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Nutrition smoothing: Can access to towns and cities protect children against poor 

health conditions at birth?   
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Seasonal fluctuations in early life circumstances can be associated with later differences in 

health outcomes. Other evidence finds that access to markets and services can help rural 

households improve their well-being. This study links these two phenomena, using spatial 

diversity across the Democratic Republic of Congo (DRC) to investigate whether proximity to 

towns confers resilience against seasonal determinants of health. To identify a potentially causal 

effect, we use the random component of birth timing relative to the intensity of seasonal climate 

fluctuations and households’ distance to the nearest town. We find that that children in 

households closer to towns have significantly smaller impact of their birth timing on their 

subsequent heights and risk of death. The protective effect of towns could involve a variety of 

mechanisms such as consumption smoothing, disease cycles, health services and public 

assistance. Future work might find ways to distinguish among these channels using additional 

data.  

 

 

 

 

 

 

 

 

 

 

 



2 

 

1. INTRODUCTION 

This study investigates the hypothesis that access to towns and cities can help protect rural 

children against poor health conditions before and soon after birth. Since urbanization, household 

location, and rural infrastructure cannot be assigned experimentally, we turn to other sources of 

variation in children’s exposure to adversity. Our outcomes of interest are each child’s mortality 

risk, height, and weight, which collectively are indicators of past health conditions, as well as 

predictors of future well-being. Our setting is the Democratic Republic of Congo (henceforth 

DRC), whose vast expanse generates extreme variation in household’s degrees of rural isolation, 

and also variation in the severity of seasonal cycles. We use the randomness of a given child’s 

birth month to measure their exposure to seasonal risk factors, in a spatial difference-in-

differences approach designed to estimate the impact of households’ access to towns and cities 

on their resilience against typical seasonal cycles. Spatial difference-in-differences has 

historically been used in economic valuation studies, for example assessing the value of greening 

vacant urban land (Heckert and Mennis 2012), or estimating the change in land values following 

the intrusion of an invasive species (Horsch and Lewis 2009). The use of this analytical method 

can also be used to assess the causal influence of location on child health, addressing issues of 

unobservable factors that influence child health and are correlated across space, and correlated 

with observable risk factors as well.  

 

Seasonality in birth outcomes, child health, and farmer well-being has been observed around the 

world, including most recently in Brazil, where negative rainfall shocks have adverse 

consequences for birth outcomes (Rocha and Suares 2015). Turning to outcomes of interest for 

staple-crop farmers, outcomes which are highly related to child health in these low-income 

settings, another recent study in Indonesia found that a storage program increased non-food 

consumption, reducing seasonal risks (Basu and Wong 2015). Both Brazil and Indonesia are 

similar to the DRC in terms of vast sizes, locations in relation to the equator, predominant 

ecosystems, and high proportions of people with agricultural livelihoods. Despite the proximity 

of these three large countries to the equator, where climates and weather can be relatively 

constant throughout the year, there are still measurable seasonal risks for various outcomes 

associated with typical variation in climatic conditions.  
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Households could use the services of a nearby town or city to buy or sell goods, visit the health 

clinic, or seek solutions for a livestock disease or pest infestation. This study does not prescribe 

what households should do or actually do with access to a town, only that they can do what they 

choose more easily than if the town were less accessible. Variation in access to towns for farm 

families may help explain why we sometimes observe that increases in income doesn’t 

necessarily improve health outcomes. For many of those living in remote areas and working on 

family farms, the lack of services and opportunity to trade may be the limiting factor for health 

improvement, in contrast with a lack of income being the limiting factor. One example of such 

an environment is the DRC, a country rich in natural resources and agricultural potential, where 

nutrition indicators and standards of living have steadily declined over the past few decades and 

are now among the worst in the world (Ulimwengu et al. 2012: ICF International 2014). The vast 

size, lack of roads, and weak institutions of DRC limit market integration, which causes 

substantial variation in local agricultural conditions across space. In the DRC and in other 

settings, infrastructure and other investments to improve rural households’ access to markets and 

public services could increase their productivity and welfare, as well as allow for more effective 

nutrition smoothing across the year (Barrett et al. 2001; Dercon 2002). Nutrition smoothing in 

the face of adverse shocks is of increasing interest, especially when it is possible to compare 

groups of children using a natural experiment study design, as done by Giles and Satriawan 

(2015) who found that a supplemental nutrition program protected children exposed to the 

financial crisis of Indonesia from 1997 to 1998. If a household is able to smooth their nutrition 

outcomes across the year, this is highly reassuring. Consumption smoothing is a necessary 

condition for nutrition smoothing, but nutrition smoothing also indicates a deeper level of 

resilience which includes the ability to safeguard against disease cycles.  

 

Our analytical method is spatial difference-in-differences, in three dimensions. First, we use 

climate data to identify regions with and without seasonal fluctuations. Next, we use the 

randomness of birth timing to identify exposure to seasonal risk where it exists. Finally, we use 

remoteness of households to identify whether access to towns confers resilience for children born 

in those places at riskier times. We use continuous variables for diagnostic regressions and 

exploratory exercises, then aggregate observations into dichotomous categories, add mother and 

community fixed effects and conduct various robustness checks against our identification 
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strategy to address concerns about endogeneity and correlated errors as discussed in Bertrand et 

al. (2004).  

 

One contribution of the study is to demonstrate the use of spatial difference-in-differences for 

child health data, exploiting randomness in birth timing against differences in exposure across 

space to estimate the average effect of exposure using a repeated cross-section of household 

surveys, implemented twice, in 2007 and in 2013. This approach treats each survey location as 

spatially repeated cross-sections, invoking a “parallel trends” assumption to estimate the 

magnitude of exposure within each area. DRC has many unique features driving our results, but 

the method may have broad applicability in other settings with limited agricultural production 

data available.  

 

The outcomes we consider are mortality, as well as z scores of both height-for-age (HAZ) and 

weight-for-height (WHZ) for those children who were alive at the time of each survey. By 

definition, for a population of healthy children the mean z score is zero at every age, but for 

populations at risk of shortfalls in height (stunting) and weight (wasting), the onset and duration 

of stunting and wasting follows characteristic time paths from month to month (Victora et al. 

2010). To avoid bias introduced by when children are measured in relation to survey 

implementation, we follow Cummins (2013) and use a flexible age spline to control for the 

timing of observation. For measuring market access, we use the Euclidean distance from each 

survey site to the nearest major town. Finally, we use mother and community fixed effects, 

clustered standard errors by survey site, and grid-cells as our spatial units of observation when 

aggregation is necessary, such as for the civil conflict data. The use of grid-cells helps limit 

potential biases associated with endogeneity of administrative boundaries (Masters and 

McMillan 2001). 

 

2. BACKGROUND AND MOTIVATION 

2.1. Living standards and child nutrition on the Democratic Republic of the Congo 

In DRC, approximately 75% of the population doesn’t consume sufficient calories for a healthy 

and active life (FAOSTAT 2014; Grebmer et al. 2011; WHO 2000), and the country has some of 

the world’s highest rates of child stunting (45.8%), wasting (14%), and underweight (28.2%) 
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(UNICEF 2011). These data reflect both longstanding poverty and recent disruptions associated 

with a protracted civil war:  the Food and Agriculture Organization (FAO) estimates that per-

capita food supply declined from 2595 kcal per person per day in 1994 to 1833 kcal per person 

per day in 2009 (FAOSTAT 2014), and various other indicators are worsening over time in 

contrast to encouraging trends in neighboring countries (Kandala et al. 2011; Tollens 2003).  

 

As in most of Africa, the majority of DRC’s population is agricultural, and arable land per 

person or per agricultural worker have declined sharply in recent decades (FAOSTAT 2014). 

