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Measuring the Technical Efficiency of Farms Producing Environmental
Output: Semiparametric Estimation of Multi-output Stochastic Ray

Production Frontiers.
By Tomasz G. Czekaj

Department of Food and Resource Economics, University of Copenhagen (Denmark)

This paper investigates the technical efficiency of Polish dairy farms producing environmental
output using the stochastic ray function to model multi-output – multi-input technology. Two
general models are considered. One which neglects the provision of environmental output
and one which accounts for such output. The main focus is on the estimation of technical
efficiency of farms producing the environmental output. Since some farms do not provide
such output at all, the stochastic ray frontier functions are estimated to overcome the problem
of the zero valued dependent variables which often occur when the Translog output distance
function is used. The detailed results of the technical efficiency analysis show that, although
the estimated efficiencies from the models which neglect the environmental output and those
which account for the output are rather similar on average, the rankings based on these
efficiencies differ.



1. Introduction

The main purpose of agricultural production is to provide food, fibre, fodder and more
recently also energy (i.e. bio-fuels). It is a well known fact that agricultural production
has a non-neutral impact on the environment and results in both negative and positive
externalities. The negative externalities are those related to the pollution of water, soil and
air, but also to the negative impact on biodiversity e.g. due to the monoculture of intensive
farming systems and the use of pesticides and herbicides. The positive externalities are
related to the goods and services which farmers provide as a by-product of their marketable
production which result in, e.g. agricultural landscapes (both in the cultural and ecological
sense), richer biodiversity, etc. In economics, both the positive and negative externalities
of agricultural production can be classified as public goods. The concept of public goods
(or collective goods) was introduced by Samuelson (1954). A good is a public good if it is
non-excludable and non-rivalled in consumption. Since there is no market for public goods,
this leads to a loss of economic efficiency giving governments an argument to intervene in
order to internalise the externalities (Areal et al., 2012). In the European Union (EU), the
governments of member states intervene in the market through agricultural support programs.
Environmental measures have been included in the Common Agricultural Policy (CAP) of
the EU since the 1990s. Previously, CAP supported prices led to the intensification and
industrialisation of farming systems and resulted in both the overproduction of agricultural
products and negative effects on the environment.
Because a natural trade-off exists between marketable outputs (animal and crop prod-

ucts) and environmental outputs (e.g. biodiversity, agricultural landscape, etc.), farmers who
provide the latter can obtain compensation payments (e.g. environmental subsidies). This
is legitimised by the lower productivity of environmentally friendly agricultural production
systems. Therefore, it is of high importance for policy makers (but also for tax-payers and
farmers) to target the right beneficiaries of environmental subsidies. In productivity or effi-
ciency analysis, most previous studies, which incorporate the environmental outputs, consider
the bad output (negative externalities), whereas only a few have focused on the good outputs
(positive externalities). A recent literature review of the research on positive externalities in
agriculture is provided in Areal et al. (2012).
Since environmental output is defined quite broadly, the perfect measure of environmental

output at the farm should reflect different aspects, such as biodiversity, agricultural land-
scape, and the farm’s footprint on water, soil and air, etc. However, such information is often
unavailable in economic data at the farm level.
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Therefore, a proxy of environmental output is often used. Recently Areal et al. (2012)
proposed a very straightforward indicator of environmental output produced at the farm,
namely the ratio of permanent grassland to total agricultural area.
However, in this paper, based on the theoretical economic reasoning supported by an

empirical application, I show that this specification of the environmental output may result
in severe problems both in the econometric estimation and the economic interpretation.
Therefore, I suggest to reformulate this approach to environmental output and express this
with a proxy of permanent grassland area. This approach does not have the drawbacks of the
one proposed by Areal et al. (2012) and provides results very similar to the definition of the
environmental output proposed by Peerlings and Polman (2004), who suggested measuring
the positive environmental output as environmental subsidies paid to the farmer for providing
environmental goods and services.
Furthermore, the analysis in this paper differs from Areal et al. (2012) who used Bayesian

techniques to estimate the output distance function of the Translog functional form for a
sample of dairy farms in England and Wales, both in applied economic and econometric
methodologies. I use a different specification of the multi-output technology – the stochastic
ray approach introduced by Löthgren (1997, 2000). The use of the stochastic ray approach
is motivated by the problem of zero values of output variables observed for some of analysed
farms (e.g. dairy farms which do not produce crop output and/or do not provide environ-
mental output). Additionally, I use a different econometric technique, namely nonparametric
kernel regression, in order avoid the assumption regarding the specification of the parametric
functional form of the underlying technology and maintaining flexibility-
The remainder of the paper is organized as follows. Section 2 discusses the different

strategies to measure environmental output. Section 3 presents different approaches to the
estimation of the multiple-output – multiple-input technologies. Section 4 focuses on the
estimation of stochastic frontier models in parametric and nonparametric regression frame-
works and describes the theoretical economic model used in the analyses. Section 5 describes
the data and presents the results of the analysis. Finally, section 6 concludes.

2. Measurement of the environmental output

The idea of sustainable agriculture, and therefore also the provision of positive environmental
externalities at the farm level, plays an important role in the current CAP. This makes the
measurement of efficiency and productivity of farms producing the positive environmental
output very relevant both in methodological and empirical terms. However, only a few
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studies exist in the production economics literature that analyse the provision of positive
environmental output.
Environmental output can be defined either as a positive (desirable) or negative (undesir-

able) output. In the productivity and efficiency literature, environmental output is most often
studied as negative externalities (or undesirable outputs) (e.g. Reinhard et al., 2000; Lansink
and Peerlings, 1997; Färe et al., 2004; Kuosmanen and Kortelainen, 2004, to mention only
a few). In analyses of the agricultural sector, environmental (bad) output is often defined
as being a negative impact of agricultural production on the soil and water and is usually
measured as a surplus of chemical elements such as nitrogen, phosphorus and potassium. An
interesting approach to dealing with undesirable outputs has been proposed by Asmild and
Hougaard (2006), who considered nutrient removal as a desirable output.
More recently, environmental output has been considered as a positive externality: (e.g.

Peerlings and Polman, 2004; Sipiläinen et al., 2008; Areal et al., 2012; Solovyeva and Nup-
penau, 2013). Peerlings and Polman (2004) analysed the wildlife and landscape services
produced by Dutch dairy farms, where the positive output was measured as the compensa-
tion paid by the government to farms to stimulate wildlife and landscape friendly actions
(e.g. postponing the mowing of grass to protect nests of meadow birds). Sipiläinen et al.
(2008) used a crop diversity index to study the efficiency of organic and conventional dairy
farms in Finland, while Solovyeva and Nuppenau (2013) used the biodiversity index to in-
vestigate the environmental efficiency of farms in the Ukraine. Areal et al. (2012) used the
ratio of permanent grassland to total agricultural area as a proxy for environmental output.
Although this indicator is not as precise as, e.g. biodiversity indicators, its advantage is that
it can be easily obtained for most datasets at no cost.
In this paper, I consider environmental output as a positive (desirable) output and the

focus of the analysis is on dairy farms sector1. Since the data on biodiversity is not available
in my data set, I decided to use basic proxies of environmental outputs, similar to the one
proposed by Peerlings and Polman (2004) and Areal et al. (2012) and the modification of the
proxy proposed by Areal et al. (2012) i.e. environmental output defined solely as the area of
permanent grassland.

1The economic model and the econometric approach used in this paper can be of course applied to investigate
the the efficiency of production of the environmental output(s) in other types of farms, however the proxy
of the environmental output needs to be adjusted to reflect the environmental output produced e.g. by
the crop farms, etc.
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3. Multi-output – multi-input technologies

3.1. Output distance functions

The analysis of agricultural production together with environmental outputs calls for a
method which allows for multiple inputs and multiple outputs. In the economic literature,
the concept of the distance function is often used to account for multiple output technologies.
Input and output distance functions have been introduced by Shephard (1953) and Shephard
(1970), respectively. This method has become a standard econometric approach to analyse
multi-output – multi-input technologies.
In the econometric estimation of the output distance function, the quantity of one of the

outputs is often used as a dependent variable while the remaining output quantities are
normalised and then used as explanatory variables along with the input quantities. In the
parametric econometric approach, the Translog functional form is frequently used to reflect
the shape of the underlying technology.

