (Smith 

and Todd, 2005).  

The DID estimation of the ATT is thus the following: 

(7) ( ) ( )[ ] ( ) ( )[ ]0011
,0,1

=−=−=−==
−+−+

TYETYETYETYEATT
kthtktht

 

Where the treatment occurs at time t and units are observed before (t-k) and after (t+h) the 

treatment.
13
 If k=h, (7) is also called the symmetric DID estimator (Chabé-Ferret and 

Subervie, 2013).  

The ATT is thus identified and estimated as the different variation observed in the outcome 

variable between the treated ant the non-treated units under the assumption that this difference 

can be entirely attributed to the treatment itself. It is worth noticing that in such case the 

counterfactual observation is the treated unit itself before the treatment. Therefore, in 

principle, it is not necessary to condition the comparison on a set of pre-treatment covariates 

X that may affect, at the same time, outcome and treatment assignment. Consequently, 

matching itself is not needed and the CIA is not binding. Nonetheless, compared to matching, 

DID estimation implies three further requirements.  

First of all, the DID identification and estimation of the ATT requires that the outcome is 

repeatedly observed over time in both the treated and the control units. In practice, it requires 

also a time dimension in the data set while the matching approach can be typically performed 

only on cross-sectional data. This is even more true in the present case. Here, as will be 

clarified in sections 5.1, the outcome variable is itself a difference between two years/periods. 

The implication is that to compare the before and after-treatment outcome variable at least 

four years must be observed: years t-h and  t-h+1  before the treatment, years t+k-1 and t+k 

after the treatment. Therefore, a large enough (in the time dimension) panel dataset is needed 

to perform DID estimation of the ATT.  

                                                           

13 ( )1,1 =
+
TYE

ht
 indicates the expected value of the outcome variable that is observed, h times after the treatment, in units 

assigned to the treatment whenever they actually received the treatment. Conversely, ( )1,0 =
+
TYE

ht
 indicates the expected 

value of the outcome variable that would be observed, h times after the treatment, in units assigned to the treatment under the 

hypothesis that they did not receive the treatment.  
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Secondly, the DID estimation is based on the assumption that treatment effects are 

instantaneous. On the one hand, it means that the treatment is assumed to have an impact only 

after its application, that is, anticipation effects (i.e., outcome variable’s response to the 

treatment before the treatment) are excluded (Chabé-Ferret and Subervie, 2013). On the other 

hand, such assumption excludes that the response to the treatment, though starting in a well-

identified point in time, then continues for some time (lagged effects) thus making the 

identification of the post-treatment period not univocal.   

The third, and more important, requirement for the DID estimation to be valid has to do with 

the time-varying effects. Evidently, the time dimension may definitely affect the outcome. To 

get rid of the effects of time (i.e., of specific time-varying factors or variables) that are 

invariant across the treatment, DID estimation uses the variation over time of the outcome 

variable in the treated units, ( ) ( )[ ]11
,1

=−=
−+

TYETYE
ktht

and compares it to the same 

variation in the non-treated units, ( ) ( )[ ]00,0 =−=
−+
TYETYE

ktht
, since in this latter case the 

variation can be fully attributed to the action of time. Unfortunately, as we are not in a purely 

experimental situation, not only time itself may affect the outcome, but this influence may 

vary across the treatment. Therefore, the identifying assumption underlying DID estimation is 

that the influence of time on the outcome variable is the same across treated and non-treated 

units. This assumption, somehow analogous to the CIA in the time dimension, is called 

parallel-trend assumption or Conditional mean-Independence of Increments Assumption 

(CIIA): 

(8) ( ) ( )[ ] ( ) ( )[ ]0011
,0,0

=−===−=
−+−+

TYETYETYETYE
kthtktht

 

As for the CIA, also the CIIA can not be empirically tested since the left hand side of (8) can 

not be observed. In the present application, the CIIA seems particularly strong as, in fact, the 

already mentioned structural (but unobservable) differences between the control and the 

treated groups might definitely imply different dynamics of the outcome variables over the 

observed period (for instance due to different specific agricultural market dynamics).  

Also the anticipation and lagged effects can not be excluded in the case of the FPR. On the 

one hand, while the year-by-year production choices may have hardly anticipated the 2005 

regime change, investments decisions might definitely have been taken before the FPR 

entered into force, as farmers were already fully informed, since 2003, about contents and 

timing of the reform. On the other hand, the FPR took three years (2005-2007) to fully enter 



 

14 

 

into force (the decoupling of support for all products, i.e., all CMOs) (OECD, 2011, pp.64-

65). Therefore, though most of the effects concentrate in 2005, some effect can be still 

observed in 2006 and 2007.
14
 Therefore, only working with the extreme years (2003-2007) of 

the observed period can take both possible anticipation and lagged effects into account. 

More generally, though appealing, the application of the DID estimation to the present case 

raises several practical issues that require appropriate empirical strategies. First of all, the 

reliability of the CIIA assumption can be somehow assesed whenever two pre-treatment 

periods are observed. The DID applied to these periods should estimate a not significant ATT 

under the validity of the CIIA. On the contrary, a significant ATT would indicate that the 

CIIA is not supported by data. For evident reasons, such strategy is also called placebo testing 

(Chabé-Ferret and Subervie, 2013; Di Porto et al., 2014). In the present case, two pre-

treatment periods are not available, since the only pre-treatment observation is the 2003-2004 

variation. Nonetheless, we have three no-treatment observations, 2003-2004, 2005-2006 and 

2006-2007. Applying the DID estimation to these periods may thus represent a placebo test, 

though, as mentioned, the latter two observations may still incorporate some lagged effects of 

the FPR. 

Another empirical strategy that may contribute to the validity of the CIIA consists in 

performing only the symmetric DID estimation (Chabé-Ferret and Subervie, 2013). In the 

present case, this implies comparing observations 2004-2005 and 2003-2004 (or 2005-2006) 

which is in contrast, however, with the abovementioned suggestion of using the extreme years 

of the interval under study.
15
      

3.2.2.  Conditional DID (CDID) 

It is worth noticing that the DID estimation by itself (i.e., the unconditional or naïve DID)  

can not get rid of the selection-on-observables bias. As the method still requires the 

comparison between differences observed in treated and non-treated units (see (7)), it can not 

be excluded that such differences depend on a set of pre-treatment observable covariates X 

which, in turn, also affect the treatment assignment. In fact, even in the DID approach the 

                                                           
14 Actually, the decoupling of support of most agricultural productions relevant for Italian agriculture (therefore, for the farm 

sample under study here) concentrates in 2005 and 2006. The only exception is wine and fruit&vegetable production whose 

decoupling of support took place in 2008 (Povellato and Velazquez, 2005; Frascarelli, 2008). As this year is here not 

included the analysis, those farms that are strongly specialised in these productions are here dropped from the sample. These 

aspects will be discussed in section 4.    
15 See section 6.2.2 for more details with respect to the observations here considered to perform the DID estimation.  
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identification and estimation of the ATT can be performed  conditional on X: this is the 

Conditional DID (CDID) (Chabé-Ferret, 2010; Villa, 2012).   

Heckman et al. (1997; 1998) (see also Heckman, 2005) firstly proposed a CDID estimation by 

combining a matching approach with a DID estimation. This combination evidently requires a 

panel dataset and allows controlling for both the observed and the unobserved heterogeneity, 

provided the CIIA holds true. Therefore, the CDID estimation is an extension of matching 

estimation robust to selection-on-unobservables and for this reason this estimator has been 

found to be the closest to the experimental benchmark (Smith and Todd, 2005). As Abadie 

(2005) points out, in CDID estimation also the CIIA can be reformulated in a weaker version 

conditional on observed covariates: 

(9) ( ) ( )[ ] ( ) ( )[ ]0,0,1,1,
,0,1

=−===−=
−+−+

TYETYETYETYE
kthtktht
XXXX  

This reformulated CIIA implies that, in CDID estimation, units with significantly different 

observed characteristics may still experience different increments without generating a bias in 

the ATT estimation. The CDID ATT estimator can be thus written as follows: 

(10) ( ) ( )[ ] ( ) ( )[ ]0,0,1,1, ,0,1 =−=−=−==
−+−+

TYETYETYETYEATT
kthtktht
XXXX  

Following the discussion made in section 3.1.2, to reduce the curse of dimensionality due to a 

large X, the CDID estimation can be evidently combined with the PSM and the ATT is then 

estimated as follows:   

(11) ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]0,0,1,1,
,0,1

=−=−=−==
−+−+

TpYETpYETpYETpYEATT
kthtktht

XXXX  

Provided that matching eliminates the selection bias due to observed pre-treatment (or time 

invariant) covariates, (11) is the correct (unbiased) estimator of the ATT under the SUTVA 

and the conditional CIIA (Chabé-Ferret and Subervie, 2013). 

Introducing the time dimension in ATT estimation, however, may also generate other 

uncontrolled sources of bias.
16
 CDID estimation controls for those sources of bias coming 

from the common (across matched units) time-varying effects and from the time-unvarying 

(fixed) unobserved individual effects, while it assumes that the time-varying (non-fixed) and 

unobservable individual effects are negligible.
17
 Time-varying individual effects, however, 

occur whenever observed covariates are themselves time-varying and dependent (non-

                                                           
16 The SUTVA itself can be less acceptable. Diffusion effects (i.e., the effect of the treatment on the non-treated’s outcome) 

may occur but they take time (imitation, partial and general equilibrium market adjustments, etc.). Therefore, though it is 

reasonable to rule them out in cross-sectional matching, they may become relevant over time.    
17 There is an evident analogy, in this respect, with the identifying conditions for conventional fixed-effects panel models 

(Chabé-Ferret and Subervie, 2013).  
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separable) on the fixed effects and on the treatment. More generally, admitting this time-

varying individual effects means to take into account that the time pattern of the outcome 

variable and of the covariates matters.
18
   

What is worth emphasizing, here, is that the DID approach (conditional or not) still needs a 

control group of farms, that is a sample of non-treated farms to perform the ATT estimation. 