The volume and value of crops commonly grown in DRC, such as cassava, sugar cane, maize, 

and plantains has been declining since 1997 (FAOSTAT 2014), and the lack of infrastructure or 

markets and services ensures that many households cannot effectively smooth consumption or 

protect children against adverse health shocks.   

 

2.2. Environmental variability and child health in other settings 

Variation in environmental conditions has opened countless opportunities to study the causes of 

differences in health and other child development outcomes (Angrist et al. 2001; DiNardo 2008). 

The substantial body of literature in this area uses severe environmental shocks such as a 

drought, famine, or war, as well as seasonal or other more subtle variations to identify exposed 

children (Akresh et al. 2011; Akresh et al. 2012; Almond 2006; Banerjee et al. 2007; Bundervoet 

et al. 2009; Chay and Greenstone 2003; Ferreira and Schady 2009; Godoy et al. 2008; Hoddinot 

and Kinsey 2001; Maccini and Yang 2009; Minoiu and Shemyakina 2012; Skoufias and Vinha 

2012; Yamano et al. 2005). The impacts of environmental conditions, whether extreme shocks or 

typical variations, on child health are especially of interest because of the potential long-term 

consequences affecting an individual’s risk of disease, attained height, and labor productivity 

(Alderman et al. 2006; Almond and Currie 2011; Barker 2008; Barker 1990; Black et al. 2008; 

Deaton 2007; Dewey and Begum 2011; Martorell 1999).  

 

A key feature of child development is its sensitivity to environmental shocks at critical ages and 

developmental periods (Shrimpton et al. 2001; Victora et al. 2010; Aguero and Deolalikar 2012). 

Much of the variance in later outcomes can be traced to early events, and a given nutritional 

deficit or illness may have greater effect when it occurs earlier in life (e.g. Yamano et al. 2005, 
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Hoddinot and Kinsey 2001). These timing effects may be such that birth timing and hence age at 

which children were exposed to a given shock can be used to measure differences in resilience or 

vulnerability as in Tetens et al. (2003), or Maccini and Yang (2009) who found that boys were 

protected more than girls from the harmful effects of rainfall shocks in Indonesia.   

 

Many studies addressing how people protect themselves from environmental harm use a direct 

measure of specific climatic conditions, such as deviation from normal rainfall at the time of a 

child’s birth. For this study we have no direct observations of climate shocks. We are concerned 

with seasonal variations that are entirely predictable, and yet people may be unable to avoid their 

negative impact. One reason could be that so many factors move together:  during the hungry or 

lean season, food supplies from the previous harvests dwindle, gainful employment may be more 

difficult to find, disease incidence often increases, and maternal labor time and calorie 

expenditure may rise (Buckles and Hungerman 2013; Panter-Brick 1997).   

 

Despite the predictability of seasonal shocks, Gambian children born at unhealthy times have 

systematically lower weight-for-age and height-for-age than others (Gajigo and Schwab 2012), 

and have increased risk of mortality as young adults (Moore et al. 2004). Seasonal patterns of 

this type can be extremely robust, for example even after controlling for within-mother and 

within-community characteristics by comparing siblings and children residing in the same survey 

cluster (Currie and Schwandt 2013). A wide variety of health outcomes are typically affected at 

once, such as age of gestation at birth and birth weight (Rayco-Solon et al. 2005; Chodick et al. 

2009), and the timing of harm may remain unknown since annual cycles hit before conception, 

once during pregnancy and again each year of the child’s life. The worst time to be born is an 

empirical question, and is likely to depend on the type of shock and the circumstances of the 

household. One of the few biological constraints is that total energy demands on the mother are 

typically greatest in the last trimester of pregnancy, at birth and while breastfeeding (Chodick et, 

al. 2009). This could help explain why children born during lean seasons may be most 

disadvantaged, as the harm they experience just before conception and around 0, 12 and 24 

months of age outweighs the benefits of favorable conditions in mid-pregnancy and around 6, 18 

and 30 months of age. 
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2.3. Market access and child health 

The goal of this paper is to ask whether access to towns and cities helps rural households escape 

seasonal health shocks. We build on the rich body of literature investigating the relationships 

between market access and consumption smoothing (Morduch 1995; Foster 1995), particularly 

Burgess and Donaldson (2010) who show that the expansion of railroads in India had a 

protective effect in maintaining real incomes and reducing mortality in the face of environmental 

shocks. The present study is a further test of the hypothesis from Burgess and Donaldson (2010), 

in a different setting and with heights and weights as outcomes in addition to mortality. 

Households that rely on agriculture for income and food may be most susceptible to climate 

variation and most unable to smooth consumption across seasons (Jensen 2000; Gajigo and 

Schwab 2012; Rabassa et al, 2012; Thai and Falaris 2014). Anthropological evidence from Peru 

suggests that these fluctuations may be greatest for the most isolated rural households (Pomeroy 

et al. 2014), but in other settings such as Bangladesh, even city-dwellers may experience 

seasonal shifts in food security and child weight-for-age (Hillbruner and Egan 2008).  

 

For our study, an important feature of the DRC is that children’s average health is not necessarily 

worst where seasonal variation is most extreme. For example, being geographically isolated 

could actually benefit households and children, as isolation and rugged terrain may protect them 

from violence in more populated or wealthy areas (Nunn and Puga 2012; Le Billon 2001). 

Furthermore, being located around the equator may provide relatively uniform weather and low 

seasonality, but also impose worse disease conditions than places with more seasonal 

fluctuations. Our research design is intended to take account of these factors, building on the 

diverse literature described above to isolate seasonal fluctuations from other factors and test for a 

protective effect of market access. 

 

3. METHODS 

3.1. Data 

To conduct this study, we merged spatial and temporal data on child health, household 

characteristics, roads, terrain, land cover, towns, and civil conflict incidents across DRC. We 

used a one degree by one degree grid cells as spatial units, which avoids the endogeneity 

problems that may arise from using administrative boundaries as spatial units of observation 
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(Harari and La Ferarra 2013; Masters and McMillan 2001). Each of these grid cells is 

approximately 69 square miles in size, an area which varies only slightly across the country 

because distances between degrees of longitude and latitude are relatively more constant at lower 

latitudes closer the equator than at higher latitudes closer to the poles.  

 

For data on child health and household characteristics, we utilized DRC’s Demographic and 

Health Survey (DHS), which was conducted in 2007 and again in 2013. The DHS are nationally 

representative surveys, and cover N=27,724 children born of women participating in the 2007 

survey and N=41,917 children born of women participating in the 2014 survey (ICF International 

2014). The heights and weights of a sub-sample of children for each of the survey rounds were 

measured, for N=2,931 children in 2007 and N=5,504 children in 2013. Observations where the 

families had moved in the previous 6 years were dropped (n=4,060), to ensure that household 

market access and child exposure to conflict were measured as accurately as possible, including 

during the mother’s pregnancy with the child. Observations flagged by DHS for biologically 

implausible measurements (where the absolute value of HAZ or WHZ was greater than 5) were 

also dropped (n=3,302). This left N=69,641 births and N=8,435 measured children across both 

survey rounds to conduct our study.  

 

We controlled for exposure to civil conflict because violence is widespread and endemic in 

DRC. The conflict data are from the Armed Conflict Location and Event Dataset (ACLED), 

which details specific incidents of civil insecurity between 1997 and the present day for DRC 

and other countries (Raleigh et al. 2010). Events which occurred between 2001 and 2013 were 

retained for this project to correspond first with the oldest children surveyed for the 2007 DHS 

round during their mother’s pregnancies, up until births that took place during the year of the 

most recent 2013 DHS round. The ACLED data are geocoded daily incident reports. Therefore, 

each day that an incident (such as a battle) continues is counted as an additional event. We 

aggregated the incident reports into the number of events by month in each one-degree grid cell. 