3.2. Stochastic Ray Function

There is a major problem with the parametric estimation of conventional distance functions
which arises when there are zero values in the output variables for some observations and
the Translog functional form is used2. This paper focuses on the analysis of farm productiv-
ity with accounting for environmental output. Since the provision of environmental goods
and services is not the main interest of the producer (in contrast to the provision of out-
put which can be sold at market), it is very likely that a substantial share of producers
will not produce environmental outputs. In such cases, the problem of zero values in out-
put variables becomes even more significant when the environmental output is considered
and the Translog functional form is used to estimate the distance function. However, the
use of conventional distance functions requires some ad hoc adjustments if there are zero
output quantities (e.g. using the method proposed by Battese (1997) or neglecting the ob-
servations at which this problem occurs). The alternative approach to the estimation of
the multiple-output technologies is the stochastic ray function proposed by Löthgren (1997,
2000). Recently Henningsen et al. (2013) demonstrated that the stochastic ray function can
model zero output values without any ad hoc adjustments or removing observations with zero
output quantities. Moreover, the authors used Monte Carlo simulations and showed that the

2Although, Färe et al. (2010) and Chambers et al. (2013) recently showed the superiority of the generalized
quadratic functional form over the Translog functional form, the latter is still the most frequently used
in applied productivity and efficiency analysis.
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stochastic ray function outperforms the conventional distance function if the share of zero
output quantities is large.
In the stochastic ray function specification, the multiple output vector y is decomposed as

follows (Löthgren, 2000):
y = ` ·m(θ) (1)

The scalar component ` is defined as:

` = `(y) = ‖y‖ (2)

where ‖y‖ is the Euclidean norm (‖y‖ = (∑p
i=1 y

2
i )

1/2 of the output vector y. The function
m : [0, π/2]p−1 → [0, 1]p, defined by:

mi(θ) = cos θi
i−1∏
j=0

sin θj i = 1, ..., p (3)

where θ ∈ [0, π/2]p−1 and sin θ0 = cos θp = 1 transforms the polar coordinate angle vector θ
to the output mix vector m(θ) = y/`(y) with the norm ‖m(θ)‖ = 1

θi(y) = cos−1

yi/‖y‖ i−1∏
j=0

sin θj

 i = 1, ..., p (4)

Using the above-described decomposition of the output vector, a multi-input multi-output
production technology can be represented as:

ln ‖y‖ = ln f(x, θ), (5)

where f(.) is the stochastic ray production function.
By introducing technical inefficiency in terms of the output distance measure, the stochastic

ray production function can be related to the output distance function in the following way:

lnDo = ln ‖y‖ − ln f(x, θ), (6)

where Do is the output distance measure.
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4. Parametric and Semiparametric Stochastic Ray Frontier

Löthgren (1997) proposed estimating the stochastic ray frontier of the Translog functional
form specified as:

ln(‖y‖) = α0 +
M−1∑
m=1

αmθm + 0.5
M−1∑
m=1

M−1∑
j=1

αmjθmj +
N∑
n=1

βn ln(xk)

+0.5
N∑
n

N∑
k

βnk ln(xn) ln(xk) +
M−1∑
m=1

N∑
n

ζnkθn ln(xk) + ε, (7)

where ε = v−u is a composed error term with noise component v and inefficiency component
u = − lnDo using the standard stochastic frontier framework proposed by Aigner et al. (1977)
and Meeusen and van den Broeck (1977). The usual distribution assumptions are made (i.e.,
v ∼ N(0, σ2

v), and, u ∼ N+(0, σ2
u)) and the frontier model is fitted with maximum likelihood

estimation (MLE).
This paper contributes to the existing literature with a semiparametric estimation of the

stochastic ray production function using the approach proposed by Fan et al. (1996) .
Fan et al. (1996) suggested estimating the semiparametric stochastic frontier models in a

two step procedure. In the first step, the average production function:3

y = f(x) + ε (8)

is fitted with nonparametric regression methods (e.g. local-linear kernel regression). The
local-linear kernel regression is a method of smoothing the conditional expectation of the
dependent variable given the set of explanatory variables. This is given by the smooth curve
obtained by applying a weighted linear regression at each observation, where the weights of
the other observations decrease with the distance from the respective observation. These
weights depend on two factors: the kernel function (weighting function) and a set of band-
width parameters, which need to be specified. The choice of the kernel function is of minor
importance (e.g. Silverman, 1986; Taylor, 1989; Racine and Li, 2004; Czekaj and Henningsen,
2013b). The bandwidths were initially determined using a rule of thumb. However, due to
recently increased computing power, they can be selected according to data driven bandwidth
selection methods (e.g. according to the expected Kullback-Leibler cross-validation criterion
(Hurvich et al., 1998)). When the data driven bandwidths selection is applied, the overall

3Fan et al. (1996) define the frontier model g(x) = f(x) + µ, where g(x) is a frontier production function,
f(x) = E[y|x] is a average production function and error term ξ = y − g(x) = ε − µ with E[ξ|x] 6= 0. I
use a modification of the Fan et al. (1996) approach suggested by Henningsen and Kumbhakar (2009),
where the average production function is defined as f(x) = E[y|x] and a corresponding error term ε =
y − f(x) = y − E[y|x] with E[ε|x] = 0.
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shape of the regression function is determined by the data without being restricted by an ar-
bitrarily chosen functional form. The convenient feature of the local-linear kernel estimator is
that it automatically provides the estimator of the first derivative of the unknown regression
function Li and Racine (2007). Moreover, the nonparametric regression method proposed
by Li and Racine (2004) and Racine and Li (2004) that can handle both continuous and
categorical explanatory variables can be applied in order to include the categorical regressors
(i.e. Z-variables) in the estimation of the average production function.
Henningsen and Henning (2009) showed that the monotonicity property is particularly

important for estimating the efficiencies of individual firms in stochastic frontier analysis.
In a nonparametric regression setting, the monotonicity condition can be imposed using the
constraint weighted bootstrapping (CWB) method proposed by Hall and Huang (2001) and
extended by Du et al. (2013). For a recent application of this approach in stochastic frontier
analysis see: Parmeter and Racine (2013) and Parmeter et al. (2013a).
In the second step of the Fan et al. (1996) procedure, residuals of the nonparametrically

estimated average production frontier (ε̂), are decomposed into a constant, (µ), statistical
noise, (v), and inefficiency, (u), terms in the following way:

ε̂ = µ+ v − u. (9)

Henningsen and Kumbhakar (2009) proposed estimating the Fan et al. (1996) model in
logarithmic output and input quantities.

ln y = ln f(x) + ε (10)

This modification of the Fan et al. (1996) approach is useful in the nonparametric regression
framework due to several reasons4. First, it allows the use of the usual specification of a
stochastic frontier function, where the dependent variable is logarithmic so that the predicted
dependent variables can not be negative. Second, the log-transformed values of output and
input quantities are more equally Distributed, which is particularly desirable when fixed
bandwidths in local-linear kernel regression are used. Third, the unknown true relationship
between the input quantities and the output quantity is likely much closer to a log-linear
relationship (Cobb-Douglas technology) than a linear relationship (linear technology) so that
the use of logarithmic quantities of the inputs and the output allows for larger bandwidths,
which in turn increases the precision of the local-linear estimates, because they are based
on a larger number of observations. Fourth, estimated gradients of input variables in the

4See e.g. Henningsen and Kumbhakar (2009) and Czekaj and Henningsen (2013b) for details.
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nonparametric regression can be directly interpreted as distance elasticities with respect to
input quantities.