Therefore, it does not really solve the basic problem underlying matching estimation in the 

present case: when the FPR is under study, the use of the non-treated cases is always critical. 

The peculiarity of these units strongly questions the validity of the CIA in the case of 

matching, as well as the validity of the CIIA in the (C)DID estimation because this peculiarity 

may also concern their variables’ patterns over time.  

4. THE SAMPLE 

A suitable sample to apply the estimation methods discussed in the previous section must be 

observed over a period including both pre and post-treatment observations (years). In other 

words, the sample must be a balanced panel and must contain all the needed information 

about the outcome variables, the treatments and the confounding variables (covariates X ). As 

the objective here is to assess the impact of the FPR on (Italian) farm’s production choices, 

these conditions are met by extracting a constant sample of Italian Farm Accountancy Data 

Network (FADN/RICA) farms yearly observed over a period including the pre and post-FPR 

years. The numerosity of the FADN database allows for a quite large balanced panel.  

For the selection of the time period covered by this panel, the choice is here made to avoid 

years that are progressively far from the moment of the treatment (2005). Moreover, it seems 

appropriate to select a period of analysis that is symmetric with respect to the treatment (FPR) 

and contains most, if not all, of its effects while excluding other possibly overlapping effects 

due to other policy treatments (or other confounding factors) and that could occur before 2003 

and after 2007. For instance, adding years 2000-2003 in the pre-treatment period can be 

troublesome as they may still incorporate some effects of the previous CAP reform (Agenda 

2000) (Esposti, 2007). At the same time, the post-2007 years could raise the same kind of 

                                                           
18 For instance, it matters whether the stochastic processes generating these variables show any autocorrelation and are 

around their stationary long run equilibriums (i.e., they are stationary processes). In such cases, controlling for symmetry in 

the DID can be even more relevant as symmetric CDID is the least biased estimator under full information. Chabé-Ferret and 

Subervie (2013) provides an excellent detailed analysis about the CDID validity under such circumstances. These aspects 

will not be explicitly considered here but should still be carefully taken into account in interpreting the CDID estimates 

presented in the following sections. 
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problem due the implementation of the so-called Health Check Reform (HC) (Esposti, 

2011b). In addition, the considerable price turbulence observed in agricultural markets in 

years 2008, 2009 and 2010 (Esposti and Listorti, 2013), then accompanied by the negative 

effects on agriculture of the general economic crisis (De Filippis and Romano, 2010), 

suggests particular caution in adding these years to the post-treatment period.  

For this reason, the balanced sample is here limited to the 2003-2007 interval. 6542 farms are 

observed over these five years.
19
 This balanced panel constitutes the sample on which the 

present analysis is performed. It is worth noticing that the FADN sample is not fully 

representative of the whole national agriculture. The reference population from which the 

FADN sample is ideally drawn, in fact, excludes a significant (at least in terms of numerosity) 

amount of Italian farms (those with Economic Size<4 ESU, that is, less than 4800 Euro of 

Standard Goss Margin).
20
 In this respect, the FADN sample is only representative of a sub-

population of Italian farms, those farms that can be here refereed as professional or 

commercial farms (Cagliero et al., 2010; Sotte, 2006). Nonetheless, these 6542 farms are 

quite homogeneously distributed across the national territory, and the scattering of farms 

across the Italian macro-regions (North-West, North-East, Centre, South and Islands) well 

represents the pretty diverse agricultural conditions and structures of these different parts of 

the country (Esposti, 2011c).   

5. APPLYING THE TE ESTIMATION TO THE FPR 

5.1. The Treatment and the Outcome Variables 

The application of the TE estimation toolkit in the present case implies a proper identification 

of the treatment, therefore of the treated and non-treated units, and of the outcome variable. 

On the first aspect it is worth reminding that here the treatment (the FPR) the change of first 

pillar support from coupled to decoupled payments. Evidently, the participation to the 

treatment is not voluntary. It depends, in Italy, on the history of the individual farm and on the 

respective support it received in the 2000-2002 period; farms can not decide to remain in the 

                                                           
19 As mentioned in the previous section, this panel excludes farms that are strongly specialized in crops whose CMOs have 

been reformed only starting in 2008. Therefore, farms of typologies 1430, 2011, 2013, 3110, 3120, 3130 (see Table A2) with 

revenue share of vegetable or wine production higher than 75% are excluded from the sample.   
20 According to 2000 Census data, more than 82% of Italian agricultural holdings had an economic size smaller than 8 ESU 

but they accounted for just 27% of total Italian agricultural area (Sotte, 2006). According to 2010 Census data, about 67% of 

Italian agricultural holdings has an economic size smaller than 18 ESU but they account for just 17% of total Italian 

agricultural area (Sotte and Arzeni, 2013). 
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old regime, as this is not admitted. Therefore, the treated units (T = 1) are those farms that 

received the first pillar CAP support in the form of coupled payment before the reform and 

then in the form of SFP.  

According to such interpretation, the treatment consists in the change of the form of support 

and not in its amount as in Italy the conversion from coupled to decoupled payments has been 

defined on a purely historical basis. It is still possible to find farms that did not receive any 

CAP support in the old regime (for whatever reason mostly due to peculiar production and 

managerial choices). For them, the change in regime did not occur simply because they 

remain in a no-policy situation both before and after 2005, and no CAP first pillar support has 

been received over the entire 2003-2007 period. Therefore, they are not treated (control) units 

(T = 0) simply because they experience no change in the form of support. 

A second practical issue concerns the proper definition of an outcome variable (Y ) for this 

kind of treatment. It is worth noticing that the empirical literature on the evaluation of CAP 

reforms, and FPR in particular, has focused on several possible indicators to assess the 

impact. In most cases, such indicators, and the consequent models, actually refer to some 

aggregate dimension rather than the micro (i.e., farm) level. Typically, changes in land use, 

labour or other input intensification/extensification, farms’ income and welfare, supply 

volumes, commodity market prices (OECD, 2011). However, though to a different extent, all 

these outcome variables are just indirect consequences of the micro-level response to the 

treatment (the policy reform).  

At this micro-level, the FPR is expected to affect production decisions by (re)orienting 

farmers’ to market, but such response turns out to be complex and its measurement 

empirically challenging. For instance, some works concerning the FPR’s impact at the farm 

level (Renwick and Revoredo-Giha, 2008, for instance) show that, though decoupled, first 

pillar CAP support still acts as a cross-subsidisation of pre-existent farm activities and, 

consequently, the farm-level response in terms of production choice turns out to be lower than 

expected and lower than could emerge by looking at aggregate figures. Other works (Sckokai, 

2005; Serra et al., 2009; Moro and Sckokai, 2011; Esposti, 2014) focus on the timing of the 

response to decoupling thus showing how the presence of wealth effects, quasi-fixed inputs 

and outputs, adjustment costs, imperfect credit markets implies distinguishing between a 

short-run response from a long-run response (investment decisions).  
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Generally speaking, either in the short or in the long-run horizon the magnitude of the 

response depends on (and somehow reveals) the underlying technology, risk attitude, 

expectations, credit market condition. Nonetheless, unlike previous contributions in this field, 

the advantage and the novelty of the empirical approach here proposed does neither depend 

on any ex-ante specification nor requires restrictive assumption about these underlying 

features as the impact of the FPR is directly assessed adopting the TE toolkit. On the contrary, 

these results can empirically reveal some of these characteristics.          

Still, the present paper shares with all the previous empirical works in this field the 

fundamental hypothesis that decoupling leaves farmers free to adjust and reorient their 

production decisions given their individual characteristics and market conditions (i.e., 

prices).
21
 Therefore, a proper outcome variable should express the degree of change in 

production orientation or mix. Finding a synthetic variable expressing such change in farm 

production choices, however, is not trivial. Within typically multioutput activities, production 

decisions are expressed by an output vector rather than by a scalar variable. For any element 

of this vector, the change in production choices can take a different form: to start producing a 

new (for the farm) agricultural product but also (in the case of a product that is already part of 

the farm’s supply) to increase or reduce the amount of production of that particular good, to 

improve or not its quality level and so on.  

Moreover, whatever this change eventually is, its timing may be different. For instance, the 

introduction of a new perennial crop in the farm output vector (for instance, wine production) 

implies a long-term horizon; in such case, what we observe in the short-term, is just an 

investment decision. On the contrary, the introduction (or a larger production) of an annual 

crop (for instance, durum wheat) operates in a short-term horizon and can be directly 

observed in terms of higher cultivated area or higher revenue related to that specific crop.  

To take this multiple nature of the farm-level production response to FPR into account, 

different outcome variables are considered. We can divide them in two typologies. The first 

type of outcome variable is a synthetic (scalar) measure of the change in the supply vector 

(that is, in the shorter-term production decisions) between two years or periods. The second 

type considers the investment behaviour, that is, production decisions oriented towards a 

longer-term programming horizon.  

                                                           
21 In more technical terms, the most significant impact expected from the FPR is to improve farm’s allocative efficiency. See  

Moro and Sckokai (2011) for an exhaustive theoretical background on this aspect.  
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In the first typology, the outcome variable expresses the distance between two output vectors. 

This distance is computed using two different metrics:  
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where k=1,….,K indexes the k-th product within the vector of potential production activities, 

ik
s  expresses the share of the k-th commodity on the total revenue of the i-th farm, 

ik
d  is a 

dummy variable taking value 1(0) if the k-th product is (is not) produced by i-th farm. Finally, 

indexes A and B express the two points in time when these variables are observed. Typically, 

A = pre-treatment year, B = post-treatment year. 1

i
y  and 2

i
y are just distance variables: the 

former is an Euclidean distance, the latter is a variant of a conventional similarity index.  

As 10 ≤≤
ik
s , 1

i
y  varies between 0 and 2, with the lower value taken by farms whose revenue 

distribution across potential products remains the same between the two years/periods. In 

such case, no change in production decision is observed over time. The maximum value, on 

the contrary, is taken by those farms that concentrate all revenue in only one product and this 

unique product changed between the two periods. Therefore, this outcome variable not only 

accounts for the change in production decisions between the two years/periods but also for the 

degree of specialization of the given farm.  