The events are categorized into eight different types of conflict incidents, including violent and 

non-violent activities (Raleigh et al. 2010). The dataset is designed to provide an accurate picture 

of overall conflict activity in a country, but clearly under-counts incidents in places where people 

are less likely to report them. 
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We used geocoded data on 160 major towns from the Multipurpose Africover Database on 

Environmental Resources (FAO MADE 2014) to assess a survey cluster’s market access. We 

calculated the Euclidean distances from the centers of each DHS survey cluster to the centers of 

each nearest major town point location, using ArcGIS 10.0 (ESRI 2013). ‘Proximity’, defined as 

inverse distance (km-1) enters the regressions as our measure of access to all kinds of markets 

and public services.  

 

3.2. Nutrition outcomes for children 

The outcomes of interest are mortality (a binary indicator of whether the child was alive at the 

time of the survey), height-for-age z scores (HAZ) and weight-for-height z scores (WHZ) for 

children under the age of 5 years. The z scores were calculated by Measure DHS using WHO 

reference values for the distribution of heights and weights in a healthy population at each age 

and sex (Measure DHS 2008).  There is mounting evidence that shortfalls in height (stunting) 

and weight (wasting) share common causes (Martorell and Young 2012), and may reflect a wide 

variety of health insults which may have disrupted the child’s immune function (Raqib et al. 

2007), gut microbiome (Gordon et al. 2012; Kau et al. 2011) or other influences on healthy 

growth. Food availability can also matter, but a wide variety of factors at every stage of child 

development can also lead to systematic differences in mortality risk, heights and weights 

attained by children who were born in different seasons, even in the presence of sufficient calorie 

intake. 

 

3.3. Identification strategy 

The naturally occurring random variation we exploit is the child’s month of birth. We 

hypothesize that this quasi-random variation influences survival, heights, and weights only in 

regions with seasonal rainfall, and does so less where households are closer to towns and cities. 

For this spatial difference-in-differences design, we also control for mother fixed-effects in 

mortality regressions and community fixed-effects in height and weight regressions, to account 

for time-invariant unobservable attributes that cannot be included. Mother fixed-effects cannot 

be included in height and weight regressions because typically, one child per mother is measured 

for the anthropometry sub-sample. Thus, comparing the heights and weights of siblings is not 
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possible. However, using community fixed-effects provides an adequate alternative to control for 

other unobservable factors which may influence health. Using fixed-effects, we effectively 

compare many pairs of siblings and children living in the same survey cluster, allowing us to 

reduce the effects of unobservable heterogeneity across mothers and communities. To account 

for spatially correlated errors, we pool the children by risk exposure into dichotomous groups 

based on birth season, distance to the nearest town, and distance from the equator. This strategy 

mirrors one of the suggested approaches for addressing auto-correlated errors across time in 

traditional difference-in-differences, as described in Bertrand et al. (2004). 

 

Our analytical approach is illustrated in Table 1, showing how each subsample is classified in 

terms of exposure to seasonal risk and the potentially protective effect of market access.   

 

     [Insert Table 1 about here] 

 

As shown by the first two rows of Table 1, our first hypothesized effect is that, in regions with 

distinct seasons, being born in one half of the year is associated with worse outcomes than being 

born in the other half. Inferring a causal effect of seasons relies on randomness of the child's 

birth month. We test that identifying assumption following the presentation of our main results, 

and find that other influences on heights and weights are not driving selection into the season 

with adverse outcomes.   

 

Our main hypothesis, shown in the third row of Table 1, is that among children born in places 

and at times where they are vulnerable to seasonal risk, being closer to towns is associated with 

less harmful outcomes. Here, inferring a causal effect relies on a “parallel trends” assumption 

that seasonal risk factors would have been similar across households if not for their differences 

in distance to town. That identifying assumption is itself untestable, but we can show robustness 

of the design using a variety of placebo regressions. In these falsification tests, a valid 

specification would show no effect, and any significant result would be an artifact of the method. 

We perform two types of such tests: first in our placebo region where rainfall varies little from 

season to season, and then for placebo outcomes such as maternal education and household 

altitude that are predetermined and cannot have been affected by a child’s birth month.  
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3.3.1. Measuring exposure to seasons 

To accurately capture seasonality in the DRC context and divide the sample into locations with 

more or less variation in rainfall, we used the absolute value of latitude of each DHS cluster’s 

location. Locations closer to the equator have relatively uniform temperature and rainfall 

throughout the year, while locations both north and south of the equator have a more pronounced 

dry “winter” season (World Bank CRU 2014). The country stretches from approximately +5 

degrees north to about -14 degrees south. Our demarcation lines, chosen to divide the sample 

into two roughly equal halves, are at +4 and -4 degrees of latitude. Thus, most of the surveyed 

households who are subject to seasonal fluctuations are in the southern hemisphere, where the 

drier winter season occurs around June-August. Almost 20 percent of our sample, or 13,841 of 

our 69,641 births, are located in the northern hemisphere where the timing of seasons is shifted 

by six months so that winter occurs around December- February. To construct a single variable 

that indicates births in a given season, we define “rain months” to be the calendar month for 

households located in the southern hemisphere,  and shifted 6 months forward for households in 

the northern hemisphere. For example, children born in the calendar month of January are 

recorded as such if in the southern hemisphere, and that month is recorded  as “June” for the few 

children born in the northern hemisphere. These birth months are then aggregated into birth 

seasons, capturing a child’s exposure to similar seasonal conditions anywhere in the country 

using a single variable. 

 

3.3.2. Controlling for age to avoid survey timing effects 

The DHS, like other surveys, are typically implemented in waves at specific times of year. Our 

data were primarily collected in June 2007 and in December of 2013 as detailed in Tables 8a-8b. 

So, children born in earlier months (e.g. in May and in November of the respective survey round 

years) are surveyed at a younger age than those born in later months (e.g. in July or January, 

respectively). Since height and weight z scores vary systematically with age, to avoid artifacts 

due to survey timing we follow Cummins (2013) and control for age using a linear spline 

specification based on the average time path of stunting and wasting actually observed in our 

data. For HAZ, the piecewise linear controls have three splines with knots at 6 months and 22 

months of age, and for WHZ we use two splines with one knot at 12 months of age. The number 
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and location of these splines approximates the nonparametric relationship we observe in the 

DRC data, which is similar to the age effects found in other settings (Victora et al. 2010). 

 

3.4. Econometric specification 

Our primary specification is a fixed effects OLS regression with interaction terms. The mother 

and community fixed-effects absorb unobservable characteristics of mothers and communities in 

our sample, allowing us to compare siblings and children living in the same community who 

were and were not born during dry winters. Standard errors are clustered by survey cluster, of 

which there are 300 in the 2007 survey and 540 in the 2013 survey, for a total of 840 locations.  

 

There are three dependent variables of interest, indicated by Zi on the left-hand sides of the 

equations: a binary indicator of whether the child was alive at the time of the survey, the height-

for-age z score (HAZ) and weight-for-height z score (WHZ). We control for age in months, or 

time elapsed since birth in the case of mortality regressions, (Agei) in piecewise linear form as 

described above, and for child sex (Sexi) defined as 1= male. Birth season for child i (as BSi) 

enters as a binary variable (with 1= births occurring between January through June in the 

southern hemisphere and occurring between July through December in the northern hemisphere). 