4.1. Z-variables in Semiparametric Stochastic Ray Frontier

The estimation of technical efficiency has been of primary interest in the productivity and
efficiency analysis literature since the seminal work of Farrell (1957). More recently, attention
has been paid to the role of exogenous factors (often referred to as environmental variables or
Z-variables5) that may influence either productivity or (in)efficiency (Sun and Kumbhakar,
2013). Because there is no general principle that the Z-variables influence the productivity
or (in)efficiency (or both), therefore the number of different approaches has been proposed in
the literature. Kumbhakar (1990) and Battese and Coelli (1992) proposed a multiplicative
decomposition of the inefficiency term as a function of time (in panel data context) or as
a function of Z-variables in a cross-section setting (Sun and Kumbhakar, 2013). This spec-
ification is referred to as a scaling property of inefficiency (e.g. Alvarez et al., 2006; Simar
et al., 1994; Wang and Schmidt, 2002). Alternatively, Kumbhakar et al. (1991), Huang and
Liu (1994) and Battese and Coelli (1995) proposed the additive decomposition of technical
inefficiency. The alternative approach to handling the presence of Z-variables is to include
them as shift variables which directly influence the core of the frontier function.
Recently, Zhang (2012), Sun and Kumbhakar (2013) and Parmeter et al. (2013b) showed

how to account for the presence of Z-variables in semiparametric stochastic frontiers. Zhang
(2012) estimated the semiparametric smooth coefficient stochastic frontier model using Z-
variables as shift variables which directly influence the production frontier. Sun and Kumb-
hakar (2013) extended the model proposed by Zhang (2012) incorporating the Z-variables not
only in the core of the production frontier, but also in the technical inefficiency part of the
stochastic frontier model. Parmeter et al. (2013b) used the scaling property of inefficiency
term to model the effect of Z-variables nonparametrically, while the production function has
a parametric structure. However, it needs to be noted that, although Zhang (2012), Sun
and Kumbhakar (2013) and Parmeter et al. (2013b) used nonparametric methods, they still
imposed some parametric structure on the underlying technology in their models.
In this paper, I use the fully nonparametric estimate of the (average) production technology

in order to obtain the semiparametric stochastic frontier model, which does not depend on the
specific functional form of the underlying technology. In the analyses included in this paper,
I make the assumption that the Z-variables influence productivity and not the inefficiency6.

5Since this paper aims to analyse efficiency in the presence of environmental output, the notion of Z-variables
instead of environmental variables is used to avoid confusion.

6The Z-variables considered in this paper influence the core of the frontier (e.g. regional differences in
soil quality, climate, etc.) rather than the inefficiency. Moreover, according to my best knowledge, a
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Therefore, the Z-variables are included in the estimation of the nonparametric stochastic ray
production function, which is then used to obtain the semiparametric stochastic ray frontier
model.

4.2. The Economic Model

Two general economic models are used in this paper. The first model (referred to as
Model I, hereafter) only accounts for conventional market outputs, whereas the second model
(Model II, thereafter) also incorporates the provision of environmental goods and services as
additional (environmental) output. Three different specifications of environmental output are
considered, therefore Model II is specified in three variants: A, B and C. In the Model II A,
environmental output is specified following Areal et al. (2012) as the ratio of permanent
grassland to total agricultural area. In the Model II B, the area of permanent grassland is
used as a proxy for environmental output. Finally, in the Model II C, environmental output
is defined following Peerlings and Polman (2004) as the compensation paid to the farmer (as
the environmental subsidies) for providing environmental goods and services.
The economic model is described using the concept of the Shephard (1970) distance func-

tion7.
If the production possibility set, P (x), is defined as:

P (x) = {y : x can produce y } = {y : (x, y) ∈ S} (11)

where, y = (y1, ...ym) ∈ Rm
+ is a non-negative vector of m outputs, x = (x1, ...xn) ∈ Rn

+

is a non-negative vector of n inputs and S denotes the technology set. Furthermore, it is
assumed that P (x) is a compact set (i.e. it is convex, closed and bounded), 0 ∈ P (x) (inaction
is possible) and P (0) = 0 (it is impossible to produce positive output without using a positive
level of inputs) and both inputs and outputs are freely disposable. Then the output distance
function, DO(x, y), is defined on the output set, P (x), as:

DO(x, y) = inf{δ : y
δ

) ∈ P (x)}. (12)

Figures 1 and 2 illustrate the multi-output technologies considered in Model I and Models
II A, B and C, respectively.

semiparametric inefficiency effect model has not yet been developed, but the formulation of such a model
is beyond the scope of this paper and is left further research..

7Since the stochastic ray function is a specific mathematical representation of the conventional Shephard
(1970) distance function, for the convenience of the reader, in the discussion of the economic model, the
the Shephard (1970) formulation is used.
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Model I, presented in figure 1, is an illustration of the conventional distance function
representation of multiple output technology. For simplicity, only two market outputs are
considered: animal output (YA) and crop output (YC). It can be easily seen that the pro-
duction possibility set (P (x)) satisfies the standard axioms presented above. The boundary
of P (x), ranging from point A to point B, is the production possibility curve (transformation
curve) which represents combinations of maximum attainable output quantities.
Under the assumption of constant returns to scale, scaling all input quantities by a constant

will result in a proportional shift in the production possibility curve. This is illustrated by
the production possibility set (P (2x)) which represents the production possibility set (P (x))
scaled by the factor k = 2.

[Figure 1 about here.]

An illustration of the distance function representation of multiple output technology in the
presence of the environmental output (desirable output) is presented in figure 2. For illus-
tration purposes, market outputs: animal output (YA) and crop output (YC) are aggregated
to one output (denoted by Y) on the vertical axis. Environmental output is denoted by YE
and is depicted on the horizontal axis.

[Figure 2 about here.]

When environmental output is considered in Model II, the production possibility frontier
might not be a smooth function even though the production possibility set is still a compact
set (i.e. it is convex, closed and bounded). This could happen if the farmer can still produce
a positive amount of market output when the environmental output is maximised (e.g. 100%
in the Model II A, the total agricultural area in Model II B, and the maximum attainable
amount of environmental payments in Model II C), which is illustrated in figure 2. When the
farm does not produce any environmental output, the maximum attainable level of the market
output is given by point A. If environmental output is defined as the the ratio of permanent
grassland to total agricultural area as a proxy for environmental output the increase in the
environmental output will result in lower market output (e.g. due to lower crop output as well
as possibly a lower milk yield due to a lower nutrient content of fodder from pastures than e.g.
from maize silage). The substitutability between market output and environmental output
is illustrated by the smooth curve of the production possibility frontier ranging from point
A to point B. However, even when environmental output is maximized, it is still possible to
produce a positive quantity of market output. Therefore, beyond point B, the production
possibility frontier has a straight line form (perpendicular to the horizontal axis) extending
to point C. The potential “kink” illustrated at point C and the straight line from point C
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to point B may involve problems in the econometric estimation of the Translog function (or
any other smooth and differentiable function) unless the share of farms which provide the
maximum level of environmental output is very small, because the true frontier is not smooth
and differentiable in such a case.8