As 
ik

d  is a dummy variable, it is 10
2
≤≤

i
y . Even in this case, the outcome variable increases 

the more the output vector changes. The 0 value is taken by farms for which all productions 

observed in A are confirmed in B and no other activity is added. In this case, however, 

specialization does not tend to increase the value of the outcome variable as, on the contrary, 

an higher value is observed for those farms that change their production activities over a large 

range of products. It must be also noticed that this second outcome variable does not take into 

account the different relevance (share) of a given k-th production in the i-th farm revenue. 

Therefore, it is not able to take into account changes in production decisions that take the 

form of an extension (reduction) of an activity over a continuous domain.  

Apparently, therefore, 2

i
y  is a less accurate measure of the treatment outcome than 1

i
y . This 

latter, however, may encounter a major drawback because revenue shares 
ik
s  does not only 

depend on farmer’s production decisions but also on market prices. Prices may not only be 
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independent on the treatment but may be even unpredicted by producers. Under remarkable 

price volatility, therefore, the former outcome variable may overestimate the response of 

farmers to treatment by attributing to it an exogenous movement of prices.  

Finally, we may also argue that, if market reorientation occurs, also the comparison of the 

responses 1

i
y  and 2

i
y  may be informative about farm behaviour. In principle, for farms 

pursuing allocation efficiency,  the response measured with 1

i
y  is higher than the response of 

the same farm measured with 2

i
y . First of all, as mentioned, the former can take into account 

also a change in the production decisions that give more relevance to activities with higher 

market convenience even if no new activities is really added (therefore, 1

i
y  can be >0 even 

when 2

i
y =0). Secondly, the latter simply counts the addition or substitution of production 

activities. Under market reorientation these new activities are expected to show more market 

convenience (for instance due to a temporary positive price dynamics) than those they replace 

or the preexisting ones, therefore this addition/replacement impacts more on 1

i
y  than on 2

i
y . 

But this is true only if we observe a significantly positive TE of the FPR. In fact, farms can be 

locked-in their previous production choices and may not respond or respond very poorly to 

the treatment. Due to very high adjustment costs or strong risk aversion, farms may just 

decide to test new productions with a very limited, if any, reallocation of inputs. In such case, 

the revenue composition ( 1

i
y ) may eventually change very little while, on the contrary, 2

i
y  

turns out to be significantly positive.   

The second typology of outcome variable consists of a scalar measure expressing the 

investment decisions taken in response to the FPR. The idea simply is that the treatment may 

induce extra (more than “business-as-usual”) investments allowing the farm to activate 

(extend) new (existing) activities in the longer-term. Therefore, the outcome measuring such 

effect is simply the change in investment expenditures of the i-th farm (
i
I ) between 

years/periods A and B. This change is here measured in two different ways:   
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i
y  merely is the difference between the yearly total investment expenditure. 4

i
y  expresses 

this difference not in absolute terms but in relative terms, that is, as investment rate given by 
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the ratio between total investment expenditure and the respective farm value added.
22
 This 

latter outcome variable may better capture the real investment effort of the i-th farm and get 

rid of the wide size heterogeneity among farms both in physical and economic terms. In doing 

this, however, 4

i
y  may partially sterilize the effect of the treatment on investment decisions 

over the whole sample. In fact, a real increase in investments concentrated in larger farms 

may be entirely compensated by a decline in investment rates in smaller farms. 

In practice, all these four outcome variables present pros and cons. The first typology only 

partially captures the farms’ production response to the treatment. At the same time, as 

already mentioned, one possible problem in using investment decisions as outcome variable 

in the present case is that both anticipation and lagged effects may occur. For instance, a pre-

treatment year/period could already contain some anticipated investments response of the 

farmers to the FPR and this makes the identification and estimation of the TE more complex 

and, consequently, results less reliable and robust. Therefore, all outcome variables (11)-(14) 

represent a relevant but incomplete dimension of the production response to the FPR. 

Actually, they are more complements than alternatives in providing a comprehensive picture 

of the reorientation to market. For these reasons, all the four outcome variables will be used 

throughout the present empirical study.   

A final issue in the proper definition of the outcome variable, concerns the selection of 

observations/years A and B. In principle, several couples of years/periods could be compared 

to compute the outcome variables in (11)-(14). Years 2003 and 2004 unquestionably represent 

before-reform (thus, before-treatment) years as the implementation of the reform started in 

2005 in Italy. At the same time, years 2005, 2006 and 2007 can be considered as after-reform 

(after-treatment) years. As a consequence, the following pairs of years can be candidate for a 

before and after-treatment comparison: 2004-2005, 2004-2006, 2004-2007, 2003-2005, 2003-

2006 and 2003-2007. However, the choice here is to consider years that are symmetric with 

respect to the treatment year (2005) and are far enough from it to exclude (or minimize) 

anticipated or lagged responses. For this reasons, the outcome variables are here computed 

assuming A=2003 and B=2007.
23
 

                                                           
22 The value added rather the value of production is here considered because the former can be more properly considered a 

proxy of farm profits, that is, of the capacity to generate surplus from which further investments can be undertaken.   
23 Evidently, different years will be considered in the DID estimation. See section 6.2.2 for more details.    
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5.2. The Problem of Multiple Treatments 

A further complication in identifying and estimating the TE of the FPR comes from the fact 

that, additionally to CAP first pillar measures, support to farms may be delivered through 

second pillar measures. Not only there are many possible second pillar measures administered 

to any given farm, but this latter may receive, at the same time, both first and second pillar 

measures. In other words, the CAP (both before and after the FPR) potentially is a multiple-

measure policy. Therefore, an appropriate TE assessment should not disregard this aspect. 

Figure 1 reports, for the 5 years under consideration, the percentage distribution of the total 

support within the sample among the most significant (those with more than 1% on total 

support) measures.
24
 Even if we exclude the negligible measures, the fragmentation of the 

support remains, especially in the second pillar.  

It must be acknowledged that farms’ production decisions, i.e., the four outcome variables 

(11)-(14), are somehow affected by second pillar measures. By supporting competiveness and 

structural adjustment, Axis 1 measures may directly imply investments or production choices 

that are themselves oriented toward allocative efficiency thus possibly overlapping with the 

impact of the FPR.
25
 Other measures (especially in Axis 2), on the contrary, may actually 

represent constraints to a rapid adjustment towards a more efficient output vector. In 

principle, first and second pillar measures may reciprocally interact (positively or negatively, 

that is, reinforcing or reciprocally offsetting) with respect to the expected outcome such that a 

simultaneous treatment can generate a different effect compared to the two separate 

treatments.    

Nonetheless, despite the fact that we can not exclude that second pillar measures may 

interfere with the TE of the FPR, two aspects are worth reminding to properly deal with these 

multiple-treatment case. First of all, the RDP was reformed in 2005 and such reform was 

implemented only in 2007. On the one hand, it did not radically change the way the support is 

delivered and its fundamental objectives, axes, measures and actions are partially analogous 

between the two programming periods (2000-2006 vs 2007-2013) (Esposti, 2011b). On the 

other hand, as we are using farm-level 2003-2007 data, here we do not really observe the new 

2007-2013 RDP in action. Even in 2007, farm data mostly report second pillar funding that 

still refers to measures of the former period (2000-2006). So, in practice, there is no second 

                                                           
24 See Annex (Table A1) for a description of the measures reported in Figure 2.  
25 “Measures relating to structural adjustment of farming […] enhancing the economic viability of agriculture through 

investment and modernisation” (European Commission, 2011, p. 8).   
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pillar treatment corresponding to the FPR treatment, as no policy regime change really occurs. 

We only have to take into account that some treated farms, i.e., farms that experienced FPR 

starting from 2005, also received at least one second pillar payment over the whole period of 

investigation (2003-2007), while other farms did not. Moreover, the second pillar support was 

never coupled to particular commodities and, at least apparently, its aim has never been the 

‘market orientation’ that drove the FPR. Therefore, the impact of second pillar support on the 

FPR’s outcome is an involuntary side-effect of its implementation.  

Following these arguments, we can conclude that these two policies are currently 

implemented and delivered almost independently, following different selection procedures 

and aiming at different objectives. Therefore, we are not really in a case of multiple TEs 

identification and estimation with all consequent complications (Frölich, 2004; Imbens and 

Wooldridge, 2009; Chabé-Ferret and Subervie, 2013). In fact, in the present case only one TE 

is of interest (that of FPR)
26
 and, while it can not be excluded that second pillar support may 

affect FPR assignment and outcome, the other way round can be ruled out, that is, the 

assignment to second pillar support is not affected by FPR assignment and outcome. As a 

consequence, here the second pillar support can be considered just as one of those pre-

treatment covariates in X that affect the identification and estimation of the TE of the FPR by 

influencing both assignment and outcome but are independent from it. 

[Figure 1 here] 

5.3. The Cofounding Factors  

The confounding factors here considered are those pre-treatment variables (covariates X)
27
 

expected to incorporate all the relevant aspects that may affect the production choices before 

the treatment (thus, affecting the outcome regardless the treatment itself) as well as the 

treatment assignment. We selected these variables to capture, with the minimum redundancy, 

three different types of factors (Table 3). 

First of all, we consider the relevant individual characteristics of the farmer (AGE) and of the 

farm (Altitude - ALT). Secondly, the economic (ES, FC)
28
 and physical (AWU, HP, UAA 

and, at least partially, LU) size of the farm clearly matters. All these variables evidently affect 

                                                           
26 A similar case is presented in Chabé-Ferret and Subervie (2013).  
27 Pre-treatment variables have been observed in 2003, the only exceptions being FC, for which the 2003-2004 average has 

been considered since this variable may largely vary on a yearly base, and the dummy RDP. 
28 The relative (with respect to net value added) amount of fixed costs expresses the importance of fixed factors (especially 

labour and physical capital) within the farm and, therefore, it is a proxy of the scale of the farm business itself.   
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the outcomes but presumably are not directly correlated with the treatment assignment. Still, 

they are definitely linked to production choices and, since pre-treatment production choices 

are unquestionably correlated with the treatment assignment, this correlation indirectly occurs 

even with respect to these first two categories of covariates.  