The absolute value of latitude for each DHS cluster j is used to stratify the sample between 

children around the equator who face little seasonal variation, and those farther from the equator 

who experience a dry winter season. Household wealth (Hi) enters as a categorical variable 

computed by DHS as quintiles of the national distribution, based on ownership of durable goods 

in the household. To control for civil conflict, we use a continuous measure (Cj) defined as the 

number of conflict fatalities recorded in the child’s grid-cell from their conception over their 

lifetime to the survey date. The underlying civil conflict data span from 2001 to 2013, and cover 

every grid cell in the country.  

 

Household proximity to the nearest major town enters as a binary indicator (Rj) of whether the 

household is relatively remote, with 1= household faces greater distance to access the nearest 

major town. The cut-off was designated as 28.8km based on the median Euclidean distance in 

our sample. The Rj binary variable also enters as part of an interaction with birth season, to 

construct our difference-in-difference specification, where the estimated coefficients on that 
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interaction ( ijETA ˆ ) can be interpreted as the average treatment effect of household remoteness 

on child mortality, heights or weights, given their exposure to the seasonal risk. A negative 

estimated ATE indicates that being located far from town limits households’ ability to protect 

their children from harm, and conversely that proximity helps confer resilience.  

 

The reduced form econometric models are shown below in Equations 1-2.  These estimating 

equations could be derived from a typical health production function where health status at the 

time of survey is a function of current and lagged health inputs, as well as key environmental 

characteristics such as sanitation, disease exposure, and parents’ health and childcare knowledge 

(Rosenzweig and Schultz 1983).  For our empirical purposes, the reduced form model is 

sufficient. The main pathway through which we expect birth season to affect the health 

production function is through the presence of adverse conditions such as low food supply or 

high rates of disease transmission, either of which could affect a child directly or indirectly 

through the mother’s health during the sensitive periods of gestation and infancy. The subscript i 

indexes children, k indexes the linear age splines, and j indexes DHS clusters (household 

locations). i is a stochastic error term with the usual properties, and r are the region fixed 

effects.   

 

Equation 1 is a diagnostic regression using continuous variables and no interaction terms, 

estimated using Ordinary Least Squares (OLS).  In this equation, the absolute value of latitude 

(Latitudej) enters linearly and continuously as degrees, and household remoteness enters 

continuously as proximity to the nearest major town in km-1 (Pj).  Equation 2 is our spatial 

difference-in-difference specification, pooling observations into binary variables for the child’s 

location and birth timing. We split the sample by distance from the equator to construct a 

placebo region where no effect is expected, and estimate the model with region fixed effects to 

account for time invariant regional factors omitted from the model. Standard errors are robust 

and clustered by region to account for potential correlations among respondents who reside in the 

same areas. Management of the spatial data was done in ArcGIS 10 (ESRI 2013), and 

econometric analysis was performed in StataMP 12 (StataCorp 2011).   

 



14 

 

ijiijjii

n

k
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654321

1

  (1) 
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n

k
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54321

1

 (2) 

 

In the results reported below, mother fixed effects are included in the preferred specification 

(Table 6) for the mortality regressions, and community fixed-effects are included in the height 

and weight regressions.  

 

4. RESULTS 

Descriptive statistics for our data are presented in Table 2a, for the whole sample and for each 

sub-sample used in the regressions. There is some variation in these means and standard 

deviations by group, with most children being quite short at a mean HAZ score around -1.5, and 

children in regions with a dry winter are particularly thin with mean WHZ scores around -0.5 

versus -0.2 for children around the equator. Conflict events appear to be more frequent or intense 

for locations closer to the equator. Similar patterns are also seen in Table 2b, which splits the 

descriptive statistics into the 8 groups representing the triple difference-in-differences 

econometric specification as illustrated in Table 1. The first column summarizes the group that is 

protected by their access to nearby towns. The second column summarizes the group which we 

expect to be affected by birth season, since they aren’t protected by access to a nearby town. 

Conflict fatalities are much more prevalent closer to the equator, which may confound results 

because the uniformity of the seasons across the year increases closer to the equator as well. It 

appears also that households closer to town are systematically wealthier, and this is confirmed 

using a two-sample t-test for equality of means (p=0.000, results not tabulated). Thus, in future 

investigations of these data it will be necessary to distinguish between the effects of wealth and 

the effects of proximity to town. The other 6 groups do not show systematic differences in their 

wealth.  

 

    [Insert Table 2 about here] 
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Exploratory t-tests for differences in child mortality, heights and weights across groups are 

shown in Table 3, for effects of the child’s gender, remoteness, and birth season. Mean HAZ and 

WHZ is lower for boy children than for girls, and mean HAZ but not WHZ is lower in remote 

areas compared to other locations. Boys have higher mortality risk, as do children living in 

remote locations. Mean HAZ is also lower for children born during Jan.-June as opposed to 

births during the second half of the year.  

 

[Insert Table 3 about here] 

 

The onset and duration of stunting follows standard age patterns as shown in Figure 1, which 

uses kernel-weighted (Epanechnikov kernel) local polynomial regressions to estimate mean HAZ 

values for each age in months, separated between remote households in areas with seasons 

versus the rest of the sample. The households in remote areas with seasons are expected to be the 

worst group in terms of child outcomes, because the children are exposed to seasons and not 

protected by a close proximity to town. Figure 1 shows that this group does indeed appear to be 

worse off than the rest of the sample. There is a steep decline in HAZ before 24 months of age, 

and then the slope flattens but is still negative. For WHZ the decline ends at around 12 months of 

age, and is followed by catch-up back to near zero by 5 years of age. There does not appear to be 

differences between remote and non-remote households in the weights of their children at the 

time of the survey (charts not shown). Comparing remote versus other households we see no 

significant differences at each month, although the HAZ path is consistently lower and the 

overall difference is significant as shown in Table 3. Figure 2 shows that children in remote areas 

are systematically more likely to have died, and this disparity increases with the time elapsed 

since birth.  

 

[Insert Figures 1-2 about here] 

 

The variation in stunting and mortality by month of birth is shown in Figures 3 and 4, which like 

the previous charts use Epanechnikov kernel weighted local polynomial smoothing to estimate 

mean HAZ and mortality risk values for children born in each month, accounting for the 

inversion of seasons by hemisphere. Figure 3 reveals that the children born in July-December are 
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systematically taller, and that children in remote areas are systematically shorter for each 

different month of birth. Figure 4 shows that the fluctuations in mortality risk by month of birth 

have greater amplitude in remote areas with seasons, and that the children in remote areas with 

seasons are still more likely to have died. These charts provide further evidence that the worst 

group to be in are those who are exposed to seasonal risk but not protected by a nearby town.  

 

[Insert Figures 3-4 about here] 

 

To address the relationship among all our variables, Table 4 presents the results of a diagnostic 

OLS regression to estimate the association between children’s z scores and their age, sex, birth 

order, preceding birth interval, conflict exposure, household wealth, proximity to the nearest 

major town, and birth season. This exercise reveals the characteristic pattern that HAZ and WHZ 

both decline with age, although for HAZ the rate of decline is not significant for the first spline 

covering 0-6 months of age, and WHZ is shown to have recover significantly in the second 

spline after 12 months of age. Risk of death also decreases as more time since birth has elapsed, 

as is expected. Male children have consistently lower z scores and higher risk of mortality. 

Conflict incidents in the grid-cell of a child’s residence have statistically significant associations 

with nutritional outcomes: a negative association with HAZ and a positive association with 

WHZ. Firstborn children are more likely to have survived, and having a short preceding birth 

interval is associated with poorer height and survival outcomes. Conflict exposure is associated 

with an increased risk of death. Household wealth is positively associated with HAZ, but not 

WHZ. Wealth is also positively correlated with survival. Having controlled for these key factors, 

our variables of interest for the difference-in-difference design are not individually significant 

except for the mortality regressions. To obtain a clearer picture of the causal pathways, we need 

to simplify our model and add fixed-effects.  