There is a more important problem which relates to the scaling of production technol-
ogy, when environmental output is defined as the the ratio of permanent grassland to total
agricultural area as a proxy for environmental output(i.e. Model IIA). For simplicity, it is
illustrated for constant returns to scale. A proportional increase in all inputs will not cause
a proportional increase in environmental output. The production possibility set P (2x) pre-
sented in figure 2, which is the production possibility set for a scaled (doubled) input vector,
has a different shape for Model II A and for Models II B and C. When environmental output
is defined as in Models II B and C, the boundary of the production possibility set P (2x) is
given by a smooth line which extends from point 2A to point 2C, and then by a straight line
(perpendicular to the horizontal axis) to point 2B. The segment 2C-2B represents all feasible
quantities of the market output given the maximised environmental output. However, in the
case of Model II A, the production possibility set P (2x) is different, because the environ-
mental output can not be scaled beyond point B. Therefore, the boundary of the production
possibility set P (2x) will not range from point 2A to point 2B (through point 2C), but will
go to point B through point 2C’ as represented by a dashed line in figure 2. In other words,
assuming constant returns to scale, when two farms which are characterised by equal input
quantities and which produce the same quantity of outputs are merged, the quantity of all
outputs, and hence the aggregated output of the merged farm, should double. However, this
is not the case in Model II A because the environmental output of these farms (given by the
ratio of permanent grassland to total agricultural area as a proxy for environmental output
) will remain unchanged. This means that the measures of interest (e.g. distance elasticities
and returns to scale) obtained from Model II A may be misleading. Finallly the Areal et al.
(2012) approach involves a problem of mixing quantities and ratios (pecentages) into output
set (see e.g. Dyson et al., 2001, for further discussion on this problem).
Since the definition of environmental output proposed by Areal et al. (2012) may involve

serious problems both in the estimation and interpretation of the econometric model based
on the theoretical discussion above, I suggest accounting for environmental output either by
using the proxy of the total area of permanent grassland (as in Model II B), or by following
Peerlings and Polman (2004), and using the value of environmental subsidies (Model II C).

8This problem is probably less severe in Model II C, because it is less likely that many farmers receive the
maximum attainable amount of environmental payments than that many farmers use 100% of their land
as permanent grassland.
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The economic interpretation of Model II B and II C is similar to Model I, which does not
include environmental output. In contrast to Model II A, outputs in these models can be
radially scaled under constant returns to scale. Therefore, if the P (x) (and its scaled coun-
terpart P (2x)) satisfies the standard axioms, the production possibility frontier (representing
the substitutability between the market output (Y) and the environmental output (YE)) is
given by the smooth curve ranging from point A through point C to point B (and from point
2A through point 2C to point 2B if the input quantities are scaled by the factor k = 2) in
figure 2.
Moreover, figures 1 and 2 can be also used to illustrate the role of the Z-variables in

Model I and in Models II A–C. In this paper, the Z-variables are included in the stochastic
frontier models as shift variables. Therefore, they reflect the possible differences in frontiers
(technologies), e.g. between different regions, or between groups of farms (e.g. located in less
favoured areas (LFA) and not located in these areas, etc). This is illustrated in figures 1
and 2 where the production frontier (passing through point z0) has shifted downwards to
the origin representing the new production frontier (passing through point z1, marked by
the dotted line) of less productive technology (i.e. technology of the farms located in less
productive geographic regions, less favoured areas, etc.).

5. Application

5.1. Data

In this study, I use a cross sectional data set from the Polish Farm Accountancy Data Network
(FADN) which consists of 2422 farms specialising in dairy productionin 2010 to investigate
the farms’ technical efficiency in the presence of environmental output. Farm technology is
modelled with the stochastic ray function using nonparametric kernel regression. Two general
models are considered: one with two market outputs (animal and crop output9) and one with
three outputs (two market outputs and one environmental output).
The main market output, i.e. animal output (denoted as Y A) is defined as revenue from

selling milk, beef and remaining animal production. The remaining output, crop output
(denoted as Y C), is defined as the revenue from crop production and other outputs (services).
Environmental output (denoted as Y E) is defined in three different ways: (i) as the ratio
of permanent grassland to total agricultural area as a proxy for environmental output in
Model II A (denoted as Y EA), (ii) as the number of hectares of permanent grassland in

9In the application, services are included in crop output, therefore the more precise term is other output.
However, for simplicity, it is called crop output.
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Model II B (denoted as Y EB), (iii) as the total environment subsidies in Model II C (denoted
as Y EC).
Four inputs are used in the regression analyses: labour (L), land (A), intermediate inputs

(V ), and capital (K). Labour is measured by Annual Work Units (AWU), where 1 AWU
equals 2200 hours of work. The total utilised agricultural area in hectares is used as a measure
of land input. Intermediate inputs are measured as the sum of total farming overheads (e.g.
maintenance, energy, services, other direct inputs) and specific costs (e.g. fodder, medicine,
fertilisers, etc.). The capital input is measured as the value of total fixed assets excluding
the value of land.
Additionally, a set of dummy variables indicating regional location and a dummy variable

indicating the location of farms in less favoured areas are included as Z-variables in the
econometric models.
Descriptive statistics of the regression variables are presented in Table 1.

[Table 1 about here.]

5.2. Results

All estimations and calculations were conducted within the statistical software environment
“R” (R Development Core Team, 2012) using the add-on package “np” (Hayfield and Racine,
2008) for nonparametric regression and specification tests and the add-on package “frontier”
(Coelli and Henningsen, 2013) for stochastic frontier analysis10.
Kernel regression methods are useful in applied productivity and efficiency analysis pri-

marily because they do not require the assumption regarding the functional form of the
relationship between the explanatory variables and the dependent variable. However, there
is no reason to apply these methods if the parametric model is correctly specified. There-
fore, before I proceed with the nonparametric regression analysis, I tested the validity of the
parametric stochastic ray models of the Translog functional form for all four models (Model I
and three variants of Model II)11 with parametric and nonparametric statistical tests.
The first test is the standard parametric regression error specification test (RESET) pro-

posed by Ramsey (1969) which tests whether non-linear combinations of the fitted values
enhance the fit of the model (then the model is misspecified) or not (then the model is cor-
rectly specified). In the RESET test, F-statistics are used to compare the estimated models.
In this paper, I used the conventional RESET test to test the functional form of the Translog
average stochastic ray function. The second test is a variation of the RESET test, where
10The R commands used for this analysis are available from the author upon request.
11The detailed results of the estimation of the parametric stochastic ray frontier models are presented in

tables A1 and A2 in the Appendix.
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the Likelihood Ratio test is used (instead the F-test) to test the Translog (frontier) ray func-
tion. Therefore, this test is denoted as RESET-LR and uses χ2 statistics to test the correct
parametric specification of estimated models. Additionally, the average stochastic ray func-
tions of the Translog functional forms were tested using the nonparametric consistent model
specification test proposed by Hsiao et al. (2007). Detailed results of diagnostic tests of the
Translog (average and frontier) stochastic ray models are presented in table 2.
According to the results of the conducted RESET tests, the Translog functional form was

clearly rejected for all analysed regression models (both the average and frontier) stochastic
ray functions. Based on the outcome of the nonparametric consistent model specification
test, the Translog functional form is not the correct specification of the regression function
for all four estimated models. Therefore the nonparametric kernel regression models are used
further in the analysis.

[Table 2 about here.]

Since the monotonicity condition was violated for some observations in the nonparametric
estimations of the stochastic ray models, the constrained weighted bootstrapping (CWB)
method proposed by Hall and Huang (2001) and extended by Du et al. (2013) was used to
impose this condition at all data points12. This is a novel and powerful method which allows
one to impose multiple shape constraints on the regression models.
The results of the estimation of the nonparametric average stochastic ray models are

presented in the Appendix tables A3 – A6, whereas corresponding semiparametric frontier
stochastic ray models are presented in the Appendix tables A7 and A8.
According to the bootstrap significance test proposed by Racine (1997) and Racine et al.