The third typology of confounding factors, in fact, consists of those variables (TF and, in part, 

LU) that directly express the production specialization of the farm. The linkage between these 

covariates and the treatment assignment is evident as this actually concerns those farms that 

were interested by specific OCM measures while, on the contrary, farms not involved in first 

pillar are those whose production specialization was less (or not at all) targeted by specific 

policy measures. To express farm production specialization, the 4-digit “Type of Farm” (TF) 

FADN classification is adopted (2000 classification).
29
  

A final confounding variable included in the analysis is the already mentioned dummy 

expressing second pillar support (RDP). The dummy takes value 1 if the farm received at least 

one second pillar payment over the whole period of investigation (2003-2007), 0 otherwise. In 

the original balanced 2003-2007 sample very few farms (less than 30) were non-treated cases 

but still received second pillar support. Therefore, finding a common support and satisfying 

the balancing condition is going to be very difficult when this RP dummy is included among 

covariates. For this reason, the adopted sample of 6542 farms actually excludes those very 

few non-treated farms receiving second pillar support. More generally, identifying the 

contribution of the RP dummy to both the treatment assignment and the outcome is 

particularly difficult in the binary case because this variable actually corresponds to the 

treatment. Consequently, the RD dummy is here considered as one of the variables in X only 

in the multivalued treatment.     

                                                           
29 By itself, however, this qualitative variable is not suitable in this empirical exercise as it has not a monotonous linkage with 

the treatment assignment. For instance, class 4210 (beef production) is more dependent on first pillar support than classes 

2022 (flowers’ production) and 6010 (horticulture); therefore, farms belonging to the former class are more likely to be 

assigned to the treatment than farms of the latter classes. To overcome this problem, the official TF classification has been 

reclassified by assigning to any 4-digit class a number (ranging from 1 to 7) expressing its dependency on first pillar CAP 

support. This number expresses a qualitative monotonous variable (TF_R) that increases as the dependency on CAP support 

declines. The Annex (Table A2) details this reclassification of the TF variable.  



 

26 

 

6. THE EMPIRICAL APPLICATION 

6.1. Comparing treated and non-treated (control) units: descriptive evidence 

Table 1 illustrates how the sample farms distribute across the FPR treated and non-treated 

groups, also distinguishing those farms that received, in addition, second pillar payments. As 

mentioned, most farms in the sample received the FPR treatment (83%). Most of them (56% 

on total farms) also received second pillar support during the period. Therefore, all the 

abovementioned group comparisons are inherently unbalanced, with the number of control 

units being different (much lower) than the number of treated units.
30
 The treatment level (i.e, 

the amount of payments) strongly varies within the treated sample. This heterogeneity 

evidently depends on the large farm size (either in physical or economic terms) heterogeneity.  

The overall support per farm increases by about 17% from 2003 and 2007 in nominal terms, 

though this increase is lower than 10% in real terms. The dispersion of support, on the 

contrary, is reducing though remains remarkably high. This reduction of variability can be 

partially attributed to the decoupling of first pillar support that, in fact, stabilized the pre-

reform differences among farms. The group of treated farms with also second pillar support 

receives a larger first pillar support, on average. This difference increases over years and can 

be explained by the fact that farms of this group show a larger size on average, thus first pillar 

support is itself expected to be larger.  

Table 2 reports some descriptive statistics by treatment group for the four outcome variables. 

It may be easily appreciated that, comparing the two extreme years 2003-2007,  for all 

outcome variables the average values tend to increase moving from the non-treated (or 

control) group to the treatment group. Moreover, within the treatment group, farmers also 

receiving second pillar payments show an additional positive impulse. Nonetheless, if we look 

at comparisons between other couples of years, the picture becomes less clear. While 1

i
y  and 

2

i
y  tend to confirm higher values, more mixed evidence emerges for 3

i
y  and 4

i
y  especially 

when years considered are those around the treatment year (2005). This can be explained by 

the presence of anticipation and/or lagged effects, but another explanation could simply be 

that the observed differences in outcome variables are not caused by the FPR.  

In fact, the most relevant evidence emerging in Table 2 is the high variability of all outcome 

variables in the whole sample, as well as in treatment groups. In practice, if we constructed a 

                                                           
30 This justifies the fact that an appropriate matching methodology to estimate the ATT might require comparison with 

replacement (see below).   
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conventional 95% confidence interval around the sample averages we would notice that these 

intervals are largely overlapping across the groups for all outcome variables. More generally, 

though these differences in outcome variables are mostly consistent with the expectations in 

terms of policy TE, these simple statistics can not be conclusive on the fact that such 

differences across groups can be indisputably attributable to FPR. 

Table 3 reports some descriptive statistics of the pre-treatment covariates (or confounding 

variables) considered in the present analysis. Even in this case, for most variables the 

dominating evidence concerns the large variability observed in both the whole sample and in 

treatment groups, and this prevents from clear-cut statements about structural differences 

across the groups. Only for few variables a difference between treatment groups’ clearly 

emerges. In particular, non-treated units tend to show some peculiarities compared to the 

treated ones while the difference between the treated units with and without second pillar 

payments seems mostly negligible. Non-treated units show a smaller physical size (UAA) but 

this is not necessarily true if we consider the economic size (ES). Moreover, as expected, the 

production specialization of the non-treated group is evidently less dependent on first pillar 

support (TF_R), it practically excludes livestock activities (LU) while it favours activities 

mostly run in flat areas (ALT). The immediate interpretation is that most of these non-treated 

units are farms with small area and high output values strongly specialized in a certain kind of 

production (e.g., horticulture) largely disregarded by coupled first pillar payments. This 

reinforces the idea that these farms might not be reliable as control units in identifying and 

estimating the TE of the FPR.  

[Tables 1-3 here] 

6.2. Results
31 

6.2.1. PSM estimation 

6.2.1.1. The estimated Propensity Score (PS) 

Table 4 reports the estimates of the PS equation (5). The specification adopted is a 

conventional binomial probit with the treatment assignment as the dependent binary variable 

                                                           
31 All estimations have been performed using software STATA12.  
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and the covariates as explanatory variables. After the PS estimation, the balancing condition 

has been checked, and always satisfied, on the common support.
32
  

Parameter estimates of the probit equation are all statistical significant with the only 

exception of the parameter associated to variable FC. This can be reasonably interpreted with 

the fact that fixed costs might be strongly collinear with other explanatory variables, in 

particular those expressing the amount of labour (AWU) and capital (HP). Older farmers 

seem to have an higher probability to be treated (i.e., to receive the first pillar support). The 

altitude operates in the same direction as the propensity to receive the first pillar support 

increases moving from plain areas to hilly and mountainous farms. Evidently, farms excluded 

from first pillar support (therefore from the treatment) due to their production decisions, are 

positioned in relatively more favourable areas. These non-treated farms tend also to be more 

intensive as the propensity to receive T=0 declines with the amount of working units. The 

increasing substitution of agricultural labour with physical capital (machinery), as indicated 

by the parameter associated to HP, is evident moving from the non-treated (T=0) to the 

treated (T=1) group. 

To partially confirm this effect, the propensity score is positively affected by the physical size 

of farms (UAA), i.e. larger farms tend to have an higher propensity to receive the first pillar 

payments. However, this effect is actually of limited magnitude and may also be misleading. 

As a matter of fact, whenever the economic size (ES) is taken into account, the propensity 

score actually decreases with the size. We can argue that farms with larger size (therefore 

arguably more professional farms) show a dualistic attitude towards the policy treatment in 

consideration here. On the one hand, we have some labour intensive farms of relevant 

economic size and prevalently positioned in plain and well-endowed areas that tend to be 

excluded from first pillar support due to their specific production specialization. On the other 

hand, we find capital intensive farms with large physical size and sometimes positioned in 

less favoured hilly and mountainous areas for which we observe an higher probability to 

receive first pillar payments. 

Variables expressing production specialization (LU and, above all, TF_R) may explain this 

apparent dualism. They confirm that the prevailing production decisions eventually bring 

                                                           

32 The balancing condition is tested by stratifying farms (within the common support) in blocks of equal ( )Xp  range. 

Whenever balancing is not found, the number of blocks is adjusted until balancing is satisfied. The common support consists 

in that range of variation of ( )Xp  where we can observe both treated and no treated farms. Limiting the balancing check to 

the common support is justified by the fact that the following matching and ATT estimation excludes the units that are 

outside the common support.   
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about self-selection in terms of treatment assignment. Moving towards TF with a lower 

dependency on the CAP is associated to a significantly lower propensity to receive the 

treatment. This evidence also suggests that the way TF variable has been reclassified is 

appropriate. The role of production specialization is also confirmed by LU variable 

suggesting that livestock activities tend to be more present in the treated group. In general 

term, more than any other structural or idiosyncratic characteristic of the farm, production 

orientation and specialization seems to be the factor that primarily induces selection of farms 

in terms of treatment assignment.  

[Table 4 here] 

6.2.1.2. Matching and the estimated Average Treatment effect on the Treated (ATT) 

Table 5 reports the PSM estimation of the ATT in (6) according to the four alternative 

matching procedures presented in section 3.1.2. The results are juxtaposed to facilitate 

comparisons and, thus, to assess their robustness with respect to how matching is performed. 

Stratification Matching has been performed using the blocks identified in PS equation 

estimation. Nearest Neighbour Matching is obtained sorting all units by the respective 

estimated propensity score, and then searching forward and backward for the closest control 

unit(s). In the case of multiple nearest neighbours, either the forward or backward matches are 

randomly drawn.
33
 Radius Matching is performed by taking a 0.05 radius of the PS, while for 

Kernel Matching the conventional Gaussian Kernel function is adopted.
34
 As illustrated by 

Becker and Ichino (2002), analytical standard errors can be obtained only for some of these 

ATT estimates. For the sake of comparison, however, here standard errors of the ATT 

estimates are always computed through bootstrapping with 1000 replications.  