 

[Insert Table 4 about here] 

 

First, we will present the full triple difference-in-differences specification, where our main 

variable of interest is the triple interaction term indicating a child who was born during January-

June, lives in a location with a dry winter, and lives in a relatively remote location far from town. 
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It turns out that the estimated coefficient on this variable for the triple difference-in-difference 

specification is statistically significant for heights as an outcome. The estimated coefficient on 

the key interaction term is not statistically significant for the other outcomes of interest.  

  

[Insert Table 5 about here] 

 

Results of our preferred difference-in-difference specification (Equation 2) are shown in Table 5.  

Following the research design described in Table 1, this test splits the sample into areas of 

interest with a dry winter season (columns 1 and 3) and the placebo regions with less seasonal 

rainfall variation (columns 2 and 4). Each regression then includes interaction terms between 

season of birth and remoteness, where both are specified as binary variables. 

 

To begin with our control variables, all regressions include fixed effects for mothers (for 

mortality regressions) and communities (for height and weight regressions), and standard errors 

clustered by survey site. Age profiles for HAZ are similar to the diagnostic regression and 

similar in the two regions. Gender differences for mortality, HAZ, and WHZ are also similar to 

the diagnostic regression and across the two regions. Interestingly, in this specification children 

are taller where there are more reported conflicts, but only in the areas without a dry winter. We 

do not control for wealth in this final specification because these effects are perfectly collinear 

with the fixed-effects.  

 

The average treatment effect of being remote when exposed to seasons is the estimated 

coefficient on the interaction term between them. Looking first at the treatment regions (columns 

1, 3, and 5), the average treatment effect of household remoteness is statistically significant for 

survival and heights, but only in the locations with a dry winter season. The average treatment 

effect of remoteness is not significant for weights as an outcome. The effects for survival and 

heights are quite large in magnitude, with the height effect being similar to jumping about two 

quintiles in household wealth, and the survival effect similar to jumping one quintile in 

household wealth.  

 

    [Insert Table 6 about here] 
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To test robustness of this result, we can look first within Table 6 at results in the placebo regions, 

where there is less seasonal fluctuation in rainfall. Here, there are no statistically significant 

average treatment effect estimates for any of the outcomes.   

 

5. ROBUSTNESS CHECKS 

To address limitations of our main result, we conducted a wide variety of other tests.   

 

5.1. Sample selection  

We exclude children with biologically implausible measurements as discussed above. We are 

reasonably confident that measurement error in the DHS data is random and not systematic. 

Results do not change whether including or excluding households which have lived in their 

survey location for fewer than 6 years at the time of the interview (N=4,060). Results also do not 

change whether including or excluding households which took trip lasting more than 1 month 

during the 12 months preceding the interview date (N=6,969). These observations were 

originally flagged for attention to ensure that exposure to conflict and remoteness was accurately 

measured for all children under the age of 60 months, including during pregnancy. There are 

approximately 3 million internally displaced persons residing in DRC, and this at-risk population 

may not have a stable living situation, increasing the chances of measurement error and under-

sampling in household surveys (UNHCR 2014).  

 

5.2. Colinearity and heteroscedasticity  

First, we calculated variance inflation factors (VIF) for each of the explanatory variables in the 

diagnostic regression model to assess the presence of multicollinearity.  The results are reported 

below in Table 7. We did not include the VIF for the difference-in-difference model, as those 

contain interaction terms and therefore the VIF would not be as informative. The VIFs are all 

relatively low, ranging from 1.00-2.17, where the highest values are for age splines where 

colinearity is expected. This increases our confidence that colinearity is not affecting the 

accuracy of our standard errors.  

 

[Insert Table 7 about here] 
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We also assessed the presence of heteroscedastic errors using residuals plots and the Breusch-

Pagan test.  Based on visual inspection of residuals plots not shown here and the results of the 

Breusch-Pagan tests, we reject the null hypothesis that the errors are homoscedastic and therefore 

use robust standard errors, clustered by administrative region.   

 

5.3. Seasonality in conflict incidence 

There is evidence in other studies that civil conflict follows seasonal patterns (O’Loughlin et al. 

2012; Hendrix and Glaser 2007). If there is seasonality in the incidence of civil conflict, it could 

impact the results of this study. Coincident cycles often threaten identification by seasonality. 

We performed nonparametric tests to assess whether conflict incidents followed a seasonal 

pattern. From Figure 5 below, it does not appear that there is seasonality in our conflict data. We 

also disaggregated these kernel-weighted local polynomial regressions by province, and the 

results are the similar across all provinces (results not shown here). There may be coincident 

cycles and other concerns with the conflict data, but since these are incident reports any patterns 

may reflect differences in reporting rates rather than actual conflict events.  

 

[Insert Figure 5 about here] 

 

5.4. Timing of data collection and the Cummins critique 

Our research design uses birth month as a natural experiment in exposure to adverse factors 

during critical periods of child development. Since data were not collected uniformly over time, 

children born in different months were measured at different ages, and have consequently 

different levels of z score. As shown in Tables 8a and 8b, the majority of our data were collected 

between in February 2007 and December 2013.   

 

[Insert Tables 8a-8b about here] 

 

The consequences of age at measurement for identifying seasonal effects has been highlighted by 

Cummins (2013), using a type of diagram that we reproduce for each of the DRC survey rounds 

in Figures 6a-6b. These chart shows the average age of measured children who were born in each 
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month, and their average HAZ score. Children born in July (January for the 2013 survey) were 

the oldest when surveyed, and they have the lowest average HAZ scores. Children born in 

December were the youngest on average when surveyed, and have the highest HAZ scores. This 

effect is controlled for in our regressions using age splines, as recommended by Cummins 

(2013). For an additional robustness test on survey timing we re-ran all regression models using 

only the June data, and that had no appreciable difference relative to the data from other months.   

 

[Insert Figure 6a-6b about here] 

5.5. Falsification tests  

In addition to the placebo region built into our main result, we also tested our design against a 

variety of placebo outcomes as in Leigh and Neill (2011). These are dependent variables with no 

plausible mechanism by which they could have been caused by our independent variables of 

interest, so any significant correlation would be from random chance or an artifact of the 

research design that might also have given rise to our main result. The specific placebos we use 

here are: mother’s education in single years, mother’s height, father’s education in single years, 

years that the household has lived in the interview location, the size of the household (number of 

people), and the altitude in meters of the household’s location. Each of these occurred or was 

arguably determined independently of when the child was born, and is used here to ask whether 

our main results in Table 6 are actually artifacts of the data and research design, by using these 

variables in that exact same regression specification.   

 

Figure 7 below provides a visual comparison of our main results with the placebo variables. Each 

dot and bar shows the ATE point estimate with its 95 percent confidence interval, first for the 

main results and then for the seven placebo tests. The chart has been cropped to show coefficient 

estimates for effect sizes between -1.5 and +1.5, since the randomness around some of the 

placebos resulted in such wide error bars that our outcomes of interest could no longer be 

distinguished on the same chart. As it is, the chart clearly shows that our precisely estimated 

negative effect on HAZ and WHZ is very different from the zero effects on any of the placebo 

outcomes. If we had found an effect of child’s birth season on any of the placebo outcomes, the 

validity of our identification strategy would have had to be questioned (Jones 2007).  
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[Insert Figure 7 about here] 

 

5.6. Selective fertility and mortality  

Perhaps the most important threat to our research design is nonrandom birth timing. Figure 8 

shows the frequency of births by month, which rises in March, April and May then has a long 

trough in July through December. These data are shown for both calendar month, and in terms of 

“rain months” which shift the birth dates for the few children in the northern hemisphere whose 

seasons are reversed. We do not know why the number of births rises in March, April and May. 