(2006), in all estimated models, all explanatory variables (logarithms of input quantities,
polar coordinate angle vectors as well as Z-variables) are statistically significant. The large
bandwidths of the continuous regressors indicate that these variables (i.e. intermediate inputs
in all models except Model II A, and labour in Models II A and II B) enter the nonparametric
model linearly. However, this linearity does not imply separability Parmeter et al. (2012).
The actual values of the explanatory variables with large bandwidths do not affect the slopes
of any regressor, but the slope of the explanatory variables with large bandwidths may
12The detailed results of the constrained and unconstrained nonparametric models are depicted in tables

A3 – A6 in the Appendix. Both unconstrained and constrained models utilised the same bandwidth
parameters. The CWB method is used to ensure that the monotonicity condition is fulfilled at all data
points (e.g gradients of logarithmic input quantities of unconstrained models are restricted to be non-
negative).
I am grateful to Jeff S. Racine and Christopher F. Parmeter for sharing the R code with the implementa-

tion of the CWB and their valuable suggestions and comments). Although this restriction slightly affects
the estimates (gradients) of the remaining regressors (both continuous and categorical), the differences
are rather small.
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depend on the actual values of the explanatory variables with smaller bandwidths. The small
bandwidth parameters for remaining continuous variables indicate that estimated models are
nonlinear in these variables. All nonparametric stochastic ray models are highly nonlinear
in polar coordinate angle vectors (θ in Model I and θ1 and θ2in Models II A–C). The Z-
variables in the nonparametric stochastic ray models are smoothed as categorical regressors
using appropriate kernel functions. The Z-variables indicating the FADN region and the
location of the farm in the LFA are specified as categorical regressors and the Li and Racine
(2004) generalisation of the Aitchison and Aitken (1976) kernel is used. The bandwidth
parameters for categorical regressors can be between 0 (then the sample is divided into sub-
samples based on this category) and 1 (the effect of this variable on the conditional mean
of the dependent variable is smoothed out indicating that this variable is irrelevant). The
estimated bandwidths for all Z-variables in all estimated models are clearly larger than 0 and
smaller than 1. This means that all Z-variables are relevant.
In all estimated semiparametric stochastic ray approximations of the true frontiers of all

considered models, the inefficiency is significant. The mean efficiencies in the models that
account for environmental output are higher than in the models that do not account for this
output.
Moreover, deviations from the frontier are both due to inefficiency as well as statisti-

cal noise, which is indicated by the estimates of the γ parameter. In the semiparametric
stochastic frontier models, the γ parameters range between 0.53 and 0.63.This indicates that
in the analysed sample, both inefficiency and stochastic noise play an important role in the
explanation of the deviations from the estimated production frontiers.
Table 3 presents the distance elasticitiesobtained based on the parametric Translog stochas-

tic ray and the semiparametric stochastic ray models, respectively. The calculated distance
elasticities with respect to the output quantities can be used to calculate the relative marginal
rate of technical transformation (RMRTT)13, which can be used to determine how much pro-
duction of one output (e.g. market output) needs to be reduced in order to increase production
of the other output (e.g. environmental output).
Following Färe and Primont (1995), the elasticity of scale for the output distance function

can be calculated based on the negative sum of the distance elasticities with respect to the
input quantities. Furthermore, the relative effects of the inputs on the aggregated output

13The relative marginal rate of technical transformation (RMRTT) can be defined as follows:

RMRTTym,yn
≡ ∂ ln ym

∂ ln yn
= −

∂ ln Do

∂ ln yn

∂ ln Do

∂ ln ym

, (13)

where ∂ ln Do

∂ ln ym
denotes the distance elasticity of the mth output.
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can be obtained based on the shares of distance elasticities of the inputs calculated as:
sn = εn/

∑N

i
εi, where εn is the distance elasticity of the nth input.

[Table 3 about here.]

When only market outputs are considered (Model I), the largest relative marginal contri-
bution to the aggregated output is given by the intermediate inputs, which equate to around
66% of aggregated output in the semiparametric models. The capital input and the land in-
put account for around 14% and 10% of the aggregated output in the semiparametric model,
whereas the relative importance of the labour input is equal to 10% and 7%.
Distance elasticities with respect to the output quantities estimated for Model II A, in

which the ratio of permanent grassland to total agricultural area as a proxy for environmental
output is used as an indicator of environmental output following Areal et al. (2012), differ
from Model I. The estimated distance elasticities with respect to market outputs (animal and
crop outputs) are lower than in Model I, and are equal to 68% and 21% for the semiparametric
model. The relative marginal contribution of environmental output in the aggregated output
is equal to around 11% and 13%, respectively, in the semiparametric and parametric models.
The distance elasticities with respect to inputs also differ. The marginal contribution to the
aggregated output of the intermediate inputs (land) decreased (increased) once environmental
output was accounted for. The relative marginal contribution of the land input is greater
in the model that account for environmental output (e.g. Model II A) than in the model
that does not account for environmental output (Model I), because an increase in land input
(holding all other input quantities constant) results in less intensive production, which allows
for greater environmental output, particularly when environmental output is measured as
the share (or quantity) of permanent grassland, which is usually less intensively used than
arable land. The calculated relative marginal rates of technical transformation between
environmental output and animal and crop outputs are -0.2 and -0.59. This means that
if a farmer wishes to increase the provision of environmental output by 1%, she needs to
sacrifice 0.2% of the value of animal production or 0.6% of the value of crop production. The
calculated elasticity of scale for Model II A is lower than in Model I and is equal to 0.92 and
0.89 for semiparametric and parametric models, respectively. Although Areal et al. (2012)
do not discuss estimated elasticities of scale for their models, they provide the estimates of
the slope coefficients. Based on these coefficients, the elasticity of scale from the model which
does not account for environmental output is around 1.19, whereas the elasticity of scale from
the model which accounts for environmental output is around 0.77. This means that when
only market output is considered (which is most often the case), the analysed farms are too
small, which is often confirmed in the literature (e.g. Czekaj and Henningsen, 2013a; Latruffe
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et al., 2012). However, when environmental output is included in the economic model, the
same farms are too large. This finding could be used by policy makers to justify the support
of small scale farms. Nevertheless, although this straightforward explanation seems to be
reasonable, it is not necessarily true. The specification of environmental output as the ratio
of permanent grassland to total agricultural area as a proxy for environmental output has
already been discussed in section 2. I showed that this specification of environmental output
leads to severe problems in economic interpretation, particularly when scale economies are
considered.
Therefore, two alternative models, with different specifications of the environmental out-

put, were estimated. In the first model (Model II B), environmental output is measured by
the area of permanent grassland, whereas in the second model (Model II C), environmental
output is expressed by environmental subsidies.
In Model II B, the estimated distance elasticities differ even more noticeably than the

distance elasticities in Model I, and those estimated in Model II A. For instance, the rel-
ative importance of animal output decreased, while the relative importance of crop output
increased compared to Model I. However, the estimates of the distance elasticity with re-
spect to environmental output for Model II B, which is 11% (both for the parametric and
semiparametric models), are very similar to the one calculated in Model II A.
The calculated marginal rates of technical transformation between the environmental out-

put and animal and crop outputs are -0.24 and -0.27, respectively. This means that if a farmer
wishes to increase the provision of environmental output by 1%, he will have to reduce the
value of animal production by 0.24%, or the value of crop production by 0.27%.
Distance elasticities with respect to input quantities for Model II B are different to Model

I and Model II A. The main differences are in the estimated elasticities of land input and
intermediate inputs. Although the distance elasticity of intermediate inputs is lower than
in Model I (and similar to Model II A), the distance elasticity of land input is three times
as large as in Model I and twice as large as in Model II A. The higher relative marginal
contribution of land input results from the specification of the environmental output, since
the quantity of this output is to some extent related to the quantity of land input.
Finally, the estimation results of the Model II C, in which the value of environmental

subsidies is used as a proxy of environmental output, are very similar (according to the
obtained distance elasticities as well as the estimated efficiencies and their rankings) to Model
I, which does not account for environmental output.
The distance elasticity with respect to the environmental output calculated in Model II C

is equal to 1% and it is, therefore, not economically significant. According to this result,
farmers can increase environmental output without restricting market output. This mean
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that farmers obtain environmental subsidies for very low quality land, which they would
not use for agricultural production anyway. The important drawback of this proxy is that,
if it accounts for the provision of environmental output, it only does it correctly for the
farms which have applied for environmental subsidies, as it ignores farms which provide
environmental output, but which have not applied for such subsidies. Given that in the
analysed sample 21% of farmers obtained environmental subsidies and there was a variation
in this variable (coefficient of variation equal to 3.17 for the whole sample and 1.15 for the
sub-sample of the farms which obtained environmental subsidies), this proxy is not a good
approximation of environmental output.
The estimation results of Model II C are quite similar to Model I. Therefore, the derived