Some regularities among these estimated ATTs emerge. First of all, in the case of outcome 

variables 1
y  and 2

y , results are quite robust across the four matching procedures. Moreover, 

for these outcome variables ATT estimates are in most cases statistically different from 0. On 

the contrary, estimates are more variable and often not statistically significant in the case of 

the outcome variables related to investment decisions, that is, 3
y  and 4

y . Secondly, estimates 

                                                           
33 An alternative procedure consists in taking into account, and equally weight, both forward and backward matches. These 

alternative estimates do not substantially differ from what presented here and are available upon request. More technical 

details on these PSM procedures can be found in Becker and Ichino (2002).    
34 The alternative Epanechnikov Kernel function has been also tested by imposing a bandwidth of 0.05. These alternative 

estimates do not substantially differ from what presented here and are available upon request. 
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obtained with Kernel and, above all, Radius matching tend to be systematically higher than 

ATT estimated with the other two matching procedures. Radius matching estimates are also 

dependent on the definition of the radius as a lower radius may significantly change the 

results.
35
 Limiting the attention to statistically significant ATT estimates, all the results are 

concordant in sign and similar in magnitude. Therefore, common robust conclusions can be 

drawn from the four different matching approaches.  

The (binary) treatment under consideration here (FPR) always induces a change in the output 

vector and, less clearly, induces investment decisions. If we consider the average value of 1
y  

across the treated group, the estimated ATT implies a quite strong (>50%) impact. Moreover, 

the estimated ATT is very robust across the different matching approaches ranging between 

0.37 and 0.43. This latter conclusion holds true even more evidently for 2
y  whose response 

ranges between 0.09 and 0.10. In relative terms, this impact of the FPR is even stronger as it 

amounts to almost 60% of the observed average value within the treated group. The estimated 

ATT indicates an impact of the FPR on production choices of relevant magnitude also on the 

two outcome variable expressing investment decisions ( 3
y  and 4

y ) but both the low 

statistical significance and the limited robustness across alternative matching procedures 

prevent from a conclusive empirical evidence in this respect. Though positive, this ATT 

seems affected by the strong heterogeneity (variability) observed for these variables across 

both treated and non-treated farms. In such production decisions, as mentioned, their timing 

and the timing of the treatment plays a decisive role. Anticipation effects, as well as lagged 

effects due to financial and technical constraints preventing an earlier investment response to 

the treatment, make the identification and estimation of the ATT harder even if a relevant and 

positive impact actually occurred.     

The policy interpretation of these results brings us back to the original research questions of 

the present paper. We can state that results support the idea that the FPR really oriented farms 

to market as induced the treated farms to a stronger change in their output composition. 

However, the actual nature of this response to the treatment more clearly emerges by 

comparing the results for the four outcome variables. On the one hand, the response of the 

revenue composition ( 1
y ) is more relevant than the response of the output composition ( 2

y ). 

Apparently, and this is fully expected as a consequence of market reorientation, treated farms 

                                                           
35 Estimates under alternative values of the radius are available upon request.   
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reorient their activity to market by changing their output mix and this changes even more 

strongly the revenue composition as the new activities are supposed to be those with higher 

market convenience (for instance due to a temporary positive price dynamics) and adds new 

important sources of revenue to the preexistent farm’s core activities. This is even more true if 

the farm’s response in terms of production choices does not consist in adding new activities 

(and quitting previous ones) but just in giving more space to existing activities showing 

higher market convenience (thus increasing their revenue share). On the other hand, the 

impact on investment decisions is much less evident thus suggesting that the FPR convinced 

the treated farms to change their short-run production decisions but did not concern as much 

the long-run production choices.  

This apparently limited scope of the farm response to the FPR may somehow depend on the 

fact that most farms opted for conservative strategies and reduced their investment level over 

the period under study, regardless the policy treatment (see Table 2 in this respect). In a 

period of persistent market crises or difficulties, many Italian farms suspended production 

decisions with medium and long-term implications regardless the change in the policy regime. 

The conclusion could be that the capacity of the FPR to orient farms to market is substantially 

reduced whenever major production changes (and consequent adaptations) are potentially 

costly and whenever farms tend to assume a “wait-and-see” attitude both due to market 

uncertainty and, possibly, to further policy signals confirming (or denying) the direction taken 

by the CAP first pillar support.     

[Table 5 here] 

6.2.1.3. Robustness of the PSM ATT estimations 

ATT estimates obtained through PSM seems to provide a positive answer on the capacity of 

this estimation approach to indentify that part of the observed difference between treated and 

non-treated farms that can be really attributed to the treatment. Not only for the positive and 

statistically significant ATT for 1
y  and 2

y , but also for the capacity to distinguish the 

response to the treatment in terms of short-term production choices ( 1
y  and 2

y  ) and of 

medium or long investment decisions ( 3
y  and 4

y ). Nonetheless, one could still argue that this 

empirical evidence on the FPR ATT is not really due to the treatment but to the fact that the 

control units are not appropriate counterfactuals. As already mentioned, even though 
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matching estimation is conditioned on a large set of observables, the balancing condition is 

satisfied and matching is limited to the common support, this only ensures against the 

selection-on-observables bias but, evidently, can do nothing against the selection-on-

unobservables bias. It could be argued that the difference between treated and non-treated 

farms, especially in terms of many unmeasurable aspects (personal beliefs and attitudes, 

family histories and traditions, just to make few examples) can not be entirely taken into 

account by the set of conditioning factor X . As a consequence, the difference between treated 

and non-treated units, also when conditioned on X , depends on these unmeasured aspects and 

not only on the treatment.   

Even if this selection-on-unobservables bias is not entirely ruled out, however, it does not 

mean that the estimated ATT is meaningful or misleading. The bias can be small or irrelevant 

and, therefore, the estimated ATT maintains its validity. The Rosenbaum (1987; 2002) 

bounding approach assesses how strongly an hypothetical unmeasured disturbing variable 

must influence the selection process to undermine the results of matching. By itself, this 

bounding approach does not test for the presence of a selection bias.
36
 Instead, Rosenbaum 

bounds provide evidence on the degree to which the significance of a matching result depends 

on an hypothetical unmeasured disturbing factor, that is, on the untestable CIA. Here, we 

adopt the DiPrete and Gangl (2004) implementation of the Rosenbaum intuition. Table 6 

reports both the Wilcoxon signrank tests, providing upper and lower bound estimates of 

significance levels at given levels of hidden bias (the Γ parameter) and the corresponding 

Hodges-Lehmann point estimates and confidence intervals. These statistics are computed for 

the to the Nearest Neighbour Matching ATT estimate for all the four outcome variables. 

Results suggest that in the case of 1
y  and 2

y only a very high hidden bias (that is, Γ =4) 

would bring the estimated ATT statistically to 0. On the contrary, as already noticed, the 

estimated ATT for 3
y  and 4

y  are much weaker and a relatively small hidden bias (Γ =2) is 

enough to make the ATT null or not statistically significant.
37
  

The robustness of the ATT estimation for 1
y  and 2

y  even in the presence of an hidden bias is 

confirmed by Table 7 showing the sensitivity analysis performed according to the approach 

                                                           
36 This would mean testing that no (unobserved) variable influences the selection into treatment.   
37 It is worth reminding that Γ =4(2) implies that there is an unobserved covariate that quadruples (doubles) the probability of 

receiving the treatment for control units matched with treated units, that is, units having statistically identical observed 

covariates X .  
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proposed by Nannicini (2007) and Ichino et al. (2008). The table reports the ATT estimation 

under an “artificial”  variable that restores the CIA assumed it is not valid under the observed 

covariates X . The comparison of the estimates obtained with and without matching on this 

“artificial” variable (the confounder) shows to what extent the original results are robust to 

specific sources of failure of the CIA (Nannicini, 2007). The statistical distribution of this 

confounder across the sample is simply expressed by the two parameters d and s.
38
  These 

parameters can be identified following two different criteria. The first consists in calibrating 

them in such a way that the distribution of the confounder across the sample follows the 

distribution of one observed binary variable. Here, these parameters have been calibrated by 

assuming that the confounder has a distribution corresponding to the binary variable obtained 

by distinguishing two different levels of economic size (ES≤6; ES>6). Alternatively, d and s 

can be simulated to obtain increasing underlying effects (outcome and selection effects) and 

different combinations between the two. In particular, such simulation allows identifying that 

combination of d and s that “kill” the estimated ATT, i.e, that make the ATT statistically null. 

How large d and s must be to “kill” the estimated ATT provides an evidence of its robustness.         

Results show that, in the case of 1
y  and 2

y (and, at least partially, for 4
y ), the estimated ATT 

obtained though matching on X  and on the confounder does not differ much with respect to 

the original results (Table 5) unless the simulated confounding factor is pushed up to a very 

strong violation of the CIA, that is, to generate a very high impact on both the selection into 

treatment (selection effect) and on the outcome of non-treated units (outcome effect). On the 

contrary, for 3
y  a relatively mild confounding factor (and, consequently, minor outcome and 

selection effects) substantially change the estimated ATT.  

Eventually, though performed with different empirical strategies, this robustness analysis is 

quite concordant. One may still argue that, in the case of the FPR, the ATT PSM estimation is 

still affected by some unobservable variable and, therefore, by an hidden bias. Nonetheless, 

results suggest that the estimated short-term production response to the treatment ( 1
y  and 2

y ) 

is fairly robust as it remains positive and significant unless the hidden bias becomes 

particularly and implausibly high.   

                                                           
38 Parameter d can be interpreted as a measure of the effect of the confounder on the outcome of non-treated units; s as a 

measure of the effect of the confounder on the selection into treatment. These two effects can be expressed as average odds 

ratios of the simulated confounder and are also called “outcome effect” and “selection effect”, respectively (Nannicini, 2007) 

and Ichino et al., 2008). 
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[Tables 6-7 here] 

6.2.2. DID estimation 

The results of Tables 6 and 7 can be interpreted in favor of the robustness of the PSM ATT 

estimates even when the CIA does not hold true and an hidden selection-on-unobservable bias 

occurs. Nonetheless, in principle, one way to get rid of such hidden bias is the DID 

estimation. However, as mentioned, such solution requires several years of observation and, at 

the same time, a decision has to be taken on the proper couple of observations (before and 

after treatment) to be used. Comparing single-year observations on the outcome variable Y 

and attributing all the observed difference to the treatment can be, especially in agricultural 

production, hazardous and generate not robust estimations. More robust evidence can be 

obtained by comparing several couples of years/periods.  