That pattern could stem from a rise in conceptions during the dry “winter” (June, July and 

August), or from seasonal patterns in miscarriage and neonatal mortality. The amplitude of the 

curve is slightly lessened when measuring by rain month, implying that socioeconomic factors 

involving calendar months may be more important than seasons.  

 

[Insert Figure 8 about here] 

 

To test whether seasonality in birth month could confound our results, Table 9 presents the 

outcome of testing our binary season-of-birth variable against all the explanatory variables in our 

dataset. The regressions are estimated first for the whole sample together (column 1) and then for 

each of the climate zones separately (columns 2 and 3). These results suggest that the potential 

effect of endogeneity of birth timing is not influencing our findings. 

 

[Insert Table 8 about here] 

 

For selective mortality, Figure 9 shows no clear difference between children born in the first and 

second halves of the year. There may be some discontinuity around June, which is the month in 

which most of the survey visits occurred in 2007. As a result, respondents’ children who were 

born in July had the most elapsed time prior to the survey date, and correspondingly they are 

shown here to have had the most cumulative mortality.  Conversely, children who were born in 

May had the least elapsed time prior to the survey date, and turn out to have had the least 

cumulative mortality by the survey date. As with selective fertility, these patterns are interesting 

but cannot explain or contradict our main results. 
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[Insert Figure 9 about here] 

 

6. CONCLUSION 

This study exploits temporal and spatial differences in health risks to test whether access to 

markets and services helps rural households smooth child health outcomes. Our setting is the 

Democratic Republic of Congo (DRC), one of the world’s most impoverished countries. Its vast 

expanse straddles the equator, exposing households to differing degrees of seasonal rainfall 

variation, and its lack of roads gives each household very different travel times to the nearest 

town. In this context, we can use the randomness of birth timing for a spatial difference-in-

difference approach, asking whether households with easier access to markets and public 

services can use that to protect their children from seasonal fluctuations in malnutrition and 

disease. We don’t prescribe or focus on what exactly households can do when they have access 

to a town, only that they can do what they need more easily than if they didn’t have access to a 

town.  

 

For the purposes of this paper, market access is defined as distance to the nearest major town, 

and health outcomes are defined in terms of child mortality, heights and weights at the time of 

the country’s 2007 and 2013 Demographic and Health Surveys (DHS). The mechanisms by 

which easier access could help smooth variation associated with birth timing include product and 

factor markets, migration and remittances as well as social services, health care and public 

assistance. Access to a road to sell goods produced on the farm is another potential mechanism, 

one that has garnered much attention in the literature. However, this study suggests broader 

implications for farm families, indicating that there are opportunities beyond selling goods 

produced on the farm for nutrition smoothing. More detailed data would be needed to distinguish 

among the possible channels, including an incorporation of nearby town population into 

diagnostic regressions. For now, our goal is to test whether any nutrition smoothing effect exists.   

 

Our main result is that households’ access to towns and markets is indeed linked to resilience, 

protecting children from seasonal fluctuations in health conditions at birth. The magnitude of 

gain for child heights is similar to the improvement associated with rising two quintiles in the 
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local wealth distribution. Results of this magnitude are large but plausible, and help explain the 

differences in health outcomes found in a wide variety of other settings. We subject our finding 

to a variety of robustness tests, including comparisons of the estimated average treatment effect 

with similarly estimated coefficients in placebo regions and for placebo outcomes, selection bias 

in birth timing and child mortality, and other possible threats to identification. 

 

Further work would be needed to distinguish among the possible causal mechanisms involved, 

for example to distinguish between the role of private markets and the use of public services, or 

between improvements in the diet and reductions in disease burdens. Incorporating estimates of 

the populations of nearby towns would help distinguish what size of town is needed to allow for 

nutrition smoothing. Different mechanisms may matter for different people, but all rely on 

infrastructure to link rural households with towns and cities where goods are traded and services 

are provided. These results add a new dimension to the role of rural infrastructure and access to 

towns. Interventions to lower households’ travel costs could help reduce their vulnerability, in 

addition to the many well-known investments that target specific causes of malnutrition such as 

improved diets, health care and reduced disease transmission. 
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9. TABLES AND FIGURES 

 

Table 1: Spatial variation in exposure to seasons, birth timing and access to towns 

 

Analytical design and hypothesized effects over  triple difference-in-differences 

(region x birth timing x market access) 

Region has a distinct rainy season? 

(= farther from the equator) 
Yes No 

Child was born in or after rainy season? 

(=Jan-Jun if lat.<0, Jul-Dec otherwise) 
Yes* No Yes No 

Household is closer to town? 

(=distance to town in km) 
Yes No** Yes No Yes No Yes No 

                                   Hypothesized status: 
Vulnerable to seasonal variation 

Not vulnerable to 

seasonal variation 

Protected* Affected** Unexposed No effect 

Note: Asterisks indicate hypothesis of significantly worse child nutrition relative to other groups in the 

same row.  For *, the identifying assumption is that birth timing occurs randomly between seasons 

(tested).  For **, the identifying assumption is that seasonal risk factors would have been similar in the 

absence of towns (untestable). 
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Table 2a: Descriptive statistics by birth timing and exposure to season variation 

Birth timing: 

Presence of seasons: 

Jan.-June 

None 

N=18,009 

Jan.-June 

Dry winter 

N=18,973 

July-Dec. 

None 

N=16,724 

July-Dec. 

Dry winter 

N=15,935 

All Births 

N=69,641 

 

Child status       

    Children Alive (%) 84.6% 84.5% 83.7% 85.2% 84.5%  

     HAZ -1.51 

(1.68) 

-1.51 

(1.62) 

-1.61 

(1.92) 

-1.26 

(1.80) 

-1.47 

(1.86) 

 

     WHZ -0.31 

(1.25) 

-0.47 

(1.12) 

-0.24 

(1.41) 

-0.45 

(1.31) 

-0.38 

(1.33) 

 

     Age  (months) 28.24 

(17.57) 

28.00 

(17.29) 

29.70 

(17.10) 

29.88 

(16.69) 

29.16 

(16.53) 

 

    Firstborn (%) 23.8% 24.9% 23.8% 23.5% 24.5%  

    Short interval (%) 28.2% 27.9% 26.1% 19.74% 25.6%  

    Boys (%) 50.5% 51.2% 50.4% 50.2% 50.6%  

Household       

     Wealth (quintile) 2.61  

(1.27) 

3.20  

(1.46) 

2.60  

(1.26) 

3.25  

(1.45) 

2.92   

(1.40) 

 

     Proximity (km-1) 0.11   

(0.23) 

0.16  

(0.27) 

0.10  

(0.23) 

0.15  

(0.27) 

0.13 

(0.26) 

 

Environment       

     Conflicts 108.72 

(716.5) 

15.03 

(65.7) 

93.52 

(596.8) 

15.95 

(69.7) 

31.28 

(66.9) 

 

     Latitude (abs val) 1.91  

(1.36) 

6.14  

(2.01) 

1.98  

(1.17) 

5.99  

(2.02) 

4.31 

(2.64) 

 

Note:  Data shown are means and standard deviations (in parentheses). Births labeled as January-June 

occurred in calendar months July-December for children born in the Northern hemisphere (N=17,159). 

Conflicts are total number of fatalities during the child’s year of birth in the respondent’s 1-degree square 

grid-cell of residence. 
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Table 2b: 2 x 2 x 2 Descriptive statistics by triple difference-in-differences groupings 

Region has 

distinct rainy 

season? 

Child born 

during rainy 

season? 