economic measures (see Table 3) and the estimated technical efficiencies (see Table 4 and
figures A1 – A2 in the Appendix) are very similar in these two models, although it should
be noted that they are not equal.
The effect of the dummy variable LFA (indicating whether or not a farm is located in

a less favoured area) was negative in all models, no matter which regression method was
used. This means that, on average, farms located in less favoured areas were less productive
than farms not located in these areas. It is worth adding that in the models estimated
using nonparametric regression techniques, although the effect of this variable was significant,
the effect was noticeably smaller than in the models estimated with parametric regression
techniques.
Moreover, the statistically significant heterogeneity of production technologies was found

based on the estimates of the set of dummy variables (in nonparametric regression models
the factor was used instead of dummy variables) indicating the regional location of the
farms. According to the nonparametric estimates of Model I, farms located in the regions
Pomorze and Mazury (REG1), Wielkopolska and Śląsk (REG2), and Małopolska and Pogórze
(REG4) are less productive than farms in the region Mazowsze and Podlasie (REG3). When
environmental output is included, only farms located in the region Wielkopolska and Śląsk
(REG2) are less productive than farms in the region Mazowsze and Podlasie (REG3).
In applied productivity and efficiency studies, authors usually focus on estimated individual

efficiency scores. According to the results of conducted stochastic frontier analyses, I found
that the average technical efficiency of analysed farms is around 85 - 88%. The estimates of
technical efficiency do not differ substantially between between the models which account for
environmental output and those which do not. However, the ranking of farms differs between
the model that does not include environmental output and the models which account for this
output, no matter how it is specified. This is illustrated by rank correlation coefficients
presented in table 4 and scatter plots in figure A2,
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[Table 4 about here.]

The values of the Spearman’s rank correlation coefficients of efficiency scores (i.e. corre-
lations of rankings) within the same economic models estimated with different econometric
approaches are equal to around 0.92-0.97, which indicates almost perfect correlation. This
means that both estimation approaches (semiparametric and parametric) deliver very similar
results.
When the Spearman’s rank correlation coefficient is used to compare the efficiency scores

obtained from the models that do not include environmental output with those that account
for this output, although the correlation is still strong (ρ ranging from 0.82 to 0.98) it is not
perfect. This means that for some individual farms, the estimated efficiencies differ. These
findings are similar to the results of Areal et al. (2012), who also did not find considerable
differences in estimated average efficiency scores, although they found differences in rankings.

6. Conclusion

I proposed using the nonparametric kernel regression method to estimate semiparametric
stochastic ray frontier models to investigate the technical efficiency of farms with environ-
mental output within multi-output – multi-input technology.
The stochastic ray approach was applied rather than the conventional distance function

approach to overcome the problem of zero valued output quantities, which arose because
some of the analysed farms did not provide environmental output. The conventional para-
metric specification of stochastic ray models of the Translog functional form were rejected
for my dataset both by the parametric and nonparametric statistical test. Therefore, semi-
parametric stochastic ray frontier models were applied to overcome the problem related to
the specification of the shape of the regression function.
Three different proxies of environmental output were considered. Based on the theoretical

economic model supported by the empirical econometric application, this paper finds that the
recently proposed proxy of environmental output defined as the ratio of permanent grassland
to total agricultural area as a proxy for environmental output is not necessarily consistent with
microeconomic production theory. The other proxy of environmental output used previously
in the literature – the value of environmental subsidies, was not a useful measure for the
analysed sample of farms.
The proposed alternative approach to the measurement of environmental output, namely

the area of permanent grassland, delivers, on average, similar efficiency estimates as the proxy
of the environmental output defined as the ratio of permanent grassland to total agricultural

20



area as a proxy for environmental output. However, my approach is consistent with economic
theory and provides more plausible results regarding estimated technology.
However, it should be noted that the results of the technical efficiency analysis show that,

although the estimated efficiencies on average do not differ between the models which neglect
the environmental output and those which account for this output, the individual efficiencies
of farms differ, regardless of which proxy of environmental output is used.
Moreover, the paper finds that, besides significant regional heterogeneity which influences

the productivity of the analysed farms, being located in less favoured areas (LFA) is negatively
related to a farm’s productivity.
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Figure 1: Model I
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Table 1: Descriptive statistics
Variable Unit Min Median Mean Max Std.Dev
Y A k PLN 8.007 113.100 162.100 1842.000 165.969
Y C k PLN 0.136 24.630 36.610 782.900 45.915
Y EA % 0.000 31.940 33.610 100.000 21.732
Y EB ha 0.000 7.730 10.680 236.400 12.445
Y EC k PLN 0.000 0.000 1.841 129.800 5.836
L AWU 0.430 1.855 1.874 10.180 0.589
A k PLN 2.080 25.840 32.640 535.800 28.759
V k PLN 4.720 76.690 106.300 1276.000 103.436
K k PLN 23.120 384.500 524.800 4562.000 485.413
Dummy Variable
REG1 1 if the farm is located in Pomorze and Mazury 16%
REG2 1 if the farm is located in Wielkopolska and Śląsk 23%
REG3 1 if the farm is located in Mazowsze and Podlasie 52%
REG4 1 if the farm is located in Małopolska and Pogórze 9%
LFA 1 if the farm is located in a LFA 75%

Table 2: Results of diagnostic tests of Translog stochastic ray models
Test Function Statistics Decision

RESET test

Model I RESET = 7.892, p < 0.001 rejected

Model II
A RESET = 34.866, p < 0.001 rejected
B RESET = 12.952, p < 0.001 rejected
C RESET = 5.922, p = 0.003 rejected

RESET-LR test

Model I χ2 = 31.352, p < 0.001 rejected

Model II
A χ2 = 140.370, p < 0.001 rejected
B χ2 = 53.217, p < 0.001 rejected
C χ2 = 30.540, p < 0.001 rejected

Nonparametric
consistent model
specification test

Model I Jn = 1.630, p = 0.033 rejected

Model II
A Jn = 9.859, p < 0.001 rejected
B Jn = 2.259, p = 0.005 rejected
C Jn = 2.337, p = 0.008 rejected
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Table 3: Mean distance elasticities of semiparametric stochastic ray frontiers
Semiparametric

Model I Model II
Regressor A B C
ln(Y A) 0.729 0.665 0.497 0.690
ln(Y C) 0.271 0.220 0.393 0.298
ln(Y E) - 0.115 0.110 0.012
ln(L) -0.113 -0.091 -0.096 -0.114
ln(A) -0.114 -0.170 -0.338 -0.128
ln(V ) -0.769 -0.536 -0.546 -0.739
ln(K) -0.163 -0.131 -0.135 -0.171
ε -1.160 -0.923 -1.114 -1.152
sln(L) 0.097 0.098 0.086 0.099
sln(A) 0.098 0.183 0.303 0.111
sln(V ) 0.664 0.578 0.490 0.641
sln(K) 0.141 0.141 0.121 0.148

Table 4: Correlation coefficients (Spearman’s rank correlation ρ) of estimated efficiencies
SP MI SP MII A SP MII B SP MII C

SP MI 1.000
SP MII A 0.855 1.000
SP MII B 0.873 0.960 1.000
SP MII C 0.976 0.843 0.861 1.000
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Appendix