Here, years 2003 and 2004 unquestionably represent before-reform (thus, before-treatment) 

years as the application of the reform started in 2005 in Italy. At the same time, years 2005, 

2006 and 2007 can be considered as after-reform (after-treatment) years. Consequently, the 

following pairs of years can be candidate for a before and after-treatment comparison:  2005-

2004, 2006-2004 and 2007-2004, but also 2005-2003, 2006-2003 and 2007-2003. However, 

as in the present case the outcome variable is a year-by-year variation, the only before-

treatment observation (or baseline) is the 2003-2004 variation, though, in principle, also the 

2006-2005, 2007-2006 and 2007-2006 variations are outside the treatment. The available 

after-treatment observations (or follow-up) are the 2005-2004, 2006-2004 and 2007-2004 

variations. Following the Chabé-Ferret and Subervie (2013) suggestion to perform a 

symmetric DID estimator, the follow-up here considered is the 2005-04 variation.  

At the same time, an alternative comparison is considered to take two aspects into account. 

First of all, to allow enough time to adopt production decisions adjusting to the treatment 

(especially for investment decisions) the 2006-04 variation is considered as follow-up 

observation. Secondly, to exclude year 2003 with its peculiar agricultural performances 

especially due to extreme weather conditions in Italy, the 2006-07 is considered as baseline 

observation. Therefore, the DID estimation is here performed for two couple of comparisons: 

2004-2003 and 2005-2004; 2007-2006 and 2007-2004. In addition, the DID estimation is also 

performed for the couple of variations 2004-2003 and 2007-2006. Both are expected to be 

baseline (or no-treatment) observations. Consequently, this latter DID estimation is expected 
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to behave as a placebo testing procedure: a significant ATT would indicate that the CIIA does 

not hold true at least for the years under consideration. 

Table 8 displays the results of the DID ATT estimation for the two abovementioned 

comparisons. The unconditional and the conditional (PSM included) DID estimates are 

reported (i.e., (7), (10) and (11)).
39
 Two preliminary remarks are worth noticing. First of all, 

the DID estimation confirms that for outcome variable 3
y  the estimated ATT is never 

significant. On the contrary ATT estimation is statistically significant in one comparison for 

both 2
y and 

4
y  and it is always statistically significant for 1

y . Apparently, this would confirm 

what already emerged in the case of PSM ATT estimation: the response to the treatment is 

appreciable in terms of short-term changes of the output mix composition, while it becomes 

less evident in terms of changes in the revenue composition and in the longer term production 

choices (investments). The second preliminary remark concerns the fact that conditioning the 

DID estimation on X  (or p(X )) does not change much and, above all, does not significantly 

improve the statistical goodness of the results. This may be interpreted as an indirect evidence 

in favour of relatively robust ATT estimates with respect to the possible selection-on-

observable bias.      

What really surprises in DID estimates reported in Table 8, however, is the patent difference 

emerging between the two comparisons, that is, between 2004-03(follow-up) on 2004-

03(baseline) and 2007-04(follow-up) on 2007-06(baseline). Limiting the attention to the 

statistically significant result, in the former case a negative and counterintuitive ATT is 

obtained for 1
y  and a positive ATT for 2

y . In the latter comparison, on the contrary, the 

estimated ATT for 1
y  is positive, as expected, and also a positive ATT for the investment 

rate, 
4

y , is observed. The little robustness observed in the DID estimates across different 

before and after-treatment periods may indicate, in fact, that time strongly affects the outcome 

variables here considered and this effect of time is evidently not controlled by the set of 

covariates and differs between treated and non-treated units.  

In practice, this lack of robustness could be interpreted as an evidence against the validity of 

the CIIA in the present case due to the year-by-year strongly unpredictable and highly 

differentiated (across crops, territories, types of farm and farming) variations in market and 

                                                           
39 In the conditional DID estimation the balancing condition is assessed and always respected. PS estimation and matching is 

performed as in the PSM estimation presented above adopting the Kernel matching. The coefficient estimates of the PS 

(probit) function are available upon request.  



 

36 

 

environmental (e.g., weather) conditions. This plausible interpretation can be explicitly 

assessed through a placebo test (Chabé-Ferret and Subervie, 2013). It consists in assessing 

whether a significant DID ATT estimation persists even when the comparison is made 

between two baseline (no-treatment) periods (comparison between 2007-06 and 2004-03 in 

the present case). In such circumstance, since the observed ATT can not be directly attributed 

to the treatment we should conclude that the CIIA is violated.      

Table 9 reports the results of this test and clearly shows that the present DID estimates 

(unconditional or conditional) fail to pass the test at least for outcome variables 1
y  and 2

y . 

There is a placebo effect as a significant ATT is observed when, in fact, it should not. 

Moreover, results are very similar to the case reported in Table 8 with 2004-03 as a baseline 

and 2005-04 as a follow-up. The former baseline, which is common in the two cases, 

evidently affect so much the DID results to overcome the possibly real effects of the 

treatment. This might be attributed to some very peculiar figures emerging for year 2003 but, 

more generally, the placebo test is not passed even when the baseline does not include year 

2003.
40
 This confirms how critical the choice of years to be compared can be in DID 

estimation especially when agricultural data, typically showing strong year-by-year variations 

independent on farmers’ choices, are under study.  

Such kind of evidence in an agricultural context is not new and is considered as a clear 

demonstration of the violation of the CIIA in such circumstances. This is possible because 

treated and non-treated units tend to be structurally different in terms of production 

orientation and specialization. Therefore, it is almost unavoidable that year-by-year external 

variations (from weather to market conditions) are strongly differentiated across these diverse 

orientations and specializations. In addition, however, as emphasized by Chabé-Ferret and 

Subervie (2013),
41
 the apparent violation of the CIIA can be rather attributed to the elusive 

timing of the response to the treatment, that is, to the presence of anticipation effects 

(potentially occurring in the 2004-03 baseline) or of lagged effects (potentially occurring in 

the 2007-06 baseline). In any case, whatever the cause of the failure of the placebo test is, the 

conclusion remains the same: DID estimation (conditional or not) in the present case shows 

little robustness as it too strongly depend on the years choosen to define the baseline and the 

follow-up observations.   

                                                           
40 These further placebo tests are available upon request.  
41 “We find some evidence that the common trend assumption may not hold in our data” (Chabé-Ferret and Subervie, 2013, 

p. 18). The authors interpret this as a consequence of anticipation effects.   
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It is here worth noticing that a further reason why ATT DID estimates (but the same argument 

could also apply to ATT PSM estimation) show little robustness may depend on the fact that 

the response to the treatment is largely heterogeneous (in magnitude and sign) across farms. 

Estimating the average treatment effect, therefore, may be misleading as other parameters (or 

statistics) expressing the statistical distribution of the treatment effect on the treated may be 

more informative. The median treatment effect, for instance, could be more robust than the 

ATT whenever many outliers (both treated and non-treated) can be observed within the 

sample. To investigate this aspect, Table 10 reports the PSM DID estimation of the Quantile 

Treatment Effects on the Treated (QTT). These are the ATT estimated on the quantiles of the 

four observed outcome variables. Three quantiles are here considered, the 25%, the 50% (the 

median), the 75% quantiles. Comparing these QTT it is possible to conclude whether the 

estimated ATT results from a combination of very heterogeneous and offsetting responses 

over sub-samples or it is regularly observed across all sub-samples.  

Results reported in Table 10 would confirm that for the investment decisions (variables 3
y  

and 4
y ) all the estimated QTT are inconclusive (not statistically different from 0) in all 

quantiles. On the contrary, the response in revenue composition, 1
y , monotonically varies 

across quantiles but it always remains positive or negative according to the adopted 

comparison as already observed in Table 8. Eventually, a first group of farms does not 

respond at all to the treatment while in the case of the other quantiles the response becomes 

increasingly larger though in opposite direction and with a much larger effect in the 75% 

quantile when the baseline period is 2004-03 and the follow-up is 2005-04. For output 

composition, 2
y , we observe a similar behaviour with the ATT becoming significant only in 

the higher quantiles but always showing, when significant, a positive response. 

This evidence of a differentiated response across the treated farms, however, should not 

surprise. One easy explanation is that it depends on the different treatment intensity these 

farms receive. This aspect can not be evidently investigated within a binary treatment 

approach. A proper analysis of such heterogeneous response necessarily requires 

acknowledging the multivalued nature of the treatment and adopting the consequent 

appropriate TE methodologies.    

[Tables 8-10 here] 
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7. CONCLUDING REMARKS 

This paper primarily aims at showing how, even for policy treatments that apparently poorly 

fit into this kind of approaches, the TE toolkit developed in the last decades still allows 

performing and comparing different estimation methods, assessing the robustness of results, 

carrying out sensitivity analysis. Without necessarily opting for one method rather than 

another, the contemporaneous use of all these methods and the comparison of their results 

may still provide reliable evidence on the impact of policies or programmes.  

The empirical approach here proposed aims at assessing the effect of the FPR on farms’ 

production choices. Results show that the farms’ response in terms of market reorientation 

tends to be limited to short-run choices while seems questionable for the long-run response 

(investments). The comparison between alternative versions of the PSM and the DID 

estimation approaches indicates that, despite a selection on unobservable bias may still 

persist, PSM estimates seems quite roust while, on the contrary, DID results are very much 

dependent on the years chosen for the before-after treatment comparison and, in general 

terms, more poorly perform. This evidence also suggests that in applying TE techniques to the 

evaluation of CAP measures and reforms, the identification of suitable counterfactuals is 

often overemphasised while finding robust comparisons across years emerges as the most 

challenging issue.     