Household 

closer to 

town? 

Yes 

 

Yes 

 

Yes 

Yes 

 

Yes 

 

No 

Yes 

 

No 

 

Yes 

Yes 

 

No 

 

No 

No  

 

Yes 

 

Yes 

No 

 

Yes  

 

No 

No 

 

No 

 

Yes 

No 

 

No 

 

No 

 

Observations 

(N) 

12,080 6,893 10,012 5,923 6,858 11,151 5,983 10,741  

Alive 85.85% 82.20% 87.06% 82.18% 85.02% 84.44% 84.32% 83.35%  

HAZ -1.28  

(1.62) 

-1.89 

(1.54) 

-0.96 

(1.64) 

-1.47 

(1.69) 

-1.48 

(1.77) 

-1.51 

(1.64) 

-1.51 

(1.72) 

-1.35 

(1.69) 

 

WHZ -0.47  

(1.15) 

-0.50 

(1.07) 

-0.39 

(1.16) 

-0.48 

(1.16) 

-0.27 

(1.33) 

-0.33 

(1.20) 

-0.29 

(1.29) 

-0.35 

(1.18) 

 

Age 

(months) 

27.79 

(17.19) 

28.35 

(17.45) 

27.06 

(17.11) 

26.80 

(17.33) 

28.23 

(17.77) 

28.24 

(17.46) 

27.53 

(17.59) 

27.27 

(17.33) 

 

Firstborn 25.25% 24.30% 24.60% 21.50% 23.31% 24.19% 24.06% 23.64%  

Short 

interval 

27.75% 28.30% 19.41% 20.30% 29.9% 27.10% 25.73% 26.34%  

Wealth 

(quintile) 

3.63   

(1.44) 

2.46  

(1.16) 

3.70  

(1.41) 

2.48  

(1.17) 

2.97 

(1.33) 

2.37 

(1.18) 

2.99 

(1.32) 

2.39 

(1.18) 

 

Conflict 

fatalities  

20.47 

(77.02) 

5.91 

(38.78) 

21.95 

(80.96) 

6.14 

(44.01) 

191.42 

(888.83) 

60.39 

(587.77) 

169.52 

(880.62) 

52.43 

(353.32) 

 

Note:  Data shown are means and standard deviations (in parentheses). Conflict fatalities are the number of fatalities 

recorded in incident reports nearby during the child’s year of birth. Births labeled as January-June occurred in 

calendar months July-December for children born in the Northern hemisphere (N=17,159). 



36 

 

Table 3: Two-sample T-tests with equal variances 

 Alive HAZ WHZ 

Gender 
   

Girls 0.85 -1.31 -0.33 

Boys 0.84 -1.48 -0.44 

Difference 0.009 0.17 0.10 

Pr(T>t) 0.00** 0.000** 0.00*** 

    

Household Location    

Not Remote 0.85 -1.26 -0.38 

Remote 0.83 -1.53 -0.39 

Difference 0.03 0.26 0.02 

Pr(T>t) 0.00** 0.00*** 0.28 

    

Birth season    

Born Jan.-June 0.84 -1.50 -0.39 

Born July-Dec. 0.84 -1.28 -0.38 

Difference -.001 0.22 0.01 

Pr(T>t) 0.69 0.00*** 0.28 
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Table 4: Exploratory regression with continuous explanatory variables 

  (1) (2) (3) 

Variables Unit/type Child is alive 

Exploratory 

HAZ 

Exploratory 

WHZ 

Exploratory 

     

Age spline 1 Linear spline -0.017*** -0.074** -0.107*** 

  (0.000) (0.015) (0.000) 

     

Age spline 2 Linear spline -0.002** -0.072*** 0.011*** 

  (0.015) (0.000) (0.000) 

     

Age spline 3 Linear spline  -0.006  

   (0.104)  

     

Child is male Binary -0.115* -0.133** -0.108** 

  (0.052) (0.046) (0.026) 

     

Child is firstborn Binary -0.288*** 0.021 -0.026 

  (0.000) (0.811) (0.690) 

     

Short preceding birth interval Binary -0.594*** -0.148* -0.020 

  (0.000) (0.060) (0.731) 

     

Ln(fatalities during birth year) Continuous -0.062*** -0.114*** 0.031** 

  (0.000) (0.000) (0.032) 

     

Household Wealth index Categorical 0.145*** 0.250*** 0.053*** 

  (0.000) (0.000) (0.005) 

     

Absolute value (latitude) Continuous -0.046*** -0.015 -0.017 

  (0.000) (0.313) (0.130) 

     

Proximity to town km-1 0.281** -0.022 0.162 

  (0.045) (0.878) (0.137) 

     

Born Jan.-June Binary 0.134** -0.107 0.075 

  (0.024) (0.114) (0.126) 

     

Constant Constant 2.940*** -0.256 0.407*** 

  (0.000) (0.200) (0.003) 

Observations N 18845 3405 3473 

R2 R2  0.179 0.073 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.  

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere 

to account for inversion of seasons at the equator. Conflicts are the cumulative count nearby to the child’s cluster of 

residence during the child’s birth year. Errors clustered by DHS survey cluster (v001). p-values in parentheses; * 

p<.10, ** p<.05, *** p<.01.  
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Table 5: Triple difference-in-differences 

  (1) (2) (3) 

Variable Unit/type Child is alive HAZ WHZ 

     

Age spline 1 Linear spline -0.016*** -0.080*** -0.100*** 

  (0.000) (0.006) (0.000) 

     

Age spline 2 Linear spline -0.002*** -0.067*** 0.010*** 

  (0.001) (0.000) (0.000) 

     

Age spline 3 Linear spline  -0.009***  

   (0.001)  

     

Short preceding birth interval Binary -0.510*** -0.187*** -0.039 

  (0.000) (0.002) (0.387) 

     

Child is male Binary -0.149*** -0.164*** -0.116*** 

  (0.001) (0.002) (0.003) 

     

Ln(fatalities during birth year) Continuous -0.057*** -0.087*** 0.018 

  (0.000) (0.000) (0.152) 

     

Proximity to town km-1 0.744*** 0.369 0.144 

  (0.003) (0.127) (0.418) 

     

Born Jan.-June Binary 0.080 -0.097 -0.022 

  (0.279) (0.281) (0.743) 

     

Absolute value(latitude) Continuous -0.004 0.045*** -0.019 

  (0.783) (0.009) (0.138) 

     

Born Jan.-June*Proximity Interaction 0.104 0.877** 0.232 

  (0.769) (0.013) (0.367) 

     

Born Jan.-June*Abs(lat) Interaction -0.002 0.018 0.007 

  (0.914) (0.464) (0.686) 

     

Abs(lat)*Proximity Interaction -0.053 0.038 -0.014 

  (0.247) (0.480) (0.728) 

     

Born Jan.-June*Proximity*Abs(lat) Interaction -0.021 -0.201*** -0.000 

  (0.730) (0.006) (0.996) 

     

Constant Constant 3.081*** 0.200 0.627*** 

  (0.000) (0.244) (0.000) 

Observations N 18845 3405 3473 

R2 R2  0.144 0.056 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.  