A. Results of Parametric Translog Stochastic Ray Frontier

Table A1: Results of Translog stochastic ray frontier Model I and Model II A

Model I Model II A
Variable Parameter Estimate S.E. P-value Estimate S.E. P-value
(Intercept) α0 0.773 0.219 0.000 -1.312 0.411 0.001
ln(L) β1 -0.065 0.148 0.663 -0.181 0.192 0.345
ln(A) β2 0.190 0.102 0.063 0.471 0.150 0.002
ln(V ) β3 0.869 0.102 0.000 1.096 0.168 0.000
ln(K) β4 0.026 0.103 0.799 0.283 0.130 0.030
θ1 α1 -2.058 0.248 0.000 0.871 0.337 0.010
θ2 α2 - - - 0.725 0.126 0.000
1/2 ln(L)2 β11 0.160 0.089 0.072 0.186 0.080 0.019
ln(L) ln(A) β12 0.070 0.048 0.146 0.033 0.046 0.476
ln(L) ln(V ) β13 -0.124 0.049 0.011 -0.088 0.052 0.090
ln(L) ln(K) β14 0.058 0.042 0.163 0.056 0.038 0.145
ln(L)θ1 ζ11 0.041 0.099 0.682 0.131 0.078 0.095
ln(L)θ2 ζ21 - - - 0.027 0.039 0.486
1/2 ln(A)2 β22 -0.121 0.045 0.007 -0.098 0.042 0.019
ln(A) ln(V ) β23 -0.012 0.034 0.730 -0.028 0.037 0.440
ln(A) ln(K) β24 0.046 0.027 0.090 0.031 0.026 0.234
ln(A)θ1 ζ12 0.158 0.078 0.044 0.013 0.063 0.834
ln(A)θ2 ζ22 - - - -0.087 0.029 0.003
1/2 ln(V )2 β33 0.116 0.040 0.004 0.102 0.050 0.041
ln(V ) ln(K) β34 -0.088 0.030 0.003 -0.097 0.031 0.001
ln(V )θ1 ζ13 0.055 0.070 0.432 -0.308 0.076 0.000
ln(V )θ2 ζ23 - - - -0.188 0.032 0.000
1/2 ln(K)2 β4 0.060 0.033 0.063 0.034 0.029 0.248
ln(K)θ1 ζ14 -0.044 0.061 0.468 -0.137 0.050 0.007
ln(K)θ2 ζ24 - - - 0.005 0.024 0.832
1/2 θ2

1 α11 2.361 0.258 0.000 1.255 0.182 0.000
θ1θ2 α12 - - - -0.207 0.062 0.001
1/2 θ2

2 α22 - - - 0.775 0.048 0.000
REG1 ρ11 0.003 0.014 0.813 0.058 0.013 0.000
REG2 ρ12 -0.036 0.012 0.004 -0.029 0.011 0.011
REG4 ρ13 -0.029 0.017 0.092 0.034 0.016 0.031
LFA ρ2 -0.058 0.011 0.000 -0.019 0.011 0.073

σ2 0.089 0.005 0.000 0.073 0.004 0.000
γ 0.659 0.044 0.000 0.674 0.042 0.000

log likelihood value 173.717 421.770
mean efficiency 0.834 0.845
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Table A2: Results of Translog stochastic ray frontier Model II B and C

Model II B Model II C
Variable Parameter Estimate S.E. P-value Estimate S.E. P-value
(Intercept) α0 1.141 0.268 0.000 0.594 0.224 0.008
ln(L) β1 -0.076 0.152 0.616 -0.035 0.147 0.812
ln(A) β2 0.375 0.132 0.005 0.213 0.105 0.042
ln(V ) β3 0.656 0.127 0.000 0.850 0.105 0.000
ln(K) β4 0.001 0.101 0.991 0.069 0.102 0.499
θ1 α1 -1.498 0.346 0.000 -1.900 0.251 0.000
θ2 α2 0.272 0.135 0.044 0.550 0.174 0.002
1/2 ln(L)2 β11 0.111 0.078 0.154 0.152 0.087 0.083
ln(L) ln(A) β12 0.038 0.052 0.467 0.076 0.049 0.116
ln(L) ln(V ) β13 -0.070 0.050 0.158 -0.099 0.049 0.044
ln(L) ln(K) β14 0.038 0.037 0.297 0.034 0.041 0.406
ln(L)θ1 ζ11 0.036 0.111 0.748 0.033 0.098 0.738
ln(L)θ2 ζ21 0.006 0.054 0.915 -0.038 0.082 0.647
1/2 ln(A)2 β22 -0.089 0.056 0.108 -0.063 0.047 0.183
ln(A) ln(V ) β23 -0.034 0.042 0.414 -0.044 0.036 0.222
ln(A) ln(K) β24 0.018 0.029 0.524 0.037 0.027 0.176
ln(A)θ1 ζ12 0.482 0.111 0.000 0.142 0.082 0.083
ln(A)θ2 ζ22 0.296 0.042 0.000 0.068 0.052 0.191
1/2 ln(V )2 β33 0.117 0.045 0.009 0.117 0.041 0.005
ln(V ) ln(K) β34 -0.046 0.029 0.107 -0.073 0.030 0.015
ln(V )θ1 ζ13 -0.253 0.102 0.013 0.062 0.073 0.397
ln(V )θ2 ζ23 -0.271 0.038 0.000 -0.175 0.059 0.003
1/2 ln(K)2 β4 0.050 0.028 0.079 0.051 0.032 0.112
ln(K)θ1 ζ14 -0.103 0.066 0.118 -0.069 0.061 0.254
ln(K)θ2 ζ24 -0.039 0.028 0.166 -0.004 0.046 0.925
1/2 θ2

1 α11 2.244 0.310 0.000 2.371 0.252 0.000
θ1θ2 α12 -1.344 0.112 0.000 -0.520 0.118 0.000
1/2 θ2

2 α22 0.486 0.059 0.000 0.054 0.110 0.626
REG1 ρ11 0.040 0.013 0.001 0.007 0.014 0.620
REG2 ρ12 -0.035 0.011 0.001 -0.027 0.012 0.027
REG4 ρ13 0.024 0.015 0.120 -0.005 0.017 0.753
LFA ρ2 -0.021 0.010 0.043 -0.054 0.011 0.000

σ2 0.069 0.004 0.000 0.075 0.006 0.000
γ 0.685 0.039 0.000 0.567 0.064 0.000

log likelihood value 510.754 244.650
mean efficiency 0.848 0.855
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Table A3: Results of the nonparametric estimation of the stochastic ray function Model I
Regressor Bandwidth Gradients P -Value

Min Median Mean Max Std. Dev
ln(L) 0.615 0.000 ( -0.279) 0.107 ( 0.085) 0.113 ( 0.085) 0.534 (0.477) 0.055 (0.064) < 0.001 (< 0.001)
ln(A) 0.973 0.000 ( -0.195) 0.126 ( 0.119) 0.114 ( 0.103) 0.347 (0.369) 0.055 (0.065) < 0.001 (< 0.001)
ln(V ) 240959 0.376 ( 0.386) 0.762 ( 0.771) 0.769 ( 0.780) 1.021 (1.140) 0.069 (0.072) < 0.001 (< 0.001)
ln(K) 1.061 0.000 ( -0.035) 0.169 ( 0.172) 0.163 ( 0.166) 0.403 (0.402) 0.041 (0.044) < 0.001 (< 0.001)
θ 0.125 -1.672 ( -1.747) -0.912 (-0.909) -0.879 (-0.876) 0.776 (0.776) 0.350 (0.350) < 0.001 (< 0.001)
REG1 0.061 -0.403 ( -0.471) -0.017 (-0.020) -0.015 (-0.017) 0.947 (0.965) 0.010 (0.094) < 0.001 (< 0.001)
REG2 0.061 -0.292 ( -0.291) -0.033 (-0.033) -0.035 (-0.035) 0.194 (0.211) 0.056 (0.058) < 0.001 (< 0.001)
REG4 0.061 -0.267 ( -0.460) -0.006 (-0.004) -0.011 (-0.014) 0.230 (0.264) 0.078 (0.095) < 0.001 (< 0.001)
LFA 0.254 -0.260 ( -0.256) -0.022 (-0.022) -0.022 (-0.022) 0.402 (0.411) 0.037 (0.038) < 0.001 (< 0.001)

R2 = 0.940 (0.940)
Note: Values in parenthesis are for the monotonicity unrestricted model.