Results show how, with a long and large enough balanced panel and an appropriate definition 

of the outcome variable, the impact of the reform on farms’ market reorientation can be 

properly estimated. However, while results provide quite robust evidence about the effect of 

the reform, some steps forward could be proposed with respect to the present approach. The 

adopted methodological toolkit seems rich enough not only to check for robustness of results 

by comparing different estimation approaches, but also to push the investigation further by 

refining the estimation approaches, the definition of the treatment and outcome variables (as 

well as of the relevant covariates), and the construction of the balanced panel. For instance, it 

could be argued that some second pillar measures substantially interfere with production 

choices, thus with the FPR TE itself. As a consequence, a more sophisticated articulation of 

treatment groups could be attempted. Actually, the analysis of multiple continuous treatments 

is at the forefront of the current TE econometrics literature (Frölich, 2004; Imbens and 

Wooldridge, 2009) and is well beyond the scope of the present paper. Nonetheless, some 
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methodological solutions accompanied by appropriate matching and estimation techniques 

could be proposed and attempted in future research. 
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Table 1. Distribution of sample farms across the treatment groups and descriptive statistics of the 

respective amount of CAP support (First Pillar)  

Treatment group: Not treated 
Treated 

Whole Sample 
Only First Pillar Both Pillars 

Number of farms (%) 1112 (17%) 3664 (56%) 1766 (27%) 6542 (100%) 

1st Pillar support (2003) (€)     

Avg. amount of support  0 13319 12517 10838 

Standard Deviation 0 75765 53609 56903 

Coefficient of Variation (CV) 0 5.69 4.28 5.25 

Minimum 0 0 0 0 

Maximum 0 2205000 2004153 2205000 

1st Pillar support (2004) (€)     

Avg. amount of support  0 14698 14641 12184 

Standard Deviation 0 71779 41462 51391 

Coefficient of Variation (CV) 0 4.88 2.83 4.22 

Minimum 0 0 0 0 

Maximum 0 2062500 616554 2062500 

1st Pillar support (2005) (€)     

Avg. amount of support  0 14823 15894 12592 

Standard Deviation 0 67897 47025 50719 

Coefficient of Variation (CV) 0 4.58 2.96 4.03 

Minimum 0 0 0 0 

Maximum 0 1539952 686356 1539952 

1st Pillar support (2006) (€)     

Avg. amount of support  0 11220 12425 9638 

Standard Deviation 0 56237 53801 46019 

Coefficient of Variation (CV) 0 5.01 4.33 4.77 

Minimum 0 0 0 0 

Maximum 0 1296061 1078351 1296061 

1st Pillar support (2007) (€)     

Avg. amount of support  0 14978 15671 12619 

Standard Deviation 0 69993 43941 51060 

Coefficient of Variation (CV) 0 4.67 2.80 4.05 

Minimum 0 0 0 0 

Maximum 0 1635650 584075 1635650 
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Table 2. Sample averages of the outcome variables over treatment groups (standard deviation in 

parenthesis) 

Treatment group: Not treated 
Treated 

Whole Sample 
Only First Pillar Both Pillars 

Outcome variables:     

1
y  (distance index)     

2007 vs. 2003 
0.169 

(0.435) 
0.505 

(0.653) 
0.780 

(0.920) 
0.522  

(0.688) 

2004 vs. 2003 
0.084  

(0.322) 

0.469  

(0.671) 

0.756 

(0.998) 

0.481  

(0.700) 

2005 vs. 2004 
0.096  

(0.311) 
0.157  

(0.342) 
0.251 

(0.417) 
0.172  

(0.357) 

2006 vs. 2004 
0.092  

(0.316) 

0.177  

(0.379) 

0.186 

(0.385) 

0.165  

(0.370) 

2006 vs. 2005 
0.096  

(0.311) 
0.159  

(0.339) 
0.273 

(0.464) 
0.179  

(0.368) 

2007 vs. 2006 
0.054  

(0.249) 

0.123  

(0.305) 

0.112 

(0.300) 

0.108 

 (0.294) 

2
y  (distance index)   

 
 

2007 vs. 2003 
0.006 

(0.014) 
0.016 

 (0.019) 
0.019 

(0.021) 
0.015  

(0.019) 

2004 vs. 2003 
0.003  

(0.009) 

0.011  

(0.016) 

0.012 

(0.020) 

0.010  

(0.016) 

2005 vs. 2004 
0.004  

(0.011) 
0.014  

(0.018) 
0.020 

(0.023) 
0.014  

(0.019) 

2006 vs. 2004 
0.005  

(0.012) 

0.018 

(0.019) 

0.019 

(0.021) 

0.016  

(0.020) 

2006 vs. 2005 
0.004  

(0.010) 
0.013  

(0.018) 
0.019 

(0.022) 
0.013  

(0.019) 

2007 vs. 2006 
0.007  

(0.012) 

0.020  

(0.016) 

0.021 

(0.019) 

0.018  

(0.016) 

3
y  (in €)   

 
 

2007 vs. 2003 
-20477 

(179122) 
-7998 

(132044) 
-615 

(147010) 
-8126 

(171088) 

2004 vs. 2003 
-8862 

 (163765) 

-2524  

(88680) 

11407 

(136897) 

160  

(141463) 

2005 vs. 2004 
-4787  

(35010) 
697 

 (115710) 
-1643 

(117391) 
-867 

 (117835) 

2006 vs. 2004 
-7567  

(53784) 

-3097  

(94343) 

-4597 

(115999) 

-4262  

(120295) 

2006 vs. 2005 
-2779  

(37919) 
-3974  

(71351) 
-2586 

(116160) 
-3396  

(88566) 

2007 vs. 2006 
-4048  

(35240) 

-2378  

(106188) 

-7423 

(119181) 

-4024 

(103035) 

4
y  (in €)   

 
 

2007 vs. 2003 
-0.401 
(1.533) 

-0.267 
(1.633) 

-0.283 
(2.363) 

-0.294 
(2.083) 

2004 vs. 2003 
-0.101  

(1.193) 

0.003  

(1.757)  

-0.083 

(1.790) 

-0.038  

(1.883) 

2005 vs. 2004 
0.044  

(3.882) 

-0.044  

(2.081) 

-0.033 

(2.166) 

-0.026  

(2.410) 

2006 vs. 2004 
-0.172  

(1.213) 

-0.079  

(2.850) 

0.057 

(3.262) 

-0.058  

(3.223) 

2006 vs. 2005 
-0.216  

(3.914) 

-0.035  

(1.960) 

0.097 

(2.863) 

-0.030  

(3.076) 

2007 vs. 2006 
-0.128  

(0.958) 

-0.191  

(2.491) 

-0.260 

(2.982) 

-0.199  

(2.903) 
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Table 3. Sample averages of the pre-treatment variables over treatment groups (standard deviation in 

parenthesis) 

Treatment group: Not treated 
Treated 

Whole Sample 
Only First Pillar Both Pillars 

Pre-treatment variables (X):     

AGE (of the holder) (years) 
51.85 

(13.84) 
53.95 

(15.05) 
50.05 

(14.07) 
52.54 

(14.71) 

Altitude (ALT) (m) 
154.28 

(192.11) 

234.95 

(215.60) 

405.33 

(359.34) 

267.24 

(273.79) 

Annual Working Units (AWU) 
2.79 

(6.22) 
1.90 

(2.71) 
2.38 

(3.30) 
2.18 

(3.60) 

Economic Size (ES) (classes) 
6.41 

(2.19) 

5.85 

(2.42) 

6.68 

 (1.90) 

6.17 

(2.29) 

Fixed Costs (on Net Value Added) (FC) 
2.79 

(36.41) 
2.12 

(17.95) 
1.18 

(9.27) 
1.98 

(20.00) 

Horse Power (HP) 
93.23 

(129.58) 

173.94 

(206.31) 

215.68 

(260.50) 

171.49 

(217.15) 

Livestock Units (LU)  
5.73 

(50.53) 
41.20 

(214.38) 
58.09 

(277.26) 
39.73 

(220.44) 

Utilized Agricultural Area (UAA) (ha) 
7.50 

(24.34) 

30.52 

(63.46) 

53.16 

(85.15) 

32.72 

(67.93) 

Type of Farm (TF) (4-digits)
a  

3211 
(fruits) 

1310 
(arable crops) 

4110 
(dairy) 

1310 
(arable crops) 

Type of Farm (reclassified) (TF_R) 
5.07 

(1.67) 

3.40 

(1.59) 

3.31 

(1.40) 

3.66 

(1.65) 

Pillar II support dummy (RDP) 
0.00 

(0.00) 
0.00 

(0.00) 
1.00 

(0.00) 
0.28 

(0.15) 
a

 In this case the Table reports the higher frequency class 

 

Table 4. Propensity Score (PS): binomial probit estimation
a
 

Pre-treatment variables (X): Coefficient estimate (standard error in parenthesis): 

Constant term 
1.805*   

 (0.1283) 

AGE (of the holder) (years) 
0.0039*  

(0.0015) 

Altitude (ALT) (m) 
0.0009* 

 (0.0001) 

Annual Working Units (AWU) 
-0.0503*   

 (0.0076) 

Economic Size (ES) (classes) 
-0.0407* 

 (0.0110) 

Fixed Costs (on Net Value Added) (FC) 
-0.0006 

 (0.0006) 

Horse Power (HP) 
0.0020* 

 (0.0002) 

Livestock Units (LU)  
0.0022* 

 (0.0003) 

Utilized Agricultural Area (UAA) (ha) 
0.0010* 

 (0.0001)    

Type of Farm (reclassified) (TF_R) 
-0.3011*   

 (0.0148) 
a Balancing condition satisfied on the common support (6528 observations) at the 0.01 significance level 

*Statistically significant at 0.05 level  
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Table 5. ATT estimates for the four outcome variables (standard errors in parenthesis)
a,b

  

Outcome  

variables: 
Stratification Matching 

Nearest Neighbour 

Matching 
Radius Matching

c
 Kernel Matching 

1
y  

0.371*  

(0.052) 

0.429*  

(0.048) 

0.426*  

(0.021) 

0.380*  

(0.037) 

2
y  

0.010*   

(0.001) 

0.010*   

(0.001) 

0.010*   

(0.001) 

0.009*   

(0.001) 