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere 

to account for inversion of seasons at the equator. Conflicts are the cumulative count in the child’s cluster of 

residence during the child’s birth year. Errors clustered by DHS survey cluster (v001). p-values in parentheses; * 

p<.10, ** p<.05, *** p<.01.  
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Table 6: Preferred specification, stratifying by the presence of seasons 

  (1) (2) (3) (4) (5) (6) 

Variable Unit/type Alive 

Seasons 

Alive 

No Seasons 

HAZ 

Seasons 

HAZ 

No Seasons 

WHZ 

Seasons 

WHZ 

No Seasons 

        

Age spline 1 Spline -0.021*** -0.022*** -0.051 -0.135*** -0.098*** -0.101*** 

  (0.000) (0.000) (0.220) (0.003) (0.000) (0.000) 

        

Age spline 2 Spline  -0.003*** -0.002*** -0.086*** -0.090*** 0.010*** 0.012*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

        

Age spline 3 Spline   -0.005 -0.003   

    (0.110) (0.254)   

        

Short interval Binary -0.284*** -0.302*** -0.385*** -0.449*** -0.172*** -0.062 

  (0.000) (0.000) (0.000) (0.000) (0.001) (0.244) 

        

Male Binary -0.117*** -0.126*** -0.029 -0.293*** -0.104* -0.038 

  (0.001) (0.000) (0.687) (0.000) (0.069) (0.457) 

        

Conflict exposed Binary -0.043 0.036 0.139 0.249** -0.074 -0.062 

  (0.399) (0.547) (0.148) (0.038) (0.274) (0.509) 

        

Jan.-June Binary -0.127** 0.079 -0.097 0.063 0.051 -0.093 

  (0.011) (0.210) (0.210) (0.573) (0.521) (0.355) 

        

Jan.-June*Remote Interaction 0.128* -0.025 -0.329** -0.188 -0.034 0.132 

  (0.092) (0.747) (0.018) (0.177) (0.759) (0.263) 

        

Constant Constant   0.158 0.537** 0.524*** 0.624*** 

    (0.417) (0.020) (0.000) (0.000) 

Observations N 17217 17297 4224 4211 4312 4319 

R2 R2   0.290 0.299 0.083 0.077 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions. Born Jan.-June 

is actually born July-Dec. in Northern hemisphere to account for inversion of seasons at the equator. Age splines 

control for child’s age at observation. Mortality regressions include mother fixed-effects. Height and weight 

regressions include survey cluster fixed-effects. Conflict exposure is a binary indicator of whether there was civil 

conflict in a 1-degree square of the child’s residence during the child’s year of birth. Errors clustered by DHS-cluster 

(v001). p-values in parentheses; * p<.10, ** p<.05, *** p<.01 
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Table 7: Variance inflation factors (VIF) 

   

  HAZ WHZ 

Age spline 1 2.17 1.33 

Age spline 2 1.61 1.37 

Age spline 3 1.5 N/A 

Child is male 1.00 1.00 

Number of Conflicts 1.25 1.25 

Wealth Quintile 1.12 1.12 

Remote 1.06 1.06 

Born Jan.-June 1.04 1.01 

Abs(Latitude) 1.19 1.19 

Note: All results are as for Table 6. 

 

Table 8a: Timing of data collection for 2007 survey 

Month Number of surveys Percentage (%) Cumulative Percentage (%) 

January 23 0.08 0.08 

February 1,935 6.98 7.07 

March 128 0.46 7.53 

April 826 2.98 10.51 

May 3,172 11.45 21.96 

June 21,166 76.40 98.35 

July 453 1.64 99.99 

September 3 0.01 100.00 

Note: DHS administrative data for all child health variables. 
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Table 8b: Timing of data collection for 2013 survey 

Month Number of surveys Percentage (%) Cumulative Percentage (%) 

August 2,249 5.38 5.38 

September 1,182 2.83 8.21 

October 39 0.09 8.31 

November 5,481 13.12 21.43 

December 32,823 78.57 100.00 

Note: DHS administrative data for all child health variables. 
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Table 9: Testing for endogeneity of birth timing, for whole sample and within climate zones 

  (1) (2) (3) 

Variable Units/type Born Jan.-June Born Jan.-June 

Seasons 

Born Jan.- June 

No seasons 

     

Child is Male Binary 0.009 0.023 0.005 

  (0.762) (0.632) (0.895) 

     

Wealth index Categorical -0.015 -0.057 0.002 

  (0.384) (0.106) (0.919) 

     

Ln(fatalities) Continuous  0.014 0.003 0.018 

  (0.125) (0.830) (0.152) 

     

Proximity to town km-1 0.319* 0.538 -0.047 

  (0.069) (0.227) (0.875) 

     

Abs val (latitude) Continuous 0.021   

  (0.138)   

Observations  18804 7060 11728 
Note:  Dependent variable is a binary indicator of birth during the Jan.-June wet season. Regression estimated using 

fixed-effects logit. All results include fixed effects for survey clusters (N=840), with notation and variable 

definitions as in Table 6. p-values in parentheses ; * p<.10, ** p<.05, *** p<.01.  

 

 

 

  



43 

 

Figure 1: HAZ by child age and household remoteness, with 95% CI 
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Figure 2: Child is alive, by month of birth and household remoteness, with 95% CI
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Figure 3: HAZ by month of birth and household remoteness, with 95% CI

 

Note:  To account for inversion of seasons, birth date is shown by calendar month in the 

southern hemisphere, and for the northern hemisphere is shown as 1=July, 2=Aug. etc. 
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Figure 4: Risk of death by month of birth and household remoteness 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Conflict incidents by month
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Figure 6a: Mean age and HAZ at time of survey by calendar month of birth, 2007 DHS 
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Figure 6b: Mean age and HAZ at time of survey by calendar month of birth, 2013 DHS 

 

Note:  These charts reproduce Figure 3 of Cummins (2013), using our DRC data across both DHS survey 

rounds. The line shows average HAZ on the right axis by the child’s month of birth, and the bar shows 

their average age by month of birth on the left axis. As detailed in Tables 7 and 8, over three-quarters of 

the 2007 DRC surveys were implemented in June, and over three quarters of the 2013 DRC surveys were 

implemented in December. So, children born in July (for the 2007 round) and January (for the 2013 

round) are surveyed at the oldest average age and have correspondingly lowest average HAZ scores. This 

‘survey timing artifact’ effect is controlled for in our regressions using a flexible linear age spline, based 

on the time path of HAZ and WHZ scores shown in Figures 1 and 2. 

 

Figure 7: Placebo regression results (* indicates the ATE is significant at 10%, and ** 5%)

 

Note: Data shown are coefficient estimates (in blue) and 95% confidence intervals for “average treatment 
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effects” in our preferred specification (Table 6), for our three dependent variables of interest followed by 

five ‘placebo’ variables for which no effect is expected of our ‘treatment’, due to the absence of any 

plausible mechanism of action. 
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Figure 8: Timing of births by calendar month and season

 

Note: Data shown are the number of children ever born in each month, as recorded across each DHS 

survey for DRC. The solid line refers to calendar months, and the dashed line uses a seasonal adjustment 

by hemisphere, where dates north of the equator are recorded as “January” for births in June, “February” 

for July, etc.  In our regressions, these “rain months” are aggregated into six-month periods, since as 

children in higher latitudes who are born in the January-June period are more exposed to heavy rains and 

subsequently poor health outcomes than those born in the rest of the year. As shown here, more children 

were born in these adverse months than in July-December, as conception was slightly more likely to have 

occurred during the dry winter season.  This pattern suggests that birth timing is either random or 

associated with factors other than variation in the child’s health prospects.  
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Figure 9: Cumulative mortality prior to survey date 

 

Note: Data shown is the cumulative mortality rate for all children ever born to the survey respondents 

across both rounds of the DHS in DRC (2007 and 2013), by the child’s month of birth.  

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

v
e 

m
o

rt
a

li
ty

 

(p
er

ce
n
t 

o
f 

ch
il

d
re

n
 e

v
er

  
b

o
rn

 w
h
o

 

w
er

e 
d

ec
ea

se
d

  
b

y
 t

h
e 

su
rv

ey
 d

at
e)

Month of birth, January=1 through December=12