Table A4: Results of the nonparametric estimation of the stochastic ray function Model II A
Regressor Bandwidth Gradients P -Value

Min Median Mean Max Std. Dev
ln(L) 143789 0.000 (-0.216) 0.090 ( 0.058) 0.091 ( 0.051) 0.313 (0.337) 0.043 (0.055) 0.005 (0.005)
ln(A) 1.344 0.000 (-0.201) 0.169 ( 0.170) 0.170 ( 0.170) 0.431 (0.470) 0.052 (0.058) < 0.001 (< 0.001)
ln(V ) 0.522 0.000 (-0.232) 0.548 ( 0.556) 0.536 ( 0.543) 0.998 (1.140) 0.138 (0.143) < 0.001 (< 0.001)
ln(K) 101159 0.000 (-0.053) 0.131 ( 0.131) 0.131 ( 0.130) 0.404 (0.403) 0.041 (0.044) < 0.001 (< 0.001)
θ1 0.172 -4.138 (-4.321) -0.676 (-0.673) -0.702 (-0.704) 1.103 (0.729) 0.439 (0.433) < 0.001 (< 0.001)
θ2 0.173 -1.848 (-1.756) 0.179 ( 0.178) 0.339 ( 0.341) 4.001 (4.026) 0.622 (0.624) < 0.001 (< 0.001)
REG1 0.187 -0.333 (-0.332) 0.020 ( 0.023) 0.018 ( 0.018) 0.338 (0.340) 0.061 (0.065) < 0.001 (< 0.001)
REG2 0.187 -0.425 (-0.423) -0.017 (-0.017) -0.015 (-0.015) 0.200 (0.215) 0.045 (0.047) < 0.001 (< 0.001)
REG3 0.187 -0.266 (-0.411) 0.016 ( 0.014) 0.011 ( 0.010) 0.302 (0.318) 0.069 (0.076) < 0.001 (< 0.001)
LFA 0.814 -0.024 (-0.026) -0.001 (-0.001) -0.001 (-0.001) 0.041 (0.042) 0.006 (0.006) < 0.001 (< 0.001)

R2 = 0.943 (0.942)
Note: Values in parenthesis are for the monotonicity unrestricted model.

Table A5: Results of the nonparametric estimation of the stochastic ray function Model II B
Regressor Bandwidth Gradients P -Value

Min Median Mean Max Std. Dev
ln(L) 40481 0.000 (-0.325) 0.087 ( 0.054) 0.096 ( 0.052) 0.577 (0.514) 0.050 (0.060) 0.005 (0.005)
ln(A) 0.988 0.000 (-0.159) 0.324 ( 0.326) 0.338 ( 0.345) 0.923 (1.200) 0.120 (0.139) < 0.001 (< 0.001)
ln(V ) 2704933 0.000 (-0.230) 0.569 ( 0.575) 0.546 ( 0.549) 0.838 (0.878) 0.115 (0.126) < 0.001 (< 0.001)
ln(K) 1.645 0.000 (-0.126) 0.138 ( 0.137) 0.135 ( 0.133) 0.403 (0.403) 0.035 (0.040) < 0.001 (< 0.001)
θ1 0.081 -3.711 (-3.699) -1.358 (-1.358) -1.478 (-1.484) 0.661 (0.533) 0.694 (0.697) < 0.001 (< 0.001)
θ2 0.196 -2.013 (-2.052) -0.330 (-0.328) -0.399 (-0.401) 0.737 (0.537) 0.360 (0.362) < 0.001 (< 0.001)
REG1 0.070 -0.237 (-0.248) 0.018 ( 0.014) 0.016 ( 0.014) 0.838 (0.519) 0.064 (0.069) < 0.001 (< 0.001)
REG2 0.070 -0.425 (-0.330) -0.017 (-0.005) -0.015 (-0.008) 0.200 (0.152) 0.045 (0.041) < 0.001 (< 0.001)
REG4 0.070 -0.266 (-0.387) 0.015 ( 0.011) 0.011 ( 0.014) 0.302 (0.315) 0.069 (0.069) < 0.001 (< 0.001)
LFA 0.536 -0.116 (-0.115) -0.004 (-0.005) -0.004 (-0.004) 0.119 (0.116) 0.016 (0.017) < 0.001 (< 0.001)

R2 = 0.958 (0.958)
Note: Values in parenthesis are for the monotonicity unrestricted model.
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Table A6: Results of the nonparametric estimation of the stochastic ray function Model II C
Regressor Bandwidth Gradients P -Value

Min Median Mean Max Std. Dev
ln(L) 0.513 0.000 (-0.312) 0.106 ( 0.084) 0.114 ( 0.085) 0.506 (0.481) 0.059 (0.059) < 0.001 (< 0.001)
ln(A) 3.862 0.000 (-0.167) 0.140 ( 0.142) 0.128 ( 0.128) 0.678 (0.670) 0.064 (0.064) < 0.001 (< 0.001)
ln(V ) 154386 0.343 ( 0.356) 0.724 ( 0.729) 0.739 ( 0.747) 1.019 (1.125) 0.077 (0.077) < 0.001 (< 0.001)
ln(K) 0.924 0.000 (-0.127) 0.175 ( 0.175) 0.171 ( 0.169) 0.548 (0.546) 0.041 (0.041) < 0.001 (< 0.001)
θ1 0.130 -1.992 (-1.953) -0.944 (-0.944) -0.905 (-0.906) 0.756 (0.735) 0.357 (0.357) < 0.001 (< 0.001)
θ2 0.431 -0.857 (-0.835) -0.189 (-0.187) -0.186 (-0.180) 0.318 (0.348) 0.145 (0.145) < 0.001 (< 0.001)
REG1 0.070 -0.354 (-0.489) -0.010 (-0.008) -0.003 (-0.006) 0.838 (0.895) 0.092 (0.100) < 0.001 (< 0.001)
REG2 0.070 -0.220 (-0.225) -0.021 (-0.021) -0.023 (-0.023) 0.219 (0.223) 0.058 (0.058) < 0.001 (< 0.001)
REG4 0.070 -0.291 (-0.371) -0.004 (-0.004) 0.017 (0.017) 0.639 (0.638) 0.126 (0.132) < 0.001 (< 0.001)
LFA 0.319 -0.179 (-0.180) -0.015 (-0.016) -0.015 (-0.016) 0.317 (0.318) 0.034 (0.031) < 0.001 (< 0.001)

R2 = 0.945 (0.945)
Note: Values in parenthesis are for the monotonicity unrestricted model.

Table A7: Results of semiparametric stochastic ray (frontier) production function
Model I Model II

Regressor Estimate S.E. P-value Estimate S.E. P-value
(Intercept) 0.165 0.011 0.000 0.124 0.010 0.000
σ2 0.073 0.004 0.000 0.049 0.003 0.000
γ 0.630 0.045 0.000 0.623 0.047 0.000
log likelihood value 363.401 842.913
mean efficiency 0.850 0.875

Table A8: Results of semiparametric stochastic ray (frontier) production function
Model II Model II

Regressor Estimate S.E. P-value Estimate S.E. P-value
(Intercept) 0.119 0.011 0.000 0.134 0.015 0.000
σ2 0.047 0.003 0.000 0.060 0.004 0.000
γ 0.574 0.056 0.000 0.528 0.068 0.000
log likelihood value 820.926 473.450
mean efficiency 0.888 0.873
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(c) Semipar. SR Model I vs. Model II C

Figure A1: Comparison of technical efficiencies obtained from the semiparametric stochastic ray
frontiers for Model I and Model II A (A1a), Model I and Model II B (A1b) and Model I
and Model II C (A1c)
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Figure A2: Comparison of rankings based on the technical efficiency scores obtained from the semi-
parametric ray frontiers for Model I and Model II A (A2a), Model I and Model II B
(A2b) and Model I and Model II C (A2c)
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