3
y  

10525   

(10267) 

6208b     

(16141) 

8468     

(12182) 

13156   

(13292) 

4
y  

0.061  

(0.097) 

0.064  

(0.108) 

0.148  

(0.073) 

0.092  

(0.085) 
a All estimates are performed on the common support (6528 observations) 
b Bootstrap standard errors obtained with 1000 replications 
c Radius = 0.05  

*Statistically significant at 0.05 level  

 

Table 6. Rosebaum bounding approach to the analysis of deviations from the CIA: robustness of the 

PSM estimated ATT
 
to hidden bias 

a
   

Outcome  

variables: 

 Overestimation of TEs Underestimation of TEs 

Γ 

Wilcoxon signed 

ranked test - 

significance level 

Upper bound 

Hodges-Lehmann 

point estimate 

Wilcoxon signed 

ranked test - 

significance level 

Lower bound 

Hodges-Lehmann 

point estimate 

1
y  1 0 - 0 - 

 2 < 0.001 0.092 < 0.001 0.681 

 3 < 0.001 0.019 < 0.001 0.851 

 4 0.4534 -0.000 < 0.001 0.948 

2
y  1 0 - 0 - 

 2 < 0.001 0.007 < 0.001 0.013 

 3 < 0.001 0.000 < 0.001 0.020 

 4 0.821 -0.000 < 0.001 0.026 

3
y  1 0.981 - 0.981 - 

 2 1 -14121.5 < 0.001 10053 

4
y  1 < 0.001 - < 0.001 - 

 2 1 -0.269 < 0.001 0.461 
a Tests and calculations refer to single Nearest Neighbour Matching PSM estimation 

 

Table 7. Deviations from the CIA: sensitivity analysis as effect of different kinds of confounder on 

PSM ATT estimates (standard errors in parenthesis)
a,b
   

 Calibrated confounder  

(dummy ES>6)c 

Simulated confounder 

 d = 0.3, s = 0.6 d = 0.6, s = 0.75 

Outcome 

variables: 
ATT 

Outcome 

Effect 

Selection 

Effect 
ATT  

Outcome 

Effect 

Selection 

Effect 
ATT  

Outcome 

Effect 

Selection 

Effect 

1
y  

0.385*       

(0.064) 
1.181 0.823 

0.305*       

(0.090) 
3.645 17.945 

-0.017     

(0.142) 
23.100 46.466 

2
y  

0.010*       

(0.002) 
1.098 0.712 

0.008*       

(0.003) 
3.680 17.239 

0.001       

(0.005) 
23.068 41.829 

3
y  

-522 

(20268) 
0.979 0.868 

7656 

(37734) 
3.625 16.867 

-12708 

(25996) 
21.953 40.827 

4
y  

0.070 

(0.172) 
1.220 0.822 

0.107 

(0.202) 
3.526 16.285 

-0.320 

(0.206) 
21.528 41.059 

a Sensitivity analysis refers to Nearest Neighbour Matching PSM estimation and is performed on the common support  
b Bootstrap standard errors obtained with 1000 replications 
c This confounder implies d = 0.05 and s = -0.05 

*Statistically significant at 0.05 level  
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Table 8. Unconditional and conditional DID estimates (standard errors in parenthesis)
a
  

Outcome  

variables: 

DID CDID PSM-DID b 

(1) (2) (1) (2) (1) (2) 

1
y  

-0.376*  

(0.017) 

0.022* 

(0.010) 

-0.379* 

(0.018) 

0.023* 

(0.011) 

-0.313* 

(0.069) 

0.026* 

(0.011) 

2
y  

0.004*   

(0.001) 

0.001   

(0.001) 

0.004* 

(0.001) 

0.001   

(0.001) 

0.004* 

(0.001) 

0.000 

(0.001) 

3
y  

-6033   

(5471) 

3829  

(2881) 

-5807 

(5996) 

3853 

(3955) 

-18356 

(9800) 

-1154 

(5744) 

4
y  

-0.154  

(0.108) 

0.219* 

(0.076) 

-0.151 

(0.130) 

0.219* 

(0.076) 

-0.346 

(0.187) 

0.085 

(0.161) 
a Bootstrap standard errors obtained with 1000 replications 
b Kernel-based PSM  

(1) Baseline= 2004-03, Follow-up = 2005-04 

(2) Baseline= 2007-06, Follow-up = 2007-04 

*Statistically significant at 0.05 level  

 

Table 9. Placebo test: DID estimates across two baselines 2004-03 and 2007-06 (standard errors in 

parenthesis)
a
  

Outcome  

variables: 
DID CDID PSM-DID b 

1
y  

-0.401*  

(0.026) 

-0.398*  

(0.025) 

-0.313*  

(0.031) 

2
y  

0.005*   

(0.001) 

0.004*   

(0.001) 

0.003* 

(0.001) 

3
y  

-11391   

(6173) 

-10477  

(6168) 

-18004 

(15318) 

4
y  

-0.151  

(0.122) 

-0.148  

(0.121) 

-0.145 

(0.131) 
a Bootstrap standard errors obtained with 1000 replications 
b Kernel-based PSM  

*Statistically significant at 0.05 level  

 

Table 10. Quantile treatment effects (QTT): PSM-DID estimates (standard errors in parenthesis)
a,b

  
 (1) (2) 

Quantiles: 25% 50% 75% 25% 50% 75% 

Outcome  

variables: 
      

1
y  

-0.001* 

(0.000) 

-0.072* 

(0.006) 

-0.903* 

(0.027) 

0.000  

(0.000) 

0.008* 

(0.001) 

0.048* 

(0.012) 

2
y  

0.000 

(0.000) 

0.014* 

(0.002) 

0.015* 

(0.002) 

-0.012 

(0.008) 

0.000 

(0.001) 

0.022* 

(0.001) 

3
y  

-159 

(1232) 

80.9  

(283) 

160  

(130) 

4728  

(1050) 

1936  

(534) 

263  

(241) 

4
y  

-0.030 

(0.051) 

0.003 

(0.013) 

0.058  

(0.046) 

0.040 

(0.048) 

0.073* 

(0.020) 

0.107*  

(0.023) 
a Bootstrap standard errors obtained with 1000 replications 
b Kernel-based PSM  

(1) Baseline= 2004-03, Follow-up = 2005-04 

(2) Baseline= 2007-06, Follow-up = 2007-04 

*Statistically significant at 0.05 level  
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Figure 1. Distribution (%) of the total support across CAP measures (significant measures: >1% on total support) within the sample (Table A2) 

2003 

 

2004 

 

2005 

 

2006 

 

2007 

 

Total number of payments: 

2003 = 16892 (2,6 per farm on avg.). Total support = 82,8 mln € (12700  € per farm on avg.) 

2004 = 18864 (2,9 per farm on avg.). Total support = 92,4 mln € (14100  € per farm on avg.) 

2005 = 20203 (3,1 per farm on avg.). Total support = 97,2 mln € (14900  € per farm on avg.) 

2006 = 10092 (1,5 per farm on avg.). Total support = 62,4 mln € (9600 € per farm on avg.) 

2007 = 17430 (2,7 per farm on avg.). Total support = 96,3 mln € (14700  € per farm on avg.) 
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ANNEX  

 
Table A1 - Abbreviations of policy measures in Figure 1 

AC01 Accompanying measure: integrated agriculture (2078/92) 

AC02 Accompanying measure: organic agriculture (2078/92) 

CMO01 Common Market Organization: arable crops’ compensatory payment (1251/99 and others) 

CMO02 Common Market Organization: arable crops’ supplementary payment (1251/99) 

CMO05 Common Market Organization: other crops  

CMO06 Common Market Organization: bovine special premium (1254/99) 

CMO07 Common Market Organization: suckler cow premium (1254/99)  

CMO13 Common Market Organization: sheep premium (3013/89) 

CMO15 Common Market Organization: fruits - investments 

CMO16 Common Market Organization: durum wheat special quality premium (1782/03) 

CMO21 Common Market Organization: dairy premium (1782/03) 

CMO23 Common Market Organization: supplementary quality aid for arable crops (art.69, 1782/03) 

MOD01 Modulation: supplementary payment (art.12 1782/03) 

RDP01 Rural Development Plan: investments in agricultural holdings 

RDP02 Rural Development Plan: settlement of young farmers 

RDP03 Rural Development Plan: training  

RDP06 Rural Development Plan: low environmental impact 

RDP07 Rural Development Plan: organic farming 

RDP08 Rural Development Plan: breeds in danger of being lost to farming 

RDP13 Rural Development Plan: afforestation of agricultural land 

RDP42 Rural Development Plan: compensatory payment for less favour areas 

REG01 Regional measure: other payments for livestock activities  

REG08 Regional measure: rehabilitation and prevention for livestock activities  

SFP01 Single Farm Payment (1782/03) 

SFP02 Mandatory set-aside 

 



 
 
 
  
 
   

 

Table A2 - Type of Farm (TF) reclassification (TF_R) 

TF 2000 4-digit 
Classification (TF)  

TF reclassified (TF_R) 
TF 2000 4-digit Classification 

(TF) (continues) 
TF reclassified (TF_R) 

(continues) 
1310 1 5011 6 

1320 1 5012 6 

1330 1 5013 6 

1410 2 5021 6 

1420 2 5022 6 

1430 2 5023 6 

1441 2 5031 6 

1442 2 5032 6 

1443 2 6010 5 

2011 7 6020 5 

2012 7 6030 5 

2013 7 6040 5 

2021 7 6050 5 

2022 7 6061 5 

2023 7 6062 5 

2031 7 7110 6 

2032 7 7120 6 

2033 7 7210 6 

2034 7 7220 6 

3110 4 7230 6 

3120 4 8110 5 

3130 4 8120 5 

3141 4 8130 5 

3143 4 8140 5 

3211 4 8210 5 

3212 4 8220 5 

3213 4 8231 5 

3220 4 8232 5 

3230 4   

3300 4   

3400 4   

4110 3   

4120 3   

4210 3   

4220 3   

4310 3   

4320 3   

4410 3   

4420 3   

4430 3   

4440 3   

  
 
 